覃飛,徐旻霄,崔書(shū)強(qiáng),瞿超藝,董亞南,趙杰修*
運(yùn)動(dòng)保護(hù)PM2.5暴露導(dǎo)致的大鼠肺部損傷:GSK3β介導(dǎo)的eHSP70/iHSP70平衡機(jī)制研究
覃飛1, 2, 3,徐旻霄4,崔書(shū)強(qiáng)5,瞿超藝2,董亞南5,趙杰修2*
(1. 暨南大學(xué) 體育學(xué)院,廣東 廣州 510032;2. 國(guó)家體育總局體育科學(xué)研究所,北京 100061;3. 暨南大學(xué) 廣東省速度能力研究重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510032;4. 首都體育學(xué)院 體育教育訓(xùn)練學(xué)院,北京 100191; 5. 北京市體育科學(xué)研究所,北京 100075)
探討長(zhǎng)期運(yùn)動(dòng)對(duì)亞急性PM2.5暴露致大鼠肺臟損傷的保護(hù)效應(yīng)及GSK3β介導(dǎo)的eHSP70/iHSP70平衡機(jī)制。32只Wistar大鼠(雄性,8周齡)隨機(jī)分為4組(8只/組),即安靜對(duì)照組(sedentary,S)、運(yùn)動(dòng)訓(xùn)練組(exercise,E)、安靜+PM2.5暴露組(sedentary+PM2.5exposures,S+PM2.5)和運(yùn)動(dòng)+PM2.5暴露組(exercise +PM2.5exposures,E+PM2.5)。E組和E+PM2.5組大鼠進(jìn)行8周跑臺(tái)運(yùn)動(dòng)(60 min/次、5次/周);運(yùn)動(dòng)結(jié)束后,S+PM2.5組和E+PM2.5組進(jìn)行3周亞急性PM2.5暴露染毒(7天/周,6 h/d);暴露結(jié)束后,采用全身體描箱測(cè)試肺功能。24 h后采集大鼠肺臟、血漿及肺灌洗液,檢測(cè)肺灌洗液中炎癥因子(TNF-α、IL-1α、IL-6)及血漿eHSP70含量;觀察肺臟組織形態(tài)結(jié)構(gòu);采用免疫印跡法檢測(cè)肺臟iHSP70、TLR-4、NF-κB p65、IκBα、p-IκBα、IKKβ、p-IKKβ、P38、p-P38、HSF1、p-HSF1ser303、GSK3β和p-GSK3βser9通路蛋白分泌水平。研究發(fā)現(xiàn),暴露染毒后肺組織出血,大量炎性細(xì)胞聚集在肺泡腔,肺泡間隔增厚。與S組相比,S+PM2.5組肺功指標(biāo)MV、TV、EF50、PIF、PEF顯著更低,PAU和Te顯著更高;肺灌洗液TNF-α、IL-1α和IL-6、血漿eHSP70顯著更高;肺組織iHSP70顯著更低,相關(guān)通路中TLR-4、NF-κB p65、p-IκBα、IKKβ、p-IKKβ、GSK3β、p-P38和p-HSF1ser303蛋白水平顯著更高,IκBα、HSF1、p-GSK3βser9顯著更低。與S+PM2.5組相比,E+PM2.5組肺組織局部的出血情況、炎性浸潤(rùn)程度均明顯改善;肺功指標(biāo)TV、MV、EF50、PIF、PEF顯著更高,PAU和Te顯著更低;肺灌洗液IL-1α、TNF-α、IL-6和血漿eHSP70分泌水平顯著更低;肺組織iHSP70顯著更高,相關(guān)通路中TLR-4、NF-κB p65、p-IκBα、IKKβ、p-IKKβ、GSK3β、p-P38和p-HSF1ser303蛋白水平顯著更低,IκBα、HSF1、p-GSK3βser9顯著更高。研究認(rèn)為,長(zhǎng)期規(guī)律性運(yùn)動(dòng)可下調(diào)大鼠肺上皮細(xì)胞P38MAPK磷酸化水平,可能通過(guò)增加GSK-3β磷酸化使GSK3β失活,增加HSF1分泌水平,上調(diào)iHSP70,改善大氣顆粒物所致的呼吸系統(tǒng)炎癥機(jī)體的eHSP70/iHSP70平衡紊亂,進(jìn)而阻斷TLR-NFκB炎癥信號(hào)通路,抑制炎癥。
運(yùn)動(dòng);PM2.5;顆粒物;肺損傷;炎癥;HSP70
顆粒物是空氣污染的首要污染物,會(huì)造成廣泛的健康危害。世界衛(wèi)生組織(World Health Organization,WHO)2021年發(fā)布的《全球空氣質(zhì)量指南》明確指出,空氣污染是影響全球人類(lèi)健康的主要因素?!丁敖】抵袊?guó)2030”規(guī)劃綱要》也突出強(qiáng)調(diào),要加強(qiáng)對(duì)影響健康的環(huán)境問(wèn)題治理與健康風(fēng)險(xiǎn)管理。已有大量證據(jù)表明,可吸入顆粒物會(huì)引發(fā)呼吸道炎癥、哮喘、肺癌和心血管疾病等,而且細(xì)顆粒物(particulate matter 2.5,PM2.5)還能夠以呼吸道為效應(yīng)靶點(diǎn),激活局部炎癥因子并引發(fā)炎癥級(jí)聯(lián)反應(yīng),導(dǎo)致機(jī)體的系統(tǒng)性炎癥,進(jìn)而增加阿爾茨海默病等神經(jīng)系統(tǒng)損傷,以及肥胖和胰島素抵抗等代謝性疾病的發(fā)生風(fēng)險(xiǎn)(Paul et al., 2018;Roberts et al., 2014)。因此,探究可吸入顆粒物對(duì)健康的影響及其相關(guān)防御措施至關(guān)重要。
運(yùn)動(dòng)作為一種綠色的非藥物干預(yù)手段,可以防治多種慢性疾病。已有研究表明,運(yùn)動(dòng)中每分通氣量(minute volume,MV)增加,在高濃度顆粒物污染下可導(dǎo)致更多顆粒物進(jìn)入機(jī)體,增加污染物暴露風(fēng)險(xiǎn)(覃飛等, 2020)。也有研究表明,長(zhǎng)期規(guī)律性的運(yùn)動(dòng)健身產(chǎn)生的有益效應(yīng)可抵抗顆粒物造成的機(jī)體急性損傷。即“運(yùn)動(dòng)促進(jìn)健康”和“空氣污染危害健康”兩者之間可能存在著一個(gè)平衡點(diǎn)(Giles et al., 2014;Roberts et al., 2014)。相關(guān)研究表明,在空氣污染或霧霾周期開(kāi)始前進(jìn)行有規(guī)律的4~8周運(yùn)動(dòng)健身訓(xùn)練,可在一定程度上預(yù)防空氣污染導(dǎo)致的機(jī)體急性損傷、抑制炎癥的發(fā)生發(fā)展(Nesi et al., 2016;Qin et al., 2021;Yu et al., 2012)。但是空氣污染、運(yùn)動(dòng)和健康三者間相互作用的現(xiàn)象機(jī)制尚待分析與揭示。運(yùn)動(dòng)是否可以有效防御可吸入顆粒物對(duì)健康的危害?何種運(yùn)動(dòng)方案可產(chǎn)生良好的保護(hù)效應(yīng)?運(yùn)動(dòng)保護(hù)顆粒物污染所致的機(jī)體損傷的相關(guān)機(jī)制是什么?這些問(wèn)題尚待進(jìn)一步清晰闡明,以響應(yīng)以防病為重點(diǎn)目標(biāo)的公共衛(wèi)生干預(yù)理念,保障運(yùn)動(dòng)健身的安全合理。
熱休克蛋白(hot shock proteins 70,HSP70)被稱(chēng)為“應(yīng)激蛋白”,與環(huán)境應(yīng)激(Baldissera et al., 2018)和運(yùn)動(dòng)(Kostrycki et al., 2019)密切相關(guān)。近年來(lái)的研究發(fā)現(xiàn)HSP70具有多種相互拮抗的功能,其功能差異依賴(lài)于其所存在的部位不同,即細(xì)胞內(nèi)或細(xì)胞外(Krause et al., 2015)。細(xì)胞內(nèi)HSP70(intracellular HSP70,iHSP70)可誘導(dǎo)NF-?κB失活,并發(fā)揮重要的抗炎作用(Heck et al., 2017);而細(xì)胞外HSP70(extracellular HSP70,eHSP70)具有促炎效應(yīng),其可與Toll樣受體(Toll-like receptors,TLR)結(jié)合,進(jìn)而激活NF-κB炎癥通路(Asea et al., 2002)。大量證據(jù)亦表明顆粒物暴露后,機(jī)體eHSP70含量升高,并且與呼吸道炎癥的發(fā)生密切相關(guān)(Sancini et al., 2014)。因此,eHSP70與iHSP70的比率,又稱(chēng)“H指數(shù)”,可以作為空氣污染引起的炎癥的生物標(biāo)志物。此外,規(guī)律性體育鍛煉會(huì)降低eHSP70分泌水平并提高iHSP70表達(dá)(Bittencourt et al., 2017;Krause et al., 2015)。由此推斷,運(yùn)動(dòng)可調(diào)控或維持eHSP70/iHSP70的平衡,進(jìn)而抵抗顆粒物污染等致病因素,維持機(jī)體健康。然而運(yùn)動(dòng)對(duì)HSP70細(xì)胞內(nèi)外平衡的影響及其相關(guān)機(jī)制尚不明晰。
運(yùn)動(dòng)誘導(dǎo)的iHSP70的增多可增強(qiáng)細(xì)胞內(nèi)的抗炎作用。HSP70的合成調(diào)節(jié)主要發(fā)生在基因轉(zhuǎn)錄水平,由熱休克轉(zhuǎn)錄因子(heat shock transcription factors,HSFs)家族調(diào)控,其中HSF1是HSP的主要調(diào)控因子(Akerfelt et al., 2010)。而糖原合酶激酶3β(glycogen synthase kinase-3β,GSK3β)作為體內(nèi)大量代謝酶和轉(zhuǎn)錄因子的調(diào)控因子,被認(rèn)為是控制轉(zhuǎn)錄因子激活的“看門(mén)人”,可使HSF1在ser303位點(diǎn)發(fā)生磷酸化,維持細(xì)胞質(zhì)中HSF1處于無(wú)活性狀態(tài),進(jìn)而減少HSP的合成(Hietakangas et al., 2006)。相關(guān)研究已在心?。∕artherus et al., 2016)、神經(jīng)(Liu et al., 2013)、骨骼肌(Léger et al., 2006)等不同組織內(nèi)發(fā)現(xiàn)急性運(yùn)動(dòng)和慢性運(yùn)動(dòng)均可以不同程度地下調(diào)GSK3β。因此,推斷GSK3β可能是運(yùn)動(dòng)調(diào)控HSF1的關(guān)鍵靶點(diǎn)之一。而運(yùn)動(dòng)是否可以通過(guò)降低GSK3β活性進(jìn)而緩解其對(duì)HSF1的抑制作用,促進(jìn)iHSP70的合成,影響eHSP70/iHSP70平衡,有待進(jìn)一步研究。
綜上所述,本研究采用濃縮富集全身暴露系統(tǒng)模擬大氣暴露的真實(shí)環(huán)境,首先對(duì)大鼠進(jìn)行8周的運(yùn)動(dòng)干預(yù),隨后施加亞急性(21天)PM2.5暴露,評(píng)估長(zhǎng)期規(guī)律性運(yùn)動(dòng)對(duì)顆粒物暴露大鼠肺臟損傷的保護(hù)效應(yīng),并進(jìn)一步檢測(cè)GSK3β和eHSP70/iHSP70平衡介導(dǎo)的HSP/TLR/NF-κB炎癥信號(hào)通路,以明確長(zhǎng)期規(guī)律性運(yùn)動(dòng)對(duì)亞急性PM2.5暴露導(dǎo)致的肺組織損傷的保護(hù)效應(yīng)及其相關(guān)機(jī)制。
SPF級(jí)8周齡Wistar 鼠32只,購(gòu)買(mǎi)于北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司[許可證號(hào):SCXK(京)2016-0006]。自由飲食,12 h/12 h晝夜循環(huán),室溫(23±2)℃。實(shí)驗(yàn)程序嚴(yán)格遵守國(guó)家體育總局體育科學(xué)研究所倫理委員會(huì)要求(編號(hào):CISSLA-2017003)。大鼠適應(yīng)性飼養(yǎng)1周后,隨機(jī)分為安靜對(duì)照組(sedentary, S)、運(yùn)動(dòng)干預(yù)組(exercise, E)、安靜對(duì)照+PM2.5暴露組(sedentary+PM2.5exposures, S+PM2.5)和運(yùn)動(dòng)干預(yù)+PM2.5暴露組(exercise+PM2.5exposures,E+PM2.5),每組8只。
所有運(yùn)動(dòng)干預(yù)組進(jìn)行8周間歇性跑臺(tái)訓(xùn)練。間歇性跑臺(tái)訓(xùn)練方案依據(jù)Jiang等(2014)的間歇訓(xùn)練方案,先以50%~55%V?O2max對(duì)應(yīng)的跑臺(tái)速度進(jìn)行5 min熱身,隨后進(jìn)行4 min的高強(qiáng)度運(yùn)動(dòng)(80%~90%V?O2max),再進(jìn)行3 min低強(qiáng)度運(yùn)動(dòng)(65%~70%V?O2max),并循環(huán)重復(fù)7次,最后以50%~55%V?O2max的對(duì)應(yīng)速度進(jìn)行5 min的整理運(yùn)動(dòng)后結(jié)束訓(xùn)練。運(yùn)動(dòng)干預(yù)5天/周,1 h/天。使用大鼠代謝監(jiān)測(cè)系統(tǒng)(Columbus,美國(guó))采集大鼠運(yùn)動(dòng)中的攝氧量數(shù)據(jù),以確定運(yùn)動(dòng)強(qiáng)度所對(duì)應(yīng)的跑臺(tái)速度(Qin et al., 2020a)。每2周測(cè)定一次最大攝氧量,調(diào)整運(yùn)動(dòng)強(qiáng)度。
8周運(yùn)動(dòng)訓(xùn)練后,S+PM2.5和E+PM2.5組的大鼠采用PM2.5在線濃度富集系統(tǒng)進(jìn)行全身暴露染毒。暴露時(shí)間為2018年10月15日—11月5日,6 h/天,連續(xù)染毒21天。S和E組大鼠飼養(yǎng)在獨(dú)立通風(fēng)籠飼養(yǎng)系統(tǒng)中,PM2.5濃度為0。使用DUSTTARK II-8530(TSI,美國(guó))測(cè)試儀器實(shí)時(shí)檢測(cè)暴露艙內(nèi)PM2.5濃度。在暴露期間,根據(jù)美國(guó)環(huán)境保護(hù)署對(duì)于采樣標(biāo)準(zhǔn)流程的規(guī)定采集艙內(nèi)氣體樣本(采樣氣流0.17 L/min),應(yīng)用氣相色譜-質(zhì)譜聯(lián)用法(GC-MS)分析PM2.5暴露期間16種多環(huán)芳烴。使用電感耦合等離子體質(zhì)譜法(ICP-MS)對(duì)鉻(Cr)、銅(Cu)、鎘(Cd)、鎳(Ni)、錳(Mn)、鋅(Zn)和砷(As)等金屬成分進(jìn)行定量。為了監(jiān)測(cè)暴露倉(cāng)中存在的潛在有害生物因素,在暴露倉(cāng)中安置哨兵鼠,并對(duì)其進(jìn)行微生物檢查。
采用FinePointe WBP全身體積描積系統(tǒng)(BUXCO Research Systems,美國(guó))測(cè)試各組大鼠呼吸功能變化。將大鼠放入檢測(cè)室適應(yīng)20 min,測(cè)試全程保持環(huán)境安靜。采集呼吸頻率(frequency,F(xiàn))、MV、潮氣量(tidal volume,TV)、呼氣中期流速(expiratory flow 50,EF50)、暫時(shí)停頓(pause,PAU)、吸氣時(shí)間(inspiration time,Ti)、呼氣時(shí)間(expiration time,Te)、吸氣流峰值(peak inspiratory flow,PIF)、呼氣流峰值(peak expiratory flow,PEF)等指標(biāo)。
染毒結(jié)束后24 h取材,所有大鼠禁食12 h。稱(chēng)重后,麻醉大鼠。打開(kāi)大鼠腹腔,于腹主動(dòng)脈取血。大鼠處死后開(kāi)胸結(jié)扎左側(cè)主支氣管,用2 ml 4 ℃生理鹽水反復(fù)灌注右側(cè)主支氣管并回抽,回抽率50%~80%,獲取支氣管肺泡灌洗液,將灌洗液在3 000 r/min轉(zhuǎn)速下離心10 min,上清液分裝并保存在-20 ℃冰箱中待測(cè)。
肺臟組織用中性甲醛固定48 h后,樣品通過(guò)梯度酒精脫水、二甲苯透明、石蠟包埋等步驟制成切片(5 μm)。肺組織切片用蘇木精-伊紅(H&E)染色,用光學(xué)顯微鏡(200×?和400×?)觀察。采用急性肺損傷評(píng)分標(biāo)準(zhǔn)進(jìn)行量化評(píng)價(jià)。
采用酶聯(lián)免疫吸附測(cè)定(enzyme linked immunosorbent assay,ELISA)測(cè)量肺灌洗液中IL-1a、TNF-α、IL-6及血漿中HSP70含量,并測(cè)試肺灌洗液中蛋白含量。檢測(cè)步驟按照試劑盒說(shuō)明書(shū)進(jìn)行。
RIPA試劑盒用于提取肺組織樣品的總蛋白,并進(jìn)行BCA蛋白定量。隨后進(jìn)行電泳、轉(zhuǎn)膜、封閉、孵育一抗等步驟,各指標(biāo)一抗孵育濃度如下:TLR-4(1∶4 000)、iHSP70(1∶2 000)、P38(1∶2 000)、p-P38(1∶1 000)、NF-κB p65(1∶1 000)、IκBα(1∶500)、p-IκBα(1∶1 000)、IKKβ(1∶1 000)、p-IKKβ(1∶1 000)、HSF1(1∶1 000)、p-HSF1ser303(1∶2 000)、GSK3β(1∶4 000)、p-GSK3βser9(1∶500)、β-actin(1∶10 000)。一抗4 ℃孵育過(guò)夜后,用TBST緩沖液洗5 min×3次,孵育山羊抗兔/小鼠二抗(1∶10 000)40 min后,TBST洗滌膜5 min×3次。使用增強(qiáng)化學(xué)發(fā)光(enhanced chemiluminescence,ECL)試劑盒觀察免疫反應(yīng)帶。采用ImageJ軟件分析積分光密度(integrated optical density,IOD)值。
利用ELISA檢測(cè)血漿中eHSP70含量。通過(guò)蛋白印跡法檢測(cè)肺組織中iHSP70的表達(dá)。將安靜對(duì)照組eHSP70/iHSP70設(shè)為基線值(Kostrycki et al., 2019, Qin et al., 2021a),實(shí)驗(yàn)組應(yīng)激狀態(tài)下的eHSP70/ iHSP70比值為各組值相對(duì)于基線值的商。
所有實(shí)驗(yàn)數(shù)據(jù)均采用SPSS 22.0軟件進(jìn)行分析,數(shù)據(jù)用平均數(shù)±標(biāo)準(zhǔn)差(±)表示。各項(xiàng)數(shù)據(jù)進(jìn)行正態(tài)分布和方差齊性檢驗(yàn)后,采用雙因素方差分析進(jìn)行主效應(yīng)和交互效應(yīng)分析;當(dāng)交互效應(yīng)具有統(tǒng)計(jì)學(xué)意義時(shí),進(jìn)一步采用單因素方差分析進(jìn)行簡(jiǎn)單效應(yīng)分析,并采用LSD(方差齊性)或Dennett’s T3(方差不齊性)法進(jìn)行各組間的兩兩比較。變量變換后仍為非正態(tài)分布資料時(shí),應(yīng)用Kruskal-Wallis Test進(jìn)行非參數(shù)檢驗(yàn),顯著性水平?。?.05。此外,計(jì)算Cohen’s效應(yīng)量(effect size,ES)雙重檢驗(yàn)顯著性(組間兩兩比較),>0.2為小效應(yīng),ES>0.5為中效應(yīng),ES>0.8為大效應(yīng)(Lakens, 2013)。
PM2.5暴露21天,暴露倉(cāng)內(nèi)平均濃度變化為(237.01±206.41)μg/m3,最高日平均暴露濃度為651.35 μg/m3,最低日平均暴露濃度為20.95 μg/m3。其中,輕度污染4天,中度污染以上11天,其余為優(yōu)和良好。根據(jù)我國(guó)PM2.5檢測(cè)網(wǎng)的空氣質(zhì)量標(biāo)準(zhǔn),倉(cāng)內(nèi)平均濃度相當(dāng)于重度空氣污染濃度。利用GC-MS和ICP-MS檢測(cè)艙內(nèi)重金屬和多環(huán)芳烴含量,結(jié)果見(jiàn)表1。此外,通過(guò)監(jiān)測(cè)室內(nèi)的潛在有害生物進(jìn)行衛(wèi)生監(jiān)督,實(shí)驗(yàn)期間暴露倉(cāng)內(nèi)、飼養(yǎng)環(huán)境所有微生物結(jié)果均為陰性。
利用FinePointe WBP檢測(cè)各組肺通氣、肺容量、肺阻塞程度及傳導(dǎo)性(呼吸肌力量)相關(guān)指標(biāo)。顆粒物暴露3周后,與S組相比,S+PM2.5組大鼠MV(<0.05,=1.79;圖1B)、TV(<0.05,=2.06;圖1C)、EF50(<0.05,=1.68;圖1G)、PIF(<0.05,=1.78;圖1H)、PEF(<0.05,=1.81;圖1I)顯著更低, PAU(<0.05,=1.67;圖1D)和Te(<0.05,=1.31;圖1E)顯著更高。上述結(jié)果表明,PM2.5可導(dǎo)致肺通氣功能(TV和MV)下降,氣道阻塞程度(EF50、PAU和Te)加重,呼吸肌力量(PIF和PEF)減弱。
與S+PM2.5組相比,E+PM2.5組大鼠的MV(<0.05,=1.11;圖1B)、TV(<0.05,=1.33;圖1C)、EF50(<0.05,=1.10;圖1G)、PIF(<0.05,=1.46;圖1H)、PEF(>0.05;=0.91;圖1I)顯著更高;PAU(>0.05,=0.72;圖1D)和Te(<0.05,=1.09;圖1E)顯著更低。由此可見(jiàn),8周運(yùn)動(dòng)訓(xùn)練可減輕PM2.5引起的肺功能障礙,尤其是顆粒物污染導(dǎo)致的肺通氣功能下降、呼吸道梗阻和呼吸肌力下降。
注:*P<0.05;下同。
Figure 1.Effects of Exercise on Pulmonary Function in Rats with PM2.5Exposure
通過(guò)肺組織染色評(píng)估各組大鼠肺臟形態(tài)結(jié)構(gòu)的損傷程度,S組(圖2A)和E組(圖2B)大鼠肺泡結(jié)構(gòu)完整,肺動(dòng)脈管壁層次清晰、平滑,無(wú)異常。小支氣管、終末細(xì)支氣管黏膜平整,沒(méi)有硬化現(xiàn)象。S+PM2.5組(圖2C)大鼠肺臟出現(xiàn)出血,大量炎性細(xì)胞聚集在肺泡腔、肺動(dòng)脈、支氣管以及終末細(xì)支氣管管壁外周,肺泡間隔增厚,局部出血并存在膿液填充,肺動(dòng)脈血管壁明顯增厚(圖2F);產(chǎn)生了組織炎癥,部分肺組織出現(xiàn)明顯的纖維化,部分支氣管黏膜結(jié)構(gòu)不完整并出現(xiàn)脫落(圖2E)。與S+PM2.5組(圖2C)相比,E+PM2.5(圖2D)組大鼠肺部整體結(jié)構(gòu)完整,肺組織局部的出血情況、炎性浸潤(rùn)程度和血管壁的病變程度均明顯改善。雖仍可見(jiàn)肺泡內(nèi)有膿液、淋巴細(xì)胞、巨噬細(xì)胞填充,但肺泡結(jié)構(gòu)總體較清晰(圖2D)。此外,采用肺損傷評(píng)分進(jìn)行半定量分析,S+PM2.5組的肺損傷評(píng)分顯著高于S組(<0.05,=3.80)和E+PM2.5組(<0.05,=2.46;圖2G)。
與S組相比,S+PM2.5組大鼠肺臟TNF-α(<0.05,=2.12;圖3A)、IL-1α(<0.05,=1.37;圖3B)和IL-6(<0.05,=2.21;圖3C)均顯著更高。與S+PM2.5組相比,E+PM2.5組大鼠TNF-α(<0.05,=1.37;圖3A)、肺臟IL-1α(<0.05,=1.27;圖3B)、IL-6(<0.05,=1.12;圖3C)分泌水平顯著更低。上述指標(biāo)變化表明8周運(yùn)動(dòng)可有效抑制可吸入顆粒物導(dǎo)致的肺部炎癥。
Figure 2.Effects of Exercise on Lung Photomicrographs in Rats with PM2.5Exposure
注:A.S組;B.E組;C.S+PM2.5組;D.E+PM2.5組;E.氣管黏膜脫落出血、炎性浸潤(rùn);F.肺組織纖維化為肺動(dòng)脈血管壁明顯增厚;G.急性肺損傷病理評(píng)分組間比較。
圖3 運(yùn)動(dòng)對(duì)PM2.5致大鼠炎癥程度的影響
Figure 3.Effects of Exercise on Inflammation in Rats with PM2.5Exposure
此外,進(jìn)一步分析各組eHSP70和iHSP70的表達(dá)及eHSP70/iHSP70發(fā)現(xiàn),與S組相比,S+PM2.5組大鼠eHSP70分泌水平(<0.05,=1.35;圖3C)和eHSP70/iHSP70(<0.05,=2.68;圖3F)顯著更高,iHSP70(<0.05,=1.19;圖3D、3G)顯著更低。與S+PM2.5組相比,E+PM2.5組大鼠eHSP70分泌水平(>0.05,=0.84;圖3C)和eHSP70/iHSP70(<0.05,=1.59;圖3F)顯著更低,iHSP70分泌水平(<0.05,=0.86;圖3E、3G)顯著更高。提示,長(zhǎng)期規(guī)律性運(yùn)動(dòng)可激活機(jī)體的抗炎狀態(tài),有效扭轉(zhuǎn)eHSP70/iHSP70平衡紊亂,且以上調(diào)iHSP70為主。
各組大鼠肺臟TLR-4/NF-κB信號(hào)通路相關(guān)調(diào)節(jié)蛋白水平如圖4所示。與S組相比,S+PM2.5組大鼠TLR-4(<0.05,=1.11;圖4A、4G)、NF-κB p65(<0.05,=1.01;圖4B、4G)、p-IκBα (>0.05,=0.85;圖4D、4G)、IKKβ(<0.05,=0.89;圖4E、4G)和p-IKKβ(<0.05,=1.64;圖4F、4G)均顯著更高,IκBα(>0.05,0.05;圖4C、4G)顯著更低。與S+PM2.5組相比較,E+PM2.5組大鼠肺臟TLR-4(0.05,=0.77;圖4A、4G)、NF-κB p65(<0.05,=1.11;圖4B、4G)、p-IκBα(<0.05,=1.28;圖4D、4G)、IKKβ(<0.05,=1.37;圖4E、4G)和p-IKKβ(<0.05,=1.55;圖4F、4G)分泌水平顯著更低,IκBα(>0.05=1.16;圖4C)分泌水平顯著更高。綜上所述,長(zhǎng)期規(guī)律性運(yùn)動(dòng)可下調(diào)有害應(yīng)激時(shí)細(xì)胞外與細(xì)胞內(nèi)HSP70比值,抑制TLR-4/NF-κB信號(hào)通路。
圖4 運(yùn)動(dòng)和顆粒物暴露對(duì)大鼠eHSP70/iHSP70介導(dǎo)的TLR-4/NF-κB信號(hào)通路的影響
Figure 4.Effects of Exercise and PM2.5on the Extracellular-to-Intracellular HSP70 Ratio Mediated TLR-4/NF-κB Signaling Pathways in Rats
蛋白印跡法結(jié)果顯示,與S組相比,S+PM2.5組大鼠肺臟P38磷酸化水平(<0.05,=1.04;圖5B、5G)、GSK3β(<0.05,=1.18;圖5C、5G)和HSF1ser303磷酸化水平(<0.05,=1.77;圖5F、5G)均顯著更高,GSK3βser9磷酸化水平(<0.05,=1.16;圖5D、5G)及HSF1(<0.05,=0.97;圖5E、5G)顯著更低。與S+PM2.5組相比,E+PM2.5組大鼠肺臟p-GSK3βser9水平(<0.05,=1.15;圖5D、5G)及HSF1(<0.05,=1.10;圖5E、5G)顯著更高,GSK3β(<0.05,=1.18;圖5C、5G)、p-P38(>0.05,=0.91;圖5B、5G)和p-HSF1ser303(<0.05,=1.71;圖5F、5G)分泌水平顯著更低。綜上所述,長(zhǎng)期規(guī)律性運(yùn)動(dòng)可通過(guò)抑制GSK3β激活HSF1進(jìn)而促進(jìn)iHSP70生成,抵抗顆粒物污染時(shí)導(dǎo)致的肺部急性炎癥損傷,可能是運(yùn)動(dòng)產(chǎn)生良好效應(yīng)的重要靶點(diǎn)。
明確運(yùn)動(dòng)對(duì)大氣顆粒物所致的肺臟急性損傷的保護(hù)效應(yīng)及其機(jī)制,在大氣環(huán)境質(zhì)量未能得到有效控制的情況下,對(duì)于增強(qiáng)群眾健康防病意識(shí),建立良好的健身習(xí)慣具有非常重要的意義。前期研究發(fā)現(xiàn),8周中等強(qiáng)度有氧運(yùn)動(dòng)可有效保護(hù)14天亞急性PM2.5暴露所致的老年大鼠肺臟損傷(Qin et al., 2021a),8周有規(guī)律運(yùn)動(dòng)可有效保護(hù)一次性中度(269.31±30.79)μg/m3、重度(509.84±36.74)μg/m3PM2.5污染所致的成年大鼠肺部急性損傷,抵抗炎癥和氧化應(yīng)激(Qin et al., 2020b)。本研究進(jìn)一步探析了長(zhǎng)期運(yùn)動(dòng)保護(hù)亞急性PM2.5暴露所致的大鼠肺部損傷的作用機(jī)制。
鑒于傳統(tǒng)氣管滴注方式的有創(chuàng)性、染毒濃度較大、暴露方式難以與實(shí)際顆粒物暴露環(huán)境相對(duì)應(yīng),以及暴露期間實(shí)驗(yàn)動(dòng)物產(chǎn)生較大的應(yīng)激和感染風(fēng)險(xiǎn)等(庫(kù)婷婷, 2017)原因,本研究選取全身暴露濃縮富集染毒方式,該方法無(wú)創(chuàng)且能夠更好地模擬現(xiàn)實(shí)空氣暴露環(huán)境,有效減少動(dòng)物應(yīng)激反應(yīng)(Allen et al., 2014;Sioutas et al., 1995)。研究已證實(shí)不同時(shí)長(zhǎng)的全身暴露染毒系統(tǒng)處理可導(dǎo)致呼吸系統(tǒng)、內(nèi)分泌系統(tǒng)、消化系統(tǒng)、神經(jīng)系統(tǒng)損傷及病變(Chu et al., 2019;Li et al., 2019),說(shuō)明其可作為可吸入顆粒物影響健康的相關(guān)研究的實(shí)驗(yàn)處理方法。
圖5 運(yùn)動(dòng)和顆粒物暴露對(duì)大鼠GSK3β調(diào)控iHSP70的影響
Figure 5.Effects of Exercise and PM2.5on GSK3β Regulating iHSP70 in Rats
鑒于霧霾具有周期性和季節(jié)性,本研究選擇暴露周期為21天的亞急性染毒實(shí)驗(yàn),21天暴露倉(cāng)內(nèi)的PM2.5濃度變化模擬了我國(guó)北方京津冀地區(qū)初冬的大氣污染狀況。研究結(jié)果表明,與安靜對(duì)照組相比,亞急性PM2.5暴露3周后,S+PM2.5大鼠出現(xiàn)明顯氣道阻塞、呼吸肌力量下降、支氣管黏膜脫落、細(xì)支氣管周?chē)行粤<?xì)胞浸潤(rùn)、肺血管管腔狹窄,肺灌洗液中促炎因子(TNF-α、IL-1α和IL-6)分泌水平顯著升高。Li等(2019)和Yang等(2018)的實(shí)驗(yàn)亦表明亞急性PM2.5暴露可導(dǎo)致肺組織損傷。
PM2.5暴露導(dǎo)致的肺損傷與PM2.5的濃度、持續(xù)時(shí)間和成分有關(guān)(Ning et al., 2019)。鑒于此,本研究分析了暴露倉(cāng)內(nèi)PM2.5的成分含量,發(fā)現(xiàn)暴露倉(cāng)內(nèi)多環(huán)芳烴以菲為主,其次為芴和苊。已有研究表明,低水平多環(huán)芳烴暴露與青年人群肺功能降低有關(guān)(Alhamdow et al., 2021)。菲暴露可誘發(fā)大鼠肺臟和肝臟組織氧化應(yīng)激和炎癥(Ma et al., 2020)。使用ICP-MS法測(cè)試暴露倉(cāng)內(nèi)與機(jī)體健康相關(guān)的重金屬含量發(fā)現(xiàn),Zn、Mn和Cu為含量最高的3種重金屬元素。PM2.5中的重金屬、多環(huán)芳烴類(lèi)物質(zhì)與肺損傷及病變的發(fā)展密切相關(guān)(Ning et al., 2019;Qin et al., 2021a)。相關(guān)研究發(fā)現(xiàn),普遍存在的有毒重金屬(如Zn、Cr等)可激活肺組織的氧化應(yīng)激和炎癥(Ma et al., 2020;Maret, 2012),PM2.5增加1 μg/m3和Zn增加1 ng/mL與肺癌相關(guān)(Bai et al., 2021)。此外,也有一些研究發(fā)現(xiàn),重金屬(Zn、Cu和Cr)和多環(huán)芳烴(苊和菲)與柴油和汽油尾氣排放有關(guān)(Hu et al., 2016;Valavanidis et al., 2006)。本研究的暴露倉(cāng)位于多條高速公路和城市主干道附近,推測(cè)該環(huán)境PM2.5的主要點(diǎn)源為機(jī)動(dòng)車(chē)尾氣,提示交通來(lái)源的空氣污染可能與肺健康密切相關(guān),應(yīng)盡量減少在交通高峰時(shí)段的暴露活動(dòng)時(shí)間。
運(yùn)動(dòng)有益健康已被大量實(shí)驗(yàn)研究和流行病學(xué)調(diào)查所證實(shí)(Petridou et al., 2019;Simpson et al., 2020)。盡管已有一些研究認(rèn)為,運(yùn)動(dòng)過(guò)程中參與者M(jìn)V增加,導(dǎo)致更多顆粒物進(jìn)入機(jī)體,增加氣道和血管損傷的敏感性(Daigle et al., 2003);但也有研究發(fā)現(xiàn),長(zhǎng)期規(guī)律性的運(yùn)動(dòng)可保護(hù)空氣污染導(dǎo)致的機(jī)體損害,即運(yùn)動(dòng)促進(jìn)健康的正面效應(yīng)可能大于空氣污染導(dǎo)致的負(fù)面效應(yīng)(Qin et al., 2019)。另一方面,meta分析揭示,空氣污染影響居民的日常體育活動(dòng)相關(guān)行為(An et al., 2020),久坐不動(dòng)對(duì)機(jī)體產(chǎn)生的危害大于在空氣污染中運(yùn)動(dòng)產(chǎn)生的危害(Roberts et al., 2014)。提示,應(yīng)建立健康科學(xué)的生活方式和應(yīng)對(duì)措施,使大眾能夠適應(yīng)環(huán)境質(zhì)量的動(dòng)態(tài)變化,而不是被動(dòng)盲目地停止體育活動(dòng)。
間歇性運(yùn)動(dòng)可以提供與傳統(tǒng)中等強(qiáng)度持續(xù)性運(yùn)動(dòng)相似或更全面的心肺功能鍛煉效果,并具有運(yùn)動(dòng)節(jié)奏多變、減脂效率高等諸多優(yōu)點(diǎn),已成為年輕人群青睞的鍛煉方式。相關(guān)研究表明,高強(qiáng)度間歇運(yùn)動(dòng)對(duì)年輕人心臟代謝健康、體質(zhì)量管理、認(rèn)知功能、炎癥發(fā)生發(fā)展具有良好的干預(yù)效果(Cooper et al., 2016)。研究結(jié)果表明,8周間歇性運(yùn)動(dòng)可有效保護(hù)PM2.5亞急性暴露導(dǎo)致的肺通氣功能和呼吸肌力量下降,緩解肺阻塞程度以及細(xì)支氣管周?chē)装Y浸潤(rùn)和血管壁病變,肺灌洗液中促炎因子升高幅度明顯降低。已有研究發(fā)現(xiàn),高強(qiáng)度間歇訓(xùn)練可提高慢性阻塞性肺病患者心肺健康和運(yùn)動(dòng)能力(Sawyer et al., 2020)。急性間歇運(yùn)動(dòng)可激活機(jī)體的抗炎效應(yīng),運(yùn)動(dòng)后血清IL-10水平和IL-10/TNF-α比率均升高(Cabral-Santos et al., 2015)。提示,有規(guī)律的運(yùn)動(dòng)訓(xùn)練可有效提高呼吸系統(tǒng)防御能力,緩解顆粒物所致肺部炎癥的發(fā)生發(fā)展。
HSP70是HSP家族中的重要成員,長(zhǎng)期以來(lái)HSP70被認(rèn)為是一種胞漿蛋白,定位于細(xì)胞內(nèi)發(fā)揮作用,即iHSP70。但是越來(lái)越多的證據(jù)表明,HSP70也可釋放到細(xì)胞外空間,成為eHSP70(Hulina-Toma?kovi? et al., 2019)。細(xì)胞內(nèi)的iHSP70具有抗炎功能,其機(jī)制主要是抑制NF-κB的活化(Costa-Beber et al., 2022)。與iHSP70相反,eHSP70具有促炎作用。既往研究多通過(guò)檢測(cè)血漿中HSP70含量來(lái)評(píng)估eHSP70分泌水平(Baldissera et al., 2018;Mai et al., 2017)。Goettems-Fiorin等(2016)研究發(fā)現(xiàn),暴露于細(xì)顆粒物(PM2.5)的機(jī)體eHSP70/iHSP70比值反映了細(xì)胞應(yīng)激反應(yīng)的改變,可作為空氣顆粒導(dǎo)致的急性炎癥或慢性低度炎癥狀態(tài)和風(fēng)險(xiǎn)的相關(guān)生物標(biāo)志物。另一方面,Mai等(2017)研究也表明,運(yùn)動(dòng)形成的生理刺激足以引起生物體HSP的表達(dá)改變,12周的高強(qiáng)度間歇運(yùn)動(dòng)可抑制PM2.5暴露導(dǎo)致的心臟炎癥和氧化應(yīng)激,運(yùn)動(dòng)干預(yù)后eHSP70/iHSP70比值顯著下降,提示HSP分泌水平與運(yùn)動(dòng)這一干預(yù)因素及運(yùn)動(dòng)機(jī)能狀態(tài)密切相關(guān)。本研究結(jié)果顯示,在PM2.5暴露下,隨著eHSP70水平的增加,eHSP70/iHSP70出現(xiàn)失衡。TLR-4作為動(dòng)員NF-κB的受體,可能被顆粒物中脂多糖(Lipopolysaccharides, LPS)、重金屬等物質(zhì)激活,促進(jìn)炎癥細(xì)胞因子的釋放,在炎癥反應(yīng)中發(fā)揮關(guān)鍵作用(Shi et al., 2019)。本研究提示,PM2.5顆粒物暴露可促進(jìn)更多的eHSP70與TLR-4結(jié)合,激活NF-κB炎癥通路,導(dǎo)致炎癥產(chǎn)生。8周運(yùn)動(dòng)可在一定程度上提高iHSP70含量,降低eHSP70含量,抑制NF-κB炎癥通路激活,且iHSP70的升高程度相對(duì)于eHSP70降低程度更明顯。
HSP70的合成調(diào)節(jié)主要發(fā)生在基因轉(zhuǎn)錄水平,由HSFs家族調(diào)控,其中HSF1是HSP的主要調(diào)控因子(Zheng et al., 2013)。在HSF1合成過(guò)程中,一方面GSK3β作為體內(nèi)大量代謝酶和轉(zhuǎn)錄因子的調(diào)控因子,與HSF1的合成密切相關(guān)(Wang et al., 2020)。GSK3β可以使HSF1在ser303位點(diǎn)發(fā)生磷酸化,維持細(xì)胞質(zhì)中HSF1處于無(wú)活性狀態(tài),進(jìn)而減少HSP的合成(Hietakangas et al., 2006)。另一方面,P38MAPK(肌肉因子絲裂原活化蛋白激酶)可調(diào)控GSK3β磷酸化位點(diǎn)(ser9),進(jìn)而抑制GSK3β活性(Thornton et al., 2008)。鑒于此,本研究對(duì)各組P38MAPK-GSK3β-HSF1調(diào)控途徑進(jìn)行評(píng)估發(fā)現(xiàn),長(zhǎng)期規(guī)律性運(yùn)動(dòng)可下調(diào)大鼠肺上皮細(xì)胞P38MAPK磷酸化水平,可能通過(guò)增加GSK-3β磷酸化使GSK3β失活,上調(diào)iHSP70分泌水平,改善大氣顆粒物致呼吸系統(tǒng)炎癥機(jī)體的eHSP70/iHSP70平衡紊亂,抑制PM2.5導(dǎo)致的HSP/TLR/NF-κB炎癥信號(hào)通路,同時(shí)提升肺上皮細(xì)胞內(nèi)的抗炎作用(圖6)。亦有研究表明,運(yùn)動(dòng)上調(diào)GSK3β磷酸化位點(diǎn)(ser9)激活,從而抑制GSK3β活性(Liu et al., 2015)。因此推斷GSK3β可能是運(yùn)動(dòng)保護(hù)可吸入顆粒物致呼吸系統(tǒng)炎癥的關(guān)鍵因子之一,也是運(yùn)動(dòng)防治可吸入顆粒物健康危害的有效干預(yù)靶標(biāo)。
注:→表示激活,┤表示抑制。
Figure 6.Potential Mechanisms for the Exercise Training Against PM2.5Induced Lung Injury
由于醫(yī)學(xué)倫理,本研究?jī)H進(jìn)行了運(yùn)動(dòng)和/或可吸入顆粒物PM2.5暴露對(duì)大鼠肺臟健康影響的動(dòng)物實(shí)驗(yàn),在真實(shí)應(yīng)用場(chǎng)景中的可推廣性有待商榷;在通路驗(yàn)證方面,未采取阻斷、拮抗或轉(zhuǎn)基因動(dòng)物的實(shí)驗(yàn)進(jìn)行驗(yàn)證。后續(xù)研究中,擬開(kāi)展針對(duì)信號(hào)通路相關(guān)的細(xì)胞阻斷實(shí)驗(yàn),以相關(guān)通路基因敲除動(dòng)物為研究對(duì)象進(jìn)一步驗(yàn)證相關(guān)假說(shuō)。
PM2.5亞急性暴露可導(dǎo)致大鼠出現(xiàn)明顯的肺臟損傷,表現(xiàn)為肺功能障礙、支氣管黏膜脫落和炎癥反應(yīng)。長(zhǎng)期規(guī)律性運(yùn)動(dòng)對(duì)PM2.5亞急性暴露導(dǎo)致的肺臟損傷具有保護(hù)作用。長(zhǎng)期規(guī)律性運(yùn)動(dòng)可下調(diào)大鼠肺上皮細(xì)胞P38MAPK磷酸化水平,可能通過(guò)增加GSK-3β磷酸化位點(diǎn)(ser9)使GSK3β失活,增加HSF1分泌水平,上調(diào)iHSP70,改善大氣顆粒物致呼吸系統(tǒng)炎癥機(jī)體的eHSP70/iHSP70平衡,進(jìn)而阻斷TLR-NFκB炎癥信號(hào)通路,抑制炎癥。
庫(kù)婷婷, 2017. PM2.5暴露誘導(dǎo)神經(jīng)毒性及其相關(guān)分子機(jī)制研究[D].太原:山西大學(xué).
覃飛,徐旻霄,瞿超藝,等, 2020.空氣污染暴露與體育活動(dòng):如何保障健康[J].體育科學(xué), 40(2): 58-69.
AKERFELT M, MORIMOTO R I, SISTONEN L, 2010. Heat shock factors: Integrators of cell stress, development and lifespan[J]. Nat Rev Mol Cell Biol, 11(8): 545-555.
ALHAMDOW A, ZETTERGREN A, KULL I, et al., 2021. Low-level exposure to polycyclic aromatic hydrocarbons is associated with reduced lung function among Swedish young adults[J]. Environ Res, doi: 10.1016/j.envres.2021.111169.
ALLEN J L, LIU X, PELKOWSKI S, et al., 2014. Early postnatal exposure to ultrafine particulate matter air pollution: Persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice[J]. Environ Health Perspect, 122(9): 939-945.
AN R P, KANG H J, CAO L Z, et al., 2020. Engagement in outdoor physical activity under ambient fine particulate matter pollution: A risk-benefit analysis[J]. J Sport Health Sci, 11(4):537-544
ASEA A, REHLI M, KABINGU E, et al., 2002. Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4[J]. J Biol Chem, 277(17):15028-15034.
BAI K J, HO S C, TSAI C Y, et al., 2021. Exposure to PM(2.5) is associated with malignant pleural effusion in lung cancer patients[J]. Ecotoxicol Environ Saf, doi: 10.1016/j.ecoenv.2020.111618.
BALDISSERA F G, DOS SANTOS A B, SULZBACHER M M, et al., 2018. Subacute exposure to residual oil fly ash (ROFA) increases eHSP70 content and extracellular-to-intracellular HSP70 ratio: A relation with oxidative stress markers[J]. Cell Stress Chaperones, 23(6):1185-1192.
BITTENCOURT A, PORTO R R, 2017. eHSP70/iHSP70 and divergent functions on the challenge: Effect of exercise and tissue specificity in response to stress[J]. Clin Physiol Funct Imaging, 37(2):99-105.
CABRAL-SANTOS C, GEROSA-NETO J, INOUE D S, et al., 2015. Similar anti-inflammatory acute responses from moderate-intensity continuous and high-intensity intermittent exercise[J]. J Sports Sci Med, 14(4):849-856.
CHU C, ZHANG H Y, CUI S J, et al., 2019. Ambient PM2.5caused depressive-like responses through Nrf2/NLRP3 signaling pathway modulating inflammation[J]. J Hazard Mater, 369: 180-190.
COOPER S B, DRING K J, NEVILL M E, 2016. High-intensity intermittent exercise: Effect on young people’s cardiometabolic health and cognition[J]. Curr Sports Med Rep, 15(4):245-251.
COSTA-BEBER L C, HIRSCH G E, HECK T G, et al., 2022. Chaperone duality: The role of extracellular and intracellular HSP70 as a biomarker of endothelial dysfunction in the development of atherosclerosis[J]. Arch Physiol Biochem, 128(4):1016-1023.
DAIGLE C C, CHALUPA D C, GIBB F R, et al., 2003. Ultrafine particle deposition in humans during rest and exercise[J]. Inhal Toxicol, 15(6):539-552.
GILES L V, KOEHLE M S, 2014. The health effects of exercising in air pollution[J]. Sports Med, 44(2):223-249.
GOETTEMS-FIORIN P B, GROCHANKE B S, BALDISSERA F G, et al., 2016. Fine particulate matter potentiates type 2 diabetes development in high-fat diet-treated mice: Stress response and extracellular to intracellular HSP70 ratio analysis[J]. J Physiol Biochem, 72(4):643-656.
HECK T G, SCOMAZZON S P, NUNES P R, et al., 2017. Acute exercise boosts cell proliferation and the heat shock response in lymphocytes: Correlation with cytokine production and extracellular-to-intracellular HSP70 ratio[J]. Cell Stress Chaperones, 22(2):271-291.
HIETAKANGAS V, ANCKAR J, BLOMSTER H A, et al., 2006. PDSM, a motif for phosphorylation-dependent SUMO modification[J]. Proc Natl Acad Sci USA, 103(1):45-50.
HU W W, HU M, HU W, et al., 2016. Chemical composition, sources and aging process of sub-micron aerosols in Beijing: Contrast between summer and winter[J]. J Geophys Res Atmos, 121(4): 1955-1977.
HULINA-TOMA?KOVI? A, SOMBORAC-BA?URA A, GRDI? RAJKOVI? M, et al., 2019. Effects of extracellular Hsp70 and cigarette smoke on differentiated THP-1 cells and human monocyte-derived macrophages[J]. Mol Immunol, 111: 53-63.
JIANG H K,WANG Y H, SUN L, et al., 2014. Aerobic interval training attenuates mitochondrial dysfunction in rats post-myocardial infarction: Roles of mitochondrial network dynamics[J]. Int J Mol Sci, 15(4):5304-5322.
KOSTRYCKI I M, WILDNER G, DONATO Y H, et al., 2019. Effects of high-fat diet on eHSP72 and extra-to-intracellular HSP70 levels in mice submitted to exercise under exposure to fine particulate matter[J]. J Diabetes Res, doi: 10.1155/2019/4858740.
KRAUSE M, HECK T G, BITTENCOURT A, et al., 2015. The chaperone balance hypothesis: The importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management[J]. Mediators Inflamm, doi: 10.1155/2015/249205.
LAKENS D,2013. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs[J]. Front Psychol, doi: 10.3389/fpsyg.2013.00863.
LéGER B, CARTONI R, PRAZ M, et al., 2006. Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy[J]. J Physiol, 576(Pt 3):923-933.
LI D C, ZHANG R, CUI L H, et al., 2019. Multiple organ injury in male C57BL/6J mice exposed to ambient particulate matter in a real-ambient PM exposure system in Shijiazhuang[J]. China Environ Pollut, 248: 874-887.
LIU H L, ZHAO G, ZHANG H, et al., 2013. Long-term treadmill exercise inhibits the progression of Alzheimer’s disease-like neuropathology in the hippocampus of APP/PS1 transgenic mice[J]. Behav Brain Res, 256: 261-272.
MA H T, WANG H L, ZHANG H J, et al., 2020. Effects of phenanthrene on oxidative stress and inflammation in lung and liver of female rats[J]. Environ Toxicol, 35(1):37-46.
MAI A S, DOS SANTOS A B, BEBER L C C, et al., 2017. Exercise training under exposure to low levels of fine particulate matter: Effects on heart oxidative stress and extra-to-intracellular HSP70 ratio[J]. Oxid Med Cell Longev, doi: 10.1155/2017/9067875.
MARET W, 2012. New perspectives of zinc coordination environments in proteins[J]. J Inorg Biochem, 111: 110-116.
MARTHERUS R, JAIN R, TAKAGI K, et al., 2016. Accelerated cardiac remodeling in desmoplakin transgenic mice in response to endurance exercise is associated with perturbed Wnt/β-catenin signaling[J]. Am J Physiol Heart Circ Physiol, 310(2):H174-H187.
NESI R T, DE SOUZA P S, DOS SANTOS G P, et al., 2016. Physical exercise is effective in preventing cigarette smoke-induced pulmonary oxidative response in mice[J]. Int J Chron Obstruct Pulmon Dis, 11: 603-610.
NING J, LI P, ZHANG B, et al., 2019. miRNAs deregulation in serum of mice is associated with lung cancer related pathway deregulation induced by PM2.5[J]. Environ Pollut, 254(Pt A):112875.
PAUL K C, JERRETT M, RITZ B, 2018. Type 2 diabetes mellitus and Alzheimer’s disease: Overlapping biologic mechanisms and environmental risk factors[J]. Curr Environ Health Rep, 5(1):44-58.
PETRIDOU A, SIOPI A, MOUGIOS V, 2019. Exercise in the management of obesity[J]. Metabolism, 92:163-169.
QIN F, CUI S Q, DONG Y N, et al., 2021. Aerobic exercise ameliorates particulate matter-induced lung injury in aging rats[J]. Environ Pollut, doi: 10.1016/j.envpol.2021.116889.
QIN F, DONG Y N, WANG S T, et al., 2020a. Maximum oxygen consumption and quantification of exercise intensity in untrained male Wistar rats[J]. Sci Rep, 10(1):11520.
QIN F, XU M X, WANG Z W, et al., 2020b. Effect of aerobic exercise and different levels of fine particulate matter (PM2.5) on pulmonary response in Wistar rats[J]. Life Sci, doi: 10.1016/j.lfs.2020. 117355.
QIN F, YANG Y, WANG S T, et al., 2019. Exercise and air pollutants exposure: A systematic review and meta-analysis[J]. Life Sci, 218: 153-164.
ROBERTS J D, VOSS J D, KNIGHT B, 2014. The association of ambient air pollution and physical inactivity in the United States[J]. PLoS One, 9(3): e90143.
SANCINI G, FARINA F, BATTAGLIA C, et al., 2014. Health risk assessment for air pollutants: Alterations in lung and cardiac gene expression in mice exposed to Milano winter fine particulate matter (PM2.5)[J]. PLoS One, 9(10): e109685.
SAWYER A, CAVALHERI V, HILL K, 2020. Effects of high intensity interval training on exercise capacity in people with chronic pulmonary conditions: A narrative review[J]. BMC Sports Sci Med Rehabil, doi: 10.1186/s13102-020-00167-y.
SHI X J, WANG S S, LUAN H L, et al., 2019. Clinopodium chinense attenuates palmitic acid-induced vascular endothelial inflammation and insulin resistance through TLR4-mediated NF- κ B and MAPK pathways[J]. Am J Chin Med, 47(1):97-117.
SIMPSON R J, CAMPBELL J P, GLEESON M, et al., 2020. Can exercise affect immune function to increase susceptibility to infection?[J]. Exerc Immunol Rev, 26: 8-22.
SIOUTAS C, KOUTRAKIS P, BURTON R M, 1995. A technique to expose animals to concentrated fine ambient aerosols[J]. Environ Health Perspect, 103(2):172-177.
THORNTON T M, PEDRAZA-ALVA G, DENG B, et al., 2008. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation[J]. Science, 320(5876):667-670.
VALAVANIDIS A, FIOTAKIS K, VLAHOGIANNI T, et al., 2006. Characterization of atmospheric particulates, particle-bound transition metals and polycyclic aromatic hydrocarbons of urban air in the centre of Athens (Greece)[J]. Chemosphere, 65(5):760-768.
WANG Y, CHEN Z D, LI Y, et al., 2020. Low density lipoprotein receptor related protein 6 (LRP6) protects heart against oxidative stress by the crosstalk of HSF1 and GSK3β[J]. Redox Biol, doi: 10.1016/j.redox.2020.101699.
YANG B, GUO J, XIAO C L, 2018. Effect of PM2.5 environmental pollution on rat lung[J]. Environ Sci Pollut Res Int, 25(36):36136-36146.
YU Y B, LIAO Y W, SU K H, et al., 2012. Prior exercise training alleviates the lung inflammation induced by subsequent exposure to environmental cigarette smoke[J]. Acta Physiol (Oxf), 205(4):532-540.
ZHENG Z, XU X H, ZHANG X B, et al., 2013. Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model[J]. J Hepatol, 58(1):148-154.
Exercise Protects Lung Injury Induced by PM2.5Exposure in Rats: Mediated by GSK3β on Extracellular to Intracellular HSP70 Ratio
QIN Fei1, 2, 3,XU Minxiao4,CUI Shuqiang5,QU Chaoyi2,DONG Yanan5,ZHAO Jiexiu2*
To explore the protective effects of long-term exercise on lung injury induced by PM2.5and the mechanism of extracellular to intracellular HSP70 ratio mediated by GSK3β. Male Wistar rats (aged 8 weeks) were randomly divided into four groups: Sedentary (S), exercise (E), sedentary+PM2.5exposure (S+PM2.5) and exercise+PM2.5exposure (E+PM2.5). All rats in exercise-related groups were trained by running on a treadmill for 8 weeks (60 min/time, 5 times/week). Rats in the PM-related groups were exposed to ambient PM2.5(7 times/week, 6 h/time) for 3 weeks after an 8-week exercise intervention or sedentary treatment. Finally, all rats' pulmonary function, lung morphology, degree of inflammation, and relevant protein expression levels were examined. It was found that PM2.5exposure led to neutrophil infiltration, alveolar hemorrhage, and alveolar septal thickening. Compared with S group, the significant decrease of MV, TV, EF50, PIF, PEF, iHSP70, IκBα, HSF1 and p-GSK3βser9were observed, but the obvious increase of PAU, Te, TNF-α, IL-1α, IL-6, eHSP70, TLR-4, NFκB p65, p-IκBα, IKKβ, p-IKKβ, GSK3β, p-P38 and p-HSF1ser303were presented in S+PM2.5group. The lung injury was significantly improved in the E+PM2.5group compared with that of S+PM2.5group. Compared with S+PM2.5group, the MV, TV, EF50, PIF, PEF, iHSP70, IκBα, HSF1 and p-GSK3βser9were significantly increased , but the PAU, Te, TNF-α, IL-1α, IL-6, eHSP70, TLR-4, NFκB p65, p-IκBα, IKKβ, p-IKKβ, GSK3β, p-P38 and p-HSF1ser303were obviously decreased in E+PM2.5group. 8-week exercise training expressed protective effects on lung injury and reduced vulnerability to inflammation induced by PM2.5exposure, it was possibly through the P38 MAPK/GSK3β/HSF1 signaling pathways mediated by the extracellular-to-intracellular HSP70 ratio.
1000-677X(2023)01-0050-10
10.16469/j.css.202301006
2022-08-29;
2022-12-18
國(guó)家自然科學(xué)基金青年項(xiàng)目(31900845);國(guó)家自然科學(xué)基金面上項(xiàng)目(11775059)。
覃飛(1987-),女,副教授,博士,主要研究方向?yàn)檫\(yùn)動(dòng)免疫與健康,E-mail: qinfei8707@jnu.edu.cn。
趙杰修(1975-),男,研究員,博士,主要研究方向?yàn)檫\(yùn)動(dòng)與特殊環(huán)境,E-mail: zhaojiexiu@ciss.cn。
G804.7
A