• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于模型降階的雙饋風(fēng)電機組虛擬同步機控制參數(shù)優(yōu)化

    2023-06-13 00:00:00王曉東付騰王曉馳劉穎明王瀚博
    太陽能學(xué)報 2023年11期
    關(guān)鍵詞:模型系統(tǒng)

    收稿日期:2022-06-29

    基金項目:國家自然科學(xué)基金(52007124);遼寧省揭榜掛帥科技攻關(guān)專項(2021JH1/10400009);遼寧省“興遼英才計劃”(XLYC1802041)

    通信作者:付 騰(1997—),男,碩士研究生,主要從事風(fēng)電場控制、多能源系統(tǒng)與電力網(wǎng)絡(luò)分析方面的研究。17662455290@163.com

    DOI:10.19912/j.0254-0096.tynxb.2022-0961 文章編號:0254-0096(2023)11-0210-07

    摘 要: 針對虛擬同步機(VSG)控制的雙饋風(fēng)電機組(DFIG)中由模型階數(shù)過高導(dǎo)致的動態(tài)性能指標(biāo)和參數(shù)優(yōu)化求解困難的問題,兼顧穩(wěn)定性與動態(tài)性能,提出一種改進(jìn)的勞斯赫爾維茨與帕德近似結(jié)合的模型降階方法。首先,建立DFIG-VSG系統(tǒng)的數(shù)學(xué)模型,基于此提出一種轉(zhuǎn)子電流前饋補償解耦的雙環(huán)控制策略;然后,建立DFIG-VSG并網(wǎng)系統(tǒng)的小信號模型,得到對應(yīng)的高階閉環(huán)傳遞函數(shù)?;谠撐奶岢龅哪P徒惦A方法對DFIG-VSG高階傳遞函數(shù)進(jìn)行降階可得到輸出有功功率的二階傳遞函數(shù),并進(jìn)一步通過約束動態(tài)參數(shù)與穩(wěn)定裕度得出一套控制參數(shù)選取范圍,在該選取范圍內(nèi)通過根軌跡法分析主要控制參數(shù)對DFIG-VSG并網(wǎng)系統(tǒng)的影響。在不同風(fēng)速工況下,通過Matlab/Simulink仿真驗證了所提方法的可行性。

    關(guān)鍵字:虛擬同步機;雙饋風(fēng)電機組;小信號模型;模型降階;控制參數(shù)選取

    中圖分類號:TM315"""" """"""""""""""" """""""文獻(xiàn)標(biāo)志碼:A

    0 引 言

    近年來,風(fēng)電裝機容量不斷增加,可再生能源滲透率隨之升高,電力系統(tǒng)形成高比例新能源并網(wǎng)發(fā)電新格局[1]。雙饋異步發(fā)電機(doubly-fed induction generator,DFIG)作為風(fēng)力發(fā)電主力機型[2],其變流器把發(fā)電機和電網(wǎng)分隔開,機組無法為電網(wǎng)提供充足的慣量與阻尼,降低了系統(tǒng)的調(diào)頻與調(diào)壓能力[3]。虛擬同步機(virtual synchronous generator,VSG)應(yīng)運而生[4-6],通過模擬慣量特性與調(diào)壓調(diào)頻特性,能有效提高DFIG對電網(wǎng)頻率和電壓的主動支撐能力。

    VSG的控制參數(shù)選取直接影響DFIG-VSG系統(tǒng)安全穩(wěn)定運行,需同時滿足系統(tǒng)穩(wěn)定性與動態(tài)性能要求[7]。文獻(xiàn)[8]在復(fù)頻域基礎(chǔ)上建立VSG系統(tǒng)小信號模型,探討主要控制參數(shù)對于系統(tǒng)頻率的影響,但卻未考量系統(tǒng)動態(tài)參數(shù)指標(biāo)。文獻(xiàn)[9]利用根軌跡法設(shè)計VSG控制參數(shù),但需要通過試湊得到滿意參數(shù),未給出選取依據(jù)。文獻(xiàn)[10]利用小信號分析法,通過閉環(huán)特征根分布分析系統(tǒng)中振蕩模態(tài)的阻尼特性和各參數(shù)對系統(tǒng)穩(wěn)定性影響,然而動態(tài)性能也十分重要,文獻(xiàn)并未討論參數(shù)設(shè)計方法。

    模型降階(model order reduction,MOR)將低階模型替換原高階系統(tǒng)模型,且保留原來系統(tǒng)的主要性能,得到的簡化模型便于計算動態(tài)性能指標(biāo)[11-13]。文獻(xiàn)[14]采用閉環(huán)主導(dǎo)極點法,將電力系統(tǒng)十一階模型降為二階模型,然而,僅考慮高階模型中的主導(dǎo)極點,無法保證動態(tài)性能和穩(wěn)態(tài)性能接近原系統(tǒng)。文獻(xiàn)[15]為了將原來的九階小信號模型簡化為五階模型,使用場幅值和場相位等效電感元件,但該方法過于復(fù)雜,且降階后的模型階次還是很高。文獻(xiàn)[16]的穩(wěn)定方程法需求解高階模型特征根進(jìn)行低階等效,本質(zhì)還是主導(dǎo)極點法,且求根并不方便。勞斯近似法[17]與帕德近似法[18]能很好地保證降階后模型的穩(wěn)態(tài)響應(yīng),但低頻段幅頻特性的幅值相差過大,無法應(yīng)用于DFIG-VSG系統(tǒng)的動態(tài)性能分析。

    本文采用了DFIG-VSG控制策略,提出改進(jìn)的轉(zhuǎn)子電流前饋補償解耦的雙環(huán)控制結(jié)構(gòu)?;贒FIG-VSG數(shù)學(xué)模型,建立系統(tǒng)小信號模型,使用提出的改進(jìn)勞斯赫爾維茨與帕德近似結(jié)合的方法對高階傳遞函數(shù)進(jìn)行降階處理,且給出一套綜合穩(wěn)定性與動態(tài)性能的主要控制參數(shù)選取范圍。在Matlab/Simulink中建立了自主研制的兆瓦級DFIG-VSG仿真模型,利用根軌跡法驗證了所提控制策略與降階方法的可行性,并分析對系統(tǒng)響應(yīng)和動態(tài)參數(shù)的影響。

    1 DFIG-VSG數(shù)學(xué)模型

    1.1 DFIG內(nèi)環(huán)矢量控制模型

    為了提高DFIG對電網(wǎng)頻率和電壓的支撐能力,采用定子電壓定向的矢量控制策略。在d-q坐標(biāo)軸中,定義順時針90°方向為直軸方向,同時將定子電壓矢量固定到交軸方向。DFIG電壓與磁鏈方程的表達(dá)式為:

    [usd=Rsisd+dψsddt-ωsψsqusq=Rsisq+dψsqdt+ωsψsdurd=Rrird+dψrddt-Δωψrqurq=Rrirq+dψrqdt-Δωψrd] (1)

    [ψsd=Lsisd+Lmirdψsq=Lsisq+Lmirqψrd=Lmisd+Lrirdψrq=Lmisq+Lrirq]""" (2)

    式中:[usd]、[usq]——定子[d、q]軸電壓;[urd]、[usq]——轉(zhuǎn)子[d、q]軸電壓;[isd]、[isq]——定子[d、q]軸電流;[ird]、[irq]——轉(zhuǎn)子[d、q]軸電流;[Rs]、[Rr]、[Ls]、[Lr]——定、轉(zhuǎn)子電阻與自感;[Lm]——定、轉(zhuǎn)子互感;[ψsd]、[ψsq]——定子[d、q]軸磁鏈;[ψrd]、[ψrq]——轉(zhuǎn)子[d、q]軸磁鏈;[ωs]——定子角速度;[Δω]——轉(zhuǎn)差角速度,定義為[Δω=ωs-ωr]([ωr]表示轉(zhuǎn)子角速度)。

    采用定子電壓矢量控制策略,把定子電壓矢量固定在交軸方向,得出:

    [usd=0usq=ωsLmims]"" (3)

    式中:[ims]——定子勵磁電流。

    結(jié)合式(1)~式(3),得到定子電流方程為:

    [isd=LmimsLs-LmLsirdisq=-LmLsirq]" (4)

    根據(jù)式(1)、式(2)和式(4),轉(zhuǎn)子電壓的控制方程為:

    [urd=Rrird+K1dirddt-△ωK2irqurq=Rrirq+K1dirqdt-△ωK1ird-△ωK2ims] (5)

    式中:K1=Lr[-]Lm2/Ls,K2=Lm2/Ls。

    現(xiàn)引入比例-積分(proportional-integral, PI)調(diào)節(jié)器,實現(xiàn)DFIG轉(zhuǎn)子電流直接控制轉(zhuǎn)子電壓,得到:

    [urd=(i*rd-ird)Kp+Kis-ΔωK2irqurq=(i*rq-irq)Kp+Kis-ΔωK1ird-ΔωK2ims]""" (6)

    式中:[i*rd]和[i*rq]——轉(zhuǎn)子電流在d-q軸上的給定值;[Kp]、[Ki]——PI控制器的比例、積分控制系數(shù)。

    DFIG并網(wǎng)時,定子電壓、磁鏈變化量為0,同時忽略定子繞組電阻的影響。在定子電流為0的情況下,只需考慮穩(wěn)態(tài)條件,定子電壓控制方程表達(dá)式為:

    [usd=-ωsLmirqusq=ωsLmird]"""" (7)

    綜上分析可知,DFIG轉(zhuǎn)子側(cè)變流器交、直軸轉(zhuǎn)子電流控制直、交軸定子電壓,并將轉(zhuǎn)子電流作為指令信號,構(gòu)成電壓電流雙環(huán)控制。

    1.2 VSG外環(huán)控制模型

    VSG通過模擬同步發(fā)電機模型而得出機械特性,其轉(zhuǎn)子運動方程表達(dá)式為:

    [Jdωdt=Poωo-Peωo-Dp(ω-ωo)dθdt=ω-ωo]""""" (8)

    式中:[J]——虛擬轉(zhuǎn)動慣量;[ω]、[ωo]——VSG的輸出角速度和電網(wǎng)角速度(當(dāng)極對數(shù)為1時);[Po]、[Pe]——VSG的輸入功率給定值與輸出電磁功率;[Dp]——阻尼系數(shù);[θ]——VSG的輸出角度。

    VSG的輸出電動勢可表示為:

    [E=Eo+(Qo-Qe)Kpo+Kios1Tas+1]"""""" (9)

    式中:[Eo]——VSG空載電動勢;[Qo]——VSG無功功率設(shè)定值;[Qe]——定子輸出的無功功率;[Kpo]、[Kio]——無功環(huán)PI控制器的比例、積分控制系數(shù);[Ta]——延遲回路的時間常數(shù)。

    2 DFIG-VSG控制策略與小信號模型

    為提高系統(tǒng)穩(wěn)定性,根據(jù)建立的數(shù)學(xué)模型分析,本文提出一種新型雙環(huán)控制策略,以VSG輸出電壓作為參考電壓,引入轉(zhuǎn)子電流計算前饋電壓補償,構(gòu)成轉(zhuǎn)子電壓內(nèi)環(huán)、定子電壓外環(huán)的電壓電流雙環(huán)控制結(jié)構(gòu)。圖1為DFIG-VSG含前饋電壓補償?shù)目刂瓶驁D,圖1中,[Rg]和[Xg]分別為網(wǎng)側(cè)電阻和網(wǎng)側(cè)電抗;[UDC]為VSG直流側(cè)電壓;[Ug]為電網(wǎng)電壓;SVPWM表示空間矢量脈沖寬度調(diào)制;MPPT-MAR為最大功率點跟蹤運行方式。

    為消除轉(zhuǎn)子電壓控制方程中的擾動項和耦合項,實現(xiàn)電壓電流環(huán)解耦控制,在轉(zhuǎn)子電壓內(nèi)環(huán)中引入電壓補償變量[Δud]和[Δuq],其表達(dá)式為:

    [Δud=ΔωK2irqΔuq=ΔωK1ird+ΔωK2ieq]" (10)

    式中:[ieq]——[q]軸電流補償系數(shù)。

    當(dāng)VSG單獨運行時,輸出功率主要取決于負(fù)載;當(dāng)VSG并網(wǎng)運行,輸出復(fù)功率為[S=Pe+Qe],輸出有功與無功功率分別為:

    [Pe=ΔI1Esinθ-ΔI2EcosθQe=-(ΔI2Esinθ+ΔI1Ecosθ)]""" (11)

    式中:[ΔI1=isa-0.5(isb+isc);][ΔI2=3/2(isb-isc);]其中,[isa]、[isb]、[isc]表示[t]時刻的定子三相電流。

    VSG輸出有功功率和無功功率的小信號模型分別為:

    [ΔPe=(ΔI1Ecosθ+ΔI2Esinθ)Δθ+(ΔI1sinθ-ΔI2cosθ)ΔEΔQe=(ΔI1Esinθ-ΔI2Ecosθ)Δθ-(ΔI1cosθ+ΔI2sinθ)ΔE]"""""" (12)

    式中:[Δθ]和[ΔE]——對VSG輸出角度和輸出電壓求偏導(dǎo)。

    由式(8)和式(9)可得到VSG外環(huán)控制小信號模型:

    [ΔPe=-Jωos2Δθ-DpωosΔθ+ΔPoΔQe=-ΔE(Tas2+s)sKpo+Kio]""" (13)

    聯(lián)立式(12)和式(13),可得到DFIG-VSG并網(wǎng)有功功率的小信號閉環(huán)傳遞函數(shù):

    [Gs=ΔPeΔPo=a2s2+a1s+a0b4s4+b3s3+b2s2+b1s+b0]""""" (14)

    式(14)中具體參數(shù)為:

    [a2=-ETa(ΔI1cosθ+ΔI2sinθ)a1=EKp(ΔI21+ΔI22)-E(ΔI1cosθ+ΔI2sinθ)a0=b0=EKio(ΔI21+ΔI22)b4=-JTaωob3=Jωo(KpoΔI1cosθ+KpoΔI2sinθ-1)-DpTaωob2=(ΔI1cosθ+ΔI2sinθ)(DpKpoωo+JKioωo-ETa)-Dpωob1=(DpKioωo-E)(ΔI1cosθ+ΔI2sinθ)+EKpo(ΔI21+ΔI22)]" (15)

    根據(jù)式(14)和式(15)可知,建立的DFIG-VSG并網(wǎng)系統(tǒng)為含有復(fù)雜參數(shù)的四階傳遞函數(shù),在計算動態(tài)性能指標(biāo)(如超調(diào)量)時存在復(fù)雜的缺陷且計算量龐大。

    3 改進(jìn)勞斯赫爾維茨與帕德近似結(jié)合的模型降階方法及參數(shù)優(yōu)化

    3.1 改進(jìn)勞斯赫爾維茨與帕德近似結(jié)合的降階法

    為了解決DFIG-VSG高階模型動態(tài)性能指標(biāo)和參數(shù)優(yōu)化求解困難的問題,本文提出一種將勞斯赫爾維茨與帕德近似相結(jié)合的降階方法,利用勞斯赫爾維茨近似法計算低階模型分母系數(shù),帕德近似法計算低模型分子系數(shù),兩種方法結(jié)合使用,能有效兼顧低頻與高頻特性。使用該方法對DFIG-VSG高階模型進(jìn)行降階,在保證系統(tǒng)動態(tài)特性基本不變的條件下,利用低階模型代替原高階模型進(jìn)行控制參數(shù)穩(wěn)定性分析。

    將式(14)改寫為降階后的r階模型傳遞函數(shù)為:

    [R(r)s=N(r)(s)D(r)(s)=βr-1sr-1+…+β1s+β0αrsr+…+α1s+α0 ]"""""" (16)

    式中:[β]和[α]——未知待求的系數(shù)。令[r=2],利用勞斯赫爾維茨近似法將式(16)的分母系數(shù)重新排列為勞斯陣列,如表1所示。

    利用表1計算可得到勞斯赫爾維茨近似的分母多項式系數(shù),此步驟能有效保留原系統(tǒng)的低頻特性,二階傳遞函數(shù)分母[D(2)(s)]可表示為:

    [D(2)(s)=s2+λ1s+λ0] (17)

    式中:[λ1=α1/α2,][λ0=α0/α2,][α2=b2-b1b4/b3,][α1=b1-b3α0/α2,][α0=b0]。具體參數(shù)如式(18)所示:

    [令u=JTaωo(E-DpKioωo)(ΔI1cosθ+ΔI2sinθ)-EKpo(ΔI21+ΔI22)Jωo(ΔI1Kpocosθ+ΔI2Kposinθ-1)-DpTaωo令v=Dpωo-(ΔI1cosθ+ΔI2sinθ)(DpKpoωo-ETa+JKioωo)λ1=[(E-DpKioωo)(ΔI1cosθ+ΔI2sinθ)-EKpo(ΔI21+ΔI22)](u+v)-EKioJωo(ΔI1Kpocosθ+ΔI2Kposinθ-1)-DpTaωo(ΔI21+ΔI22)(u+v)2λ0=-KioE(ΔI21+ΔI22)Dpωo-(ΔI1cosθ+ΔI2sinθ)(DpKpoωo-ETa+JKioωo)+u]" (18)

    利用帕德近似法將式(18)改寫為如式(19)所示:

    [H(r)(s)=0∞ersr=e0+e1s+e2s2+…+eisi] (19)

    式中:帕德系數(shù)[e0=a0/b0],[ei=ai-j=1ibiei-j/b0],[i=1,2,…],帕德近似的分子多項式[N(2)(s)]可表示為:

    [N(2)(s)=β1s+β0]""""" (20)

    式中:二階傳遞函數(shù)分子系數(shù)[β0=λ0e0,β1=λ0e1+λ1e0],具體參數(shù)如式(21)所示:

    [β1=DpKioωo(ΔI1cosθ+ΔI2sinθ)u+v-λ1β0=λ0]" (21)

    由式(17)~式(21)即可得到降階后的二階閉環(huán)傳遞函數(shù),該方法在保證穩(wěn)定性的前提下,同時保留了DFIG-VSG系統(tǒng)的動態(tài)特性,且可直接計算出超調(diào)量等性能指標(biāo)。

    為了校驗降階方法的可行性,引入誤差絕對值時間積分指標(biāo)(integrated time and absolute error, ITAE),在Matlab環(huán)境下,通過計算ITAE數(shù)值對降階方法進(jìn)行評估,該指標(biāo)能兼顧系統(tǒng)的相對穩(wěn)定性σp%和綜合快速性ts,保證降階方法具有良好的跟蹤性能。

    [ε=0∞tch(t)-cl(t)dt]""" (22)

    式中:[ε]——ITAE性能指標(biāo)數(shù)值;[ch(t)]——原系統(tǒng)單位階躍響應(yīng);[cl(t)]——降階模型單位階躍響應(yīng)。

    3.2 參數(shù)優(yōu)化

    [Dp]和[J]是VSG的兩個重要參數(shù),其變化對DFIG-VSG系統(tǒng)的性能有著很大影響。本節(jié)將以3.1節(jié)得出的二階系統(tǒng)模型為基礎(chǔ),綜合考慮穩(wěn)態(tài)與動態(tài)性能,給出[Dp]與[J]的選取范圍。

    根據(jù)標(biāo)準(zhǔn)EN50438的規(guī)定,逆變器并網(wǎng)連續(xù)運行需滿足:電網(wǎng)電壓頻率穩(wěn)定在49~51 Hz之間,且每變化1 Hz,逆變器的輸出有功功率應(yīng)變化100%(1.1 MW),以此為依據(jù)設(shè)計出參數(shù)[Dp]可選的最大邊界為:

    [Dp=ΔPmaxωnΔωmax=1100000100π?2π=557]""" (23)

    動態(tài)性能指標(biāo)可體現(xiàn)DFIG-VSG系統(tǒng)動態(tài)過程的特征[19]。通過將DFIG-VSG系統(tǒng)的超調(diào)量等動態(tài)性能指標(biāo)在可行范圍內(nèi),進(jìn)而可得到VSG控制參數(shù)的范圍。將二階傳遞函數(shù)表示為標(biāo)準(zhǔn)形式,可求得超調(diào)量為:

    [σp%=e-πλ14λ0-λ21×100%]"""" (24)

    式中:當(dāng)[σp%]在1.5%~16.3%之間時,阻尼比[ξ]將穩(wěn)定在0.5~0.8之間,有利于DFIG-VSG系統(tǒng)安全穩(wěn)定運行。由此可得到J的取值范圍為:[5.50≤J≤12.09]。

    DFIG-VSG系統(tǒng)降階后的模型幅值裕度為無窮大[19],則只需要考慮相角裕度。取[s=jω],二階開環(huán)傳遞函數(shù)改寫為:

    [H(jω)=β0+jβ0ω-ω2+j(λ1-β1)ω]"""" (25)

    由式(25)求得傳遞函數(shù)的幅頻特性[A(ω)]為:

    [A(ω)=1ωβ21ω2+β20ω2+(λ1-β1)2]"""""" (26)

    令式(26)等于1,可求得截止頻率,進(jìn)一步得出相角裕度[γ]的表達(dá)式,當(dāng)相角裕度[γ]為30°~60°時[19],可得到較好的性能,由此可得到[Dp]最終的取值范圍為:190~557。

    4 仿真驗證

    為了驗證DFIG-VSG控制策略與所提方法研究的可行性和效果,本文基于Matlab/Simulink仿真環(huán)境建立了DFIG-VSG系統(tǒng)仿真模型,見圖2。對DFIG轉(zhuǎn)子側(cè)變流器采用VSG控制,仿真中DFIG定子端串聯(lián)3.46 mH電感和0.065 Ω電阻模擬線路阻抗,電網(wǎng)端公共耦合點(point of common coupling,PCC)用以實現(xiàn)并網(wǎng)運行。DFIG-VSG系統(tǒng)主要仿真參數(shù)如表2所示。

    4.1 基于根軌跡法的模型有效性分析

    結(jié)合DFIG-VSG系統(tǒng)小信號模型,在以上分析得到的[J]與[Dp]選取范圍內(nèi),利用根軌跡法驗證降階方法與參數(shù)范圍的可行性。圖3同時給出了高階與低階模型在[J]與[Dp]變化時的根軌跡圖,可看到,二者主導(dǎo)特征根變化趨勢一致,且在參數(shù)選取范圍內(nèi)DFIG-VSG系統(tǒng)能穩(wěn)定運行,參數(shù)選取范圍和降階方法的有效性得到了驗證。

    圖3a給出了[J]增大(箭頭所指方向)時閉環(huán)極點的變化趨勢。其中,極點S4為不發(fā)生變化的負(fù)實根且遠(yuǎn)離虛軸,忽略其對系統(tǒng)的影響。隨著[J]增大,S1將向虛軸方向移動,同時,S2和S3也向靠近虛軸的方向移動。系統(tǒng)的超調(diào)量隨之

    增大,調(diào)節(jié)時間變長,但在本節(jié)選定的范圍內(nèi)均可保證穩(wěn)定。當(dāng)[J]的值進(jìn)一步增大,極點S2、S3向零點靠攏,DFIG-VSG系統(tǒng)的穩(wěn)定性將受到威脅。

    圖3b給出了[Dp]增大(箭頭所指方向)時閉環(huán)極點變化趨勢。S4忽略不計,S1隨著[Dp]的增大離虛軸越來越遠(yuǎn),對系統(tǒng)的影響也越來越小。與此同時,S2、S3的虛部逐漸減小,并靠近實軸方向。系統(tǒng)超調(diào)量隨之減小,調(diào)節(jié)時間逐漸縮短。

    4.2 J和Dp變化時系統(tǒng)響應(yīng)和動態(tài)參數(shù)分析

    在3.2節(jié)提出的參數(shù)范圍支持下,分析不同[J]和[Dp]對DFIG-VSG系統(tǒng)并網(wǎng)運行時的有功功率和頻率響應(yīng)的影響:DFIG-VSG在額定風(fēng)速下以1.1 MW的輸出功率并網(wǎng)運行,1 s時風(fēng)速增加0.5 m/s,使有功功率指令發(fā)生階躍。

    圖4a為[Dp]數(shù)值為350、[J]數(shù)值從上到下依次為6、9、12時的有功功率響應(yīng)曲線。由圖4a分析可知,隨著[J]逐漸增大,系統(tǒng)輸出有功功率的超調(diào)量增大,系統(tǒng)響應(yīng)變慢,上升時間和調(diào)節(jié)時間變長,振蕩變得嚴(yán)重,所以在保證系統(tǒng)穩(wěn)定工作的頻率范圍的前提下,[J]在所提選取范圍內(nèi)應(yīng)盡量小。

    圖4b為[J]變化時對應(yīng)的頻率響應(yīng)曲線。由圖4b分析可知,1 s前DFIG-VSG系統(tǒng)以額定頻率并網(wǎng)運行,當(dāng)風(fēng)速在1 s改變時,頻率[f]開始發(fā)生振蕩,經(jīng)過短時間的調(diào)節(jié)穩(wěn)定后恢復(fù)為額定頻率。隨著[J]的增大,系統(tǒng)頻率的調(diào)節(jié)時間變長,系統(tǒng)頻率最低點的幅值相應(yīng)減小。

    圖5a為[J]值為9、[Dp]從上到下依次為250、350、450時的有功功率響應(yīng)曲線。由圖5a可知,隨著[Dp]逐漸增大,系統(tǒng)輸出有功頻率的超調(diào)量減小,調(diào)節(jié)時間變短,振蕩逐漸減輕,系統(tǒng)響應(yīng)變慢。

    圖5b為[Dp]變化時對應(yīng)的頻率響應(yīng)曲線。由圖5b分析可知,隨著[Dp]的增大,系統(tǒng)頻率的調(diào)節(jié)時間逐漸縮短。同時,系統(tǒng)頻率最低點的幅值相應(yīng)減小。

    以上仿真分析驗證了前文所提模型降階方法與參數(shù)選取范圍的正確性。ITAE指標(biāo)反映了高低階模型的誤差程度,其數(shù)值越小證明高低階模型的擬合程度越好。在Matlab環(huán)境下計算得到不同[J、Dp]下系統(tǒng)的動態(tài)性能與對應(yīng)的高低階模型ITAE數(shù)值如表3所示。

    由表3分析可知,本文提出的降階方法的ITAE指標(biāo)較小,降階方法的正確性得到驗證。同時可看出,隨著[J]的增大,高低階模型的擬合程度逐漸變差;隨著[Dp]的增大,高低階模型的擬合程度逐漸變好。

    5 結(jié) 論

    本文提出一種采用轉(zhuǎn)子電流前饋補償解耦的DFIG-VSG雙環(huán)控制方案,在此基礎(chǔ)上,建立系統(tǒng)等效小信號模型,得到DFIG-VSG并網(wǎng)輸出有功功率的高階閉環(huán)傳遞函數(shù)。使用提出的改進(jìn)勞斯赫爾維茨與帕德近似結(jié)合的方法進(jìn)行模型降階,得到DFIG-VSG的二階傳遞函數(shù),并以此為基礎(chǔ),綜合考慮穩(wěn)態(tài)與動態(tài)性能,確定[Dp]與[J]的選取范圍。利用Matlab/Simulink通過仿真分析得到以下主要結(jié)論:

    1)本文提出的模型降階方法能有效解決DFIG-VSG高階模型動態(tài)性能指標(biāo)和控制參數(shù)優(yōu)化求解困難的問題。

    2)在風(fēng)速擾動工況下,利用本文提出的[Dp]與[J]參數(shù)優(yōu)化方法,DFIG-VSG能更好地為電網(wǎng)提供有功功率和頻率支撐,且系統(tǒng)安全穩(wěn)定運行。

    [參考文獻(xiàn)]

    [1]"""" 柴建云, 趙楊陽, 孫旭東, 等. 虛擬同步發(fā)電機技術(shù)在風(fēng)力發(fā)電系統(tǒng)中的應(yīng)用與展望[J]. 電力系統(tǒng)自動化, 2018, 42(9): 17-25, 68.

    CHAI J Y, ZHAO Y Y, SUN X D, et al. Application and prospect of virtual synchronous generator in wind power generation"" system[J]."" Automation"" of"" electric"" power systems, 2018, 42(9): 17-25, 68.

    [2]"""" 年珩, 宋亦鵬. 諧波電網(wǎng)下基于矢量比例積分電流調(diào)節(jié)器的雙饋異步發(fā)電機運行控制技術(shù)[J]. 中國電機工程學(xué)報, 2013, 33(6): 101-111, 15.

    NIAN H, SONG Y P. DFIG operation control strategy under distorted grid conditions based on VPI current regulators[J]. Proceedings of the CSEE, 2013, 33(6): 101-111, 15.

    [3]"""" 田新首, 王偉勝, 遲永寧, 等. 基于雙饋風(fēng)電機組有效儲能的變參數(shù)虛擬慣量控制[J]. 電力系統(tǒng)自動化, 2015, 39(5): 20-26, 33.

    TIAN X S, WANG W S, CHI Y N, et al. Variable parameter virtual inertia control based on effective energy storage of DFIG-based wind turbines[J]. Automation of electric power systems, 2015, 39(5): 20-26, 33.

    [4]"""" 呂志鵬, 盛萬興, 鐘慶昌, 等. 虛擬同步發(fā)電機及其在微電網(wǎng)中的應(yīng)用[J]. 中國電機工程學(xué)報, 2014, 34(16): 2591-2603.

    LYU Z P, SHENG W X, ZHONG Q C, et al. Virtual synchronous generator and its applications in micro-grid[J]. Proceedings of the CSEE, 2014, 34(16): 2591-2603.

    [5]"nbsp;"" 鄭天文, 陳來軍, 陳天一, 等. 虛擬同步發(fā)電機技術(shù)及展望[J]. 電力系統(tǒng)自動化, 2015, 39(21): 165-175.

    ZHENG T W, CHEN L J, CHEN T Y, et al. Review and prospect of virtual synchronous generator technologies[J]. Automation of electric power systems, 2015, 39(21): 165-175.

    [6]"""" 呂志鵬, 盛萬興, 劉海濤, 等. 虛擬同步機技術(shù)在電力系統(tǒng)中的應(yīng)用與挑戰(zhàn)[J]. 中國電機工程學(xué)報, 2017, 37(2): 349-360.

    LYU Z P, SHENG W X, LIU H T, et al. Application and challenge of virtual synchronous machine technology in power system[J]. Proceedings of the CSEE, 2017, 37(2): 349-360.

    [7]"""" 盛萬興, 呂志鵬, 崔健, 等. 虛擬同步機運行區(qū)域計算與參數(shù)分析[J]. 電網(wǎng)技術(shù), 2019, 43(5): 1557-1565.

    SHENG W X, LYU Z P, CUI J, et al. Operation area calculation and parameter analysis of virtual synchronous generator[J]. Power system technology, 2019, 43(5): 1557-1565.

    [8]"""" KHAN S, BLETTERIE B, ANTA A, et al. On small signal frequency stability under virtual inertia and the role of PLLs[J]. Energies, 2018, 11(9): 2372.

    [9]"""" DU Y, GUERRERO J M, CHANG L C, et al. Modeling, analysis, and design of a frequency-droop-based virtual synchronous generator for microgrid applications[C]//2013 IEEE ECCE Asia Downunder, Melbourne, Australia, 2013: 643-649.

    [10]""" 孫大衛(wèi), 劉輝, 高舜安, 等. 電流控制型虛擬同步發(fā)電機的小信號建模與穩(wěn)定性分析[J]. 電網(wǎng)技術(shù), 2018, 42(9): 2983-2993.

    SUN D W, LIU H, GAO S A, et al. Small-signal modeling and""" stability"" analysis""" of""" current-controlled""" virtual synchronous"" generators[J]."" Power"" system"" technology, 2018, 42(9): 2983-2993.

    [11]""" SAMBARIYA D, MANOHAR H. Preservation of stability for reduced order model of large scale systems using differentiation method[J]. British journal of mathematics amp; computer science, 2016, 13(6): 1-17.

    [12]""" ALSMADI" O" M" K," ABO-HAMMOUR" Z" S." A" robust computational technique for model order reduction of two-time-scale" discrete" systems" via" genetic" algorithms[J]. Computational intelligence and neuroscience, 2015, 2015: 615079.

    [13]""" NARWAL A, PRASAD B R. A novel order reduction approach for LTI systems using cuckoo search optimization and stability equation[J]. IETE journal of research, 2016, 62(2): 154-163.

    [14]""" FENG" H," LUKIC" S" M. Reduced-order" modeling" and design of single-stage LCL compensated IPT system for low voltage vehicle charging applications[J]. IEEE transactions on vehicular technology, 2020, 69(4): 3728-3739.

    [15]""" LI H C, WANG K P, HUANG L, et al. Dynamic modeling based on coupled modes for wireless power transfer systems[J]. IEEE transactions on power electronics, 2015, 30(11): 6245-6253.

    [16]""" SAMBARIYA D K, ARVIND G. Reduced order model of single machine infinite bus power system using stability equation method and self-adaptive bat algorithm[J]. Universal journal of control and automation, 2016, 4(1): 1-7.

    [17]""" PRAJAPATI A K, PRASAD R. Order reduction of linear dynamic systems with an improved routh stability method[C]//2018 International Conference on Control, Power, Communication and Computing Technologies (ICCPCCT). Kannur, India, 2018: 362-367.

    [18]""" SINGH R, MISHRA V M, SINGH J. Model order reduction via routh hurwitz array and improved pade approximations[C]//2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC). Greater Noida, India, 2019: 755-758.

    [19]""" 胡壽松. 自動控制原理[M]. 6版. 北京: 科學(xué)出版社, 2013:79-113.

    HU" S" S." Principle" of" automatic"" control[M]." 6th" ed. Beijing: Science Press, 2013: 79-113.

    CONTROL PARAMETER OPTIMIZATION OF VIRTUAL

    SYNCHRONIZER FOR DOUBLY-FED WIND TURBINES BASED ON

    MODEL REDUCTION

    Wang Xiaodong1,F(xiàn)u Teng1,Wang Xiaochi2,Liu Yingming1,Wang Hanbo1

    (1. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China;

    2. Inner Mongolia Power Investment Energy Co., Ltd. Shanxi Branch, Taiyuan 030000, China)

    Abstract:Aiming at the difficult problem of dynamic performance index and parameter optimization in a doubly fed induction generator (DFIG) controlled by a virtual synchronous generator (VSG) based wind turbines, which is difficult to solve due to the high order of the model, taking into account stability and dynamic performance, an improved model reduction method of the approximate combination of Routh Hurwitz and Pade approximations method is proposed. Firstly, the mathematical model of DFIG-VSG is established, and a double-loop control strategy for the decoupling of rotor current feedforward compensation is proposed. Then the small signal model of the DFIG-VSG grid-connected system is established, and the corresponding high-order closed-loop transfer function is obtained. Based on the model reduction method proposed in this paper, the second-order transfer function of the output active power can be obtained by reducing the DFIG-VSG high-order transfer function, and a set of control parameter selection ranges can be obtained by constraining the dynamic parameters and stability margin, and the influence of the main control parameters on the DFIG-VSG grid-connected system is analyzed by the root trajectory method in this selection range. Under different wind speed conditions, Matlab/Simulink simulation verifies the feasibility of the proposed method.

    Keywords:virtual synchronous generator; doubly-fed induction generator based wind turbines; small signal model; model reduction;control parameters selection

    猜你喜歡
    模型系統(tǒng)
    一半模型
    Smartflower POP 一體式光伏系統(tǒng)
    WJ-700無人機系統(tǒng)
    ZC系列無人機遙感系統(tǒng)
    北京測繪(2020年12期)2020-12-29 01:33:58
    重要模型『一線三等角』
    重尾非線性自回歸模型自加權(quán)M-估計的漸近分布
    基于PowerPC+FPGA顯示系統(tǒng)
    半沸制皂系統(tǒng)(下)
    連通與提升系統(tǒng)的最后一塊拼圖 Audiolab 傲立 M-DAC mini
    3D打印中的模型分割與打包
    秋霞伦理黄片| 国产欧美亚洲国产| 91成人精品电影| 最近的中文字幕免费完整| 久久午夜福利片| 亚洲色图 男人天堂 中文字幕| 哪个播放器可以免费观看大片| 亚洲av成人精品一二三区| 各种免费的搞黄视频| 国产成人精品婷婷| 欧美精品国产亚洲| 中文字幕最新亚洲高清| 久久精品久久精品一区二区三区| 久久综合国产亚洲精品| 国产av国产精品国产| 丝袜美足系列| 免费日韩欧美在线观看| 麻豆精品久久久久久蜜桃| 激情视频va一区二区三区| 秋霞在线观看毛片| 国产老妇伦熟女老妇高清| 免费黄色在线免费观看| 国产探花极品一区二区| 人人妻人人爽人人添夜夜欢视频| 国产色婷婷99| 日本欧美视频一区| 亚洲第一青青草原| 母亲3免费完整高清在线观看 | 大片免费播放器 马上看| 欧美亚洲日本最大视频资源| 国产一区二区激情短视频 | 高清在线视频一区二区三区| 精品国产露脸久久av麻豆| 精品一区二区三区四区五区乱码 | 国产欧美日韩综合在线一区二区| 亚洲成人手机| 欧美av亚洲av综合av国产av | 色吧在线观看| 五月天丁香电影| 丝袜喷水一区| 天天操日日干夜夜撸| 在线观看三级黄色| 亚洲精品第二区| 成人午夜精彩视频在线观看| 91国产中文字幕| 伦理电影免费视频| 国产一级毛片在线| 色94色欧美一区二区| 国产极品粉嫩免费观看在线| av电影中文网址| 男女午夜视频在线观看| 天天操日日干夜夜撸| 2018国产大陆天天弄谢| 大片免费播放器 马上看| 国语对白做爰xxxⅹ性视频网站| 午夜福利视频精品| 在现免费观看毛片| 欧美亚洲日本最大视频资源| 精品视频人人做人人爽| 国产免费现黄频在线看| 电影成人av| 精品一区二区免费观看| 亚洲av电影在线观看一区二区三区| 人妻人人澡人人爽人人| 日韩一区二区三区影片| 在线亚洲精品国产二区图片欧美| 国产乱来视频区| 香蕉精品网在线| 精品国产一区二区三区四区第35| 亚洲欧美色中文字幕在线| 人妻一区二区av| videosex国产| 最近最新中文字幕大全免费视频 | 成年女人在线观看亚洲视频| 人人妻人人爽人人添夜夜欢视频| 国产欧美亚洲国产| 大话2 男鬼变身卡| 一级,二级,三级黄色视频| 只有这里有精品99| 久久影院123| 最近中文字幕高清免费大全6| 十分钟在线观看高清视频www| 国产亚洲午夜精品一区二区久久| 男男h啪啪无遮挡| 少妇人妻精品综合一区二区| 国产亚洲精品第一综合不卡| 天天影视国产精品| 欧美人与善性xxx| 在线精品无人区一区二区三| 亚洲欧美精品自产自拍| 欧美日韩精品成人综合77777| 一边亲一边摸免费视频| 精品少妇内射三级| 建设人人有责人人尽责人人享有的| 久久久a久久爽久久v久久| 高清视频免费观看一区二区| 亚洲欧美一区二区三区黑人 | 黄色 视频免费看| 中文字幕制服av| 欧美成人午夜精品| 国产免费又黄又爽又色| 岛国毛片在线播放| 午夜日本视频在线| 成人国语在线视频| 黑人欧美特级aaaaaa片| 中文乱码字字幕精品一区二区三区| 999久久久国产精品视频| 赤兔流量卡办理| 90打野战视频偷拍视频| 如日韩欧美国产精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 国产av国产精品国产| 99热全是精品| 亚洲国产毛片av蜜桃av| 90打野战视频偷拍视频| 黄片无遮挡物在线观看| 欧美中文综合在线视频| 亚洲欧美一区二区三区久久| 婷婷色av中文字幕| 精品一品国产午夜福利视频| 99精国产麻豆久久婷婷| 国产精品一国产av| www.熟女人妻精品国产| 99久久精品国产国产毛片| 18禁观看日本| 亚洲成av片中文字幕在线观看 | 男女高潮啪啪啪动态图| 一级毛片我不卡| 女人被躁到高潮嗷嗷叫费观| 亚洲第一青青草原| 国产精品 国内视频| 国产精品人妻久久久影院| 两个人看的免费小视频| 亚洲国产色片| 日本91视频免费播放| 免费大片黄手机在线观看| a级毛片在线看网站| 免费播放大片免费观看视频在线观看| 成人影院久久| 亚洲国产色片| 免费少妇av软件| 国产av精品麻豆| 日产精品乱码卡一卡2卡三| 免费久久久久久久精品成人欧美视频| 亚洲综合精品二区| 黄色 视频免费看| 亚洲精华国产精华液的使用体验| 亚洲欧美精品自产自拍| av片东京热男人的天堂| 日日摸夜夜添夜夜爱| 热re99久久精品国产66热6| 久久久精品免费免费高清| 香蕉丝袜av| 26uuu在线亚洲综合色| 欧美精品av麻豆av| 亚洲欧美中文字幕日韩二区| 日本91视频免费播放| 老司机影院毛片| 男人操女人黄网站| 搡老乐熟女国产| 我要看黄色一级片免费的| 国产在线一区二区三区精| 日韩,欧美,国产一区二区三区| 男女边摸边吃奶| xxx大片免费视频| 午夜福利影视在线免费观看| 亚洲av综合色区一区| 欧美老熟妇乱子伦牲交| 亚洲国产精品999| 伊人亚洲综合成人网| av片东京热男人的天堂| 热re99久久国产66热| 亚洲av综合色区一区| 精品一区二区三卡| 成人亚洲精品一区在线观看| 亚洲第一区二区三区不卡| 亚洲精品日韩在线中文字幕| 一本色道久久久久久精品综合| 中文精品一卡2卡3卡4更新| 久久精品久久精品一区二区三区| 亚洲国产精品成人久久小说| 国产欧美日韩一区二区三区在线| 亚洲欧美色中文字幕在线| 岛国毛片在线播放| 寂寞人妻少妇视频99o| 亚洲av成人精品一二三区| 观看美女的网站| 韩国av在线不卡| 男女无遮挡免费网站观看| 亚洲,欧美,日韩| 精品人妻偷拍中文字幕| 一本—道久久a久久精品蜜桃钙片| 国产视频首页在线观看| 亚洲国产欧美网| 亚洲av综合色区一区| 1024香蕉在线观看| av网站免费在线观看视频| 美女国产视频在线观看| 9色porny在线观看| 老司机影院成人| 男女午夜视频在线观看| videosex国产| 国产熟女午夜一区二区三区| 亚洲精品国产色婷婷电影| 男男h啪啪无遮挡| 韩国高清视频一区二区三区| 久久久精品免费免费高清| freevideosex欧美| av网站在线播放免费| 亚洲欧美中文字幕日韩二区| 久久狼人影院| 一级,二级,三级黄色视频| av天堂久久9| 18禁裸乳无遮挡动漫免费视频| 亚洲国产最新在线播放| 99久久人妻综合| 国产高清不卡午夜福利| 亚洲av欧美aⅴ国产| 免费观看a级毛片全部| 丰满乱子伦码专区| 亚洲精品日本国产第一区| 欧美日韩亚洲高清精品| 久久久欧美国产精品| 欧美精品一区二区大全| 美女福利国产在线| 久久久久久久亚洲中文字幕| 欧美日韩精品成人综合77777| 欧美 亚洲 国产 日韩一| 国产不卡av网站在线观看| 精品一区二区三区四区五区乱码 | 亚洲国产欧美在线一区| 午夜精品国产一区二区电影| 国产成人精品久久二区二区91 | 色婷婷久久久亚洲欧美| 黄色配什么色好看| 男女高潮啪啪啪动态图| 久久精品国产a三级三级三级| 满18在线观看网站| 国产精品久久久久久av不卡| 亚洲精品一二三| 十分钟在线观看高清视频www| 国产精品国产三级国产专区5o| 性高湖久久久久久久久免费观看| 在线观看国产h片| 日本91视频免费播放| 大香蕉久久成人网| 最近的中文字幕免费完整| 99国产综合亚洲精品| 高清av免费在线| 日韩制服丝袜自拍偷拍| 久久99精品国语久久久| 夜夜骑夜夜射夜夜干| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久人人爽人人片av| 国产男女超爽视频在线观看| 午夜免费鲁丝| 久久狼人影院| 日韩大片免费观看网站| 女的被弄到高潮叫床怎么办| 国产一区二区三区av在线| 在现免费观看毛片| 黑丝袜美女国产一区| www.熟女人妻精品国产| 国产又爽黄色视频| 精品一区二区三区四区五区乱码 | 久久综合国产亚洲精品| 久久精品aⅴ一区二区三区四区 | 黄网站色视频无遮挡免费观看| 亚洲av在线观看美女高潮| 一区福利在线观看| 精品人妻偷拍中文字幕| 高清欧美精品videossex| 欧美日本中文国产一区发布| 观看美女的网站| 一区二区日韩欧美中文字幕| 亚洲精品乱久久久久久| 国产欧美日韩一区二区三区在线| 久久99蜜桃精品久久| av不卡在线播放| 岛国毛片在线播放| 亚洲 欧美一区二区三区| 国产av一区二区精品久久| 成人国产麻豆网| 最近的中文字幕免费完整| 欧美日韩一区二区视频在线观看视频在线| 国产精品久久久久久av不卡| 免费大片黄手机在线观看| 搡老乐熟女国产| 天天影视国产精品| 日日撸夜夜添| 中文字幕制服av| 日产精品乱码卡一卡2卡三| 男人爽女人下面视频在线观看| 成人亚洲精品一区在线观看| 久久久久久久精品精品| 免费看不卡的av| 午夜激情久久久久久久| 亚洲欧美色中文字幕在线| 免费在线观看黄色视频的| 最近2019中文字幕mv第一页| 成人毛片60女人毛片免费| 中文字幕av电影在线播放| 国产伦理片在线播放av一区| 成人漫画全彩无遮挡| 精品一区二区三卡| 日韩三级伦理在线观看| 日日啪夜夜爽| 久久精品久久久久久噜噜老黄| 国产精品一二三区在线看| 日韩一本色道免费dvd| 欧美人与性动交α欧美软件| 老司机影院毛片| 色视频在线一区二区三区| 久久精品aⅴ一区二区三区四区 | 日韩制服丝袜自拍偷拍| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| 亚洲色图 男人天堂 中文字幕| 国产精品99久久99久久久不卡 | 777米奇影视久久| 久久久久久久国产电影| 国产欧美日韩综合在线一区二区| 三上悠亚av全集在线观看| 精品亚洲成a人片在线观看| 久久免费观看电影| 一级毛片我不卡| 久久久久久久久久久免费av| 亚洲精品av麻豆狂野| 80岁老熟妇乱子伦牲交| 精品午夜福利在线看| 91成人精品电影| 精品一区二区免费观看| av在线app专区| av免费观看日本| 激情视频va一区二区三区| 亚洲一区二区三区欧美精品| 免费黄色在线免费观看| 2022亚洲国产成人精品| 国产黄色视频一区二区在线观看| 亚洲一码二码三码区别大吗| 色婷婷久久久亚洲欧美| 男的添女的下面高潮视频| 日韩欧美精品免费久久| 尾随美女入室| 最近最新中文字幕免费大全7| 中文字幕色久视频| 亚洲欧洲国产日韩| 成人影院久久| 黄色视频在线播放观看不卡| 一个人免费看片子| 丝袜美腿诱惑在线| 中文字幕色久视频| av在线老鸭窝| 亚洲av.av天堂| 只有这里有精品99| 国产精品久久久久成人av| 成人免费观看视频高清| av在线播放精品| 久久av网站| 亚洲精品国产色婷婷电影| 久久久久人妻精品一区果冻| 欧美变态另类bdsm刘玥| 午夜激情久久久久久久| 国产乱人偷精品视频| 精品国产乱码久久久久久小说| 国产精品一二三区在线看| 亚洲精品自拍成人| 精品久久久精品久久久| 黄频高清免费视频| 又大又黄又爽视频免费| 又黄又粗又硬又大视频| 丝袜美腿诱惑在线| av电影中文网址| 夫妻性生交免费视频一级片| 9191精品国产免费久久| 亚洲成色77777| 啦啦啦视频在线资源免费观看| 国产不卡av网站在线观看| 多毛熟女@视频| 在线观看免费视频网站a站| 欧美日韩亚洲国产一区二区在线观看 | 在线天堂最新版资源| videossex国产| 久久国产精品大桥未久av| 精品国产国语对白av| 人体艺术视频欧美日本| 午夜91福利影院| 免费高清在线观看日韩| 美国免费a级毛片| 亚洲人成77777在线视频| 午夜91福利影院| 午夜福利在线免费观看网站| 午夜91福利影院| 久久国产精品大桥未久av| 亚洲婷婷狠狠爱综合网| 90打野战视频偷拍视频| av电影中文网址| 亚洲第一区二区三区不卡| 成年人午夜在线观看视频| 人体艺术视频欧美日本| 观看美女的网站| 欧美 日韩 精品 国产| 国产 精品1| videosex国产| 欧美精品国产亚洲| 国产乱来视频区| 国产精品av久久久久免费| 搡老乐熟女国产| 久久国产精品男人的天堂亚洲| 国产欧美日韩综合在线一区二区| 亚洲欧美精品综合一区二区三区 | 日韩人妻精品一区2区三区| 一区二区三区四区激情视频| 久久这里有精品视频免费| 国产麻豆69| 日韩一区二区三区影片| 成年美女黄网站色视频大全免费| 免费观看无遮挡的男女| 久久久精品免费免费高清| 日韩制服骚丝袜av| 啦啦啦啦在线视频资源| 亚洲一码二码三码区别大吗| 男男h啪啪无遮挡| 国产伦理片在线播放av一区| 少妇的丰满在线观看| 久久精品夜色国产| 看十八女毛片水多多多| 午夜久久久在线观看| 男女无遮挡免费网站观看| 日本猛色少妇xxxxx猛交久久| 精品视频人人做人人爽| 中文字幕最新亚洲高清| 国产探花极品一区二区| 99久久综合免费| 肉色欧美久久久久久久蜜桃| 亚洲欧美精品综合一区二区三区 | www日本在线高清视频| 午夜福利网站1000一区二区三区| 少妇人妻精品综合一区二区| 日本av免费视频播放| 蜜桃国产av成人99| 亚洲国产av新网站| 国产精品麻豆人妻色哟哟久久| 国产激情久久老熟女| 日韩欧美一区视频在线观看| 在线观看国产h片| 亚洲国产日韩一区二区| av国产久精品久网站免费入址| 久久久久久伊人网av| 两性夫妻黄色片| 中文字幕精品免费在线观看视频| 考比视频在线观看| 久久久久久伊人网av| 蜜桃国产av成人99| 最黄视频免费看| 久久久久久久国产电影| 99久久中文字幕三级久久日本| 亚洲第一av免费看| av一本久久久久| 尾随美女入室| 国产1区2区3区精品| 日韩熟女老妇一区二区性免费视频| 亚洲欧美清纯卡通| 91精品三级在线观看| 99热网站在线观看| av福利片在线| 亚洲av免费高清在线观看| 1024香蕉在线观看| 亚洲av电影在线观看一区二区三区| 久久精品国产亚洲av涩爱| 久久韩国三级中文字幕| 黄频高清免费视频| 日韩中文字幕欧美一区二区 | 中文字幕人妻丝袜一区二区 | 国产精品蜜桃在线观看| 一级毛片 在线播放| 男女无遮挡免费网站观看| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品国产av蜜桃| 日韩一卡2卡3卡4卡2021年| 涩涩av久久男人的天堂| 午夜激情久久久久久久| 国产伦理片在线播放av一区| 久久 成人 亚洲| 黄频高清免费视频| 少妇人妻精品综合一区二区| 日韩精品有码人妻一区| 精品国产一区二区三区四区第35| 亚洲av电影在线观看一区二区三区| 成年人免费黄色播放视频| 9191精品国产免费久久| 亚洲av欧美aⅴ国产| 激情视频va一区二区三区| 亚洲欧美成人综合另类久久久| 日韩视频在线欧美| 天堂8中文在线网| av有码第一页| 老司机亚洲免费影院| 免费人妻精品一区二区三区视频| 午夜精品国产一区二区电影| 成人国语在线视频| 热99久久久久精品小说推荐| 嫩草影院入口| 天堂中文最新版在线下载| 亚洲精品第二区| 免费看av在线观看网站| 大话2 男鬼变身卡| 国产亚洲一区二区精品| 精品久久久久久电影网| 日韩一区二区视频免费看| 天堂8中文在线网| 99国产综合亚洲精品| 国产精品免费视频内射| 搡女人真爽免费视频火全软件| 免费少妇av软件| 成人18禁高潮啪啪吃奶动态图| 十八禁高潮呻吟视频| 国产亚洲最大av| 久久久久精品人妻al黑| 欧美人与性动交α欧美软件| 超色免费av| 乱人伦中国视频| 大片电影免费在线观看免费| 日本黄色日本黄色录像| 午夜老司机福利剧场| 精品福利永久在线观看| 久久久久久人人人人人| 精品午夜福利在线看| 亚洲久久久国产精品| 欧美人与性动交α欧美软件| 欧美日韩成人在线一区二区| 亚洲美女搞黄在线观看| 免费av中文字幕在线| www.av在线官网国产| 人妻人人澡人人爽人人| 丝袜人妻中文字幕| 日日啪夜夜爽| 国产视频首页在线观看| 亚洲av电影在线进入| 亚洲国产精品成人久久小说| 免费观看a级毛片全部| 国产免费又黄又爽又色| 免费观看无遮挡的男女| 永久免费av网站大全| 国产成人欧美| 亚洲精品国产一区二区精华液| 成年人免费黄色播放视频| 中文乱码字字幕精品一区二区三区| 亚洲精品视频女| 久久久久久久国产电影| 国产精品欧美亚洲77777| 久久久国产精品麻豆| 亚洲五月色婷婷综合| 日本vs欧美在线观看视频| 亚洲第一青青草原| 日本欧美国产在线视频| 看非洲黑人一级黄片| 一区福利在线观看| 久久韩国三级中文字幕| freevideosex欧美| 欧美精品高潮呻吟av久久| 观看美女的网站| 人成视频在线观看免费观看| 99久久人妻综合| 亚洲国产精品一区三区| 寂寞人妻少妇视频99o| 亚洲国产成人一精品久久久| 欧美另类一区| 国产有黄有色有爽视频| 婷婷成人精品国产| 亚洲内射少妇av| 亚洲中文av在线| 最近的中文字幕免费完整| 色婷婷av一区二区三区视频| 国产成人精品一,二区| 夫妻午夜视频| 亚洲美女搞黄在线观看| 国产一区二区激情短视频 | 亚洲精品久久午夜乱码| 在线精品无人区一区二区三| 国精品久久久久久国模美| 成人免费观看视频高清| 午夜日韩欧美国产| a级毛片在线看网站| 女人高潮潮喷娇喘18禁视频| 我的亚洲天堂| 久久久久久久久久久久大奶| 精品亚洲成a人片在线观看| 午夜免费鲁丝| 母亲3免费完整高清在线观看 | 日韩伦理黄色片| 赤兔流量卡办理| 午夜福利影视在线免费观看| 欧美日韩精品成人综合77777| 人妻 亚洲 视频| 夜夜骑夜夜射夜夜干| 欧美日韩精品成人综合77777| 成人午夜精彩视频在线观看| 高清欧美精品videossex| 婷婷色综合大香蕉| 亚洲视频免费观看视频| 2021少妇久久久久久久久久久| 视频区图区小说| kizo精华| 免费日韩欧美在线观看| 国产一区二区在线观看av| 人人妻人人爽人人添夜夜欢视频| a 毛片基地| 国产97色在线日韩免费| 亚洲视频免费观看视频| 卡戴珊不雅视频在线播放| 亚洲欧美精品自产自拍| 国产日韩欧美视频二区| 国产亚洲av片在线观看秒播厂| 亚洲av男天堂|