收稿日期:2022-07-24
基金項(xiàng)目:國家自然科學(xué)基金區(qū)域創(chuàng)新發(fā)展聯(lián)合基金(U21A2072);國家自然科學(xué)基金(62174161;61904180);中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)
(XDA21060500)
通信作者:王光紅(1976—),女,博士、副研究員,主要從事太陽電池方面的研究。wangguanghong@mail.iee.ac.cn
DOI:10.19912/j.0254-0096.tynxb.2022-1088 文章編號:0254-0096(2023)11-0016-07
摘 要:提升晶硅異質(zhì)結(jié)(HJT)太陽電池的電流有望進(jìn)一步提高電池效率,透明導(dǎo)電氧化物薄膜(TCO)是影響HJT太陽電池電流的重要功能層。該文首先介紹了TCO薄膜的自身特性,包括摻雜元素和摻雜比例、制備技術(shù)對薄膜特性的影響。同時總結(jié)了薄膜特性對HJT太陽電池性能的影響。最后闡述了TCO薄膜應(yīng)用的最新進(jìn)展及發(fā)展趨勢,增加蓋帽層或多層TCO薄膜有望改善薄膜整體特性及電池性能。以期指導(dǎo)TCO薄膜特性的優(yōu)化,從而進(jìn)一步提高HJT太陽電池效率,加快HJT太陽電池產(chǎn)業(yè)化進(jìn)程。
關(guān)鍵詞:晶硅異質(zhì)結(jié);太陽電池;透明導(dǎo)電氧化物薄膜;多層TCO薄膜;載流子遷移率;功函數(shù)
中圖分類號:O472""""""""""" """""""""""" """"""""文獻(xiàn)標(biāo)志碼:A
0 引 言
2022年,隆基創(chuàng)造了晶硅異質(zhì)結(jié)(heterojunction, HJT)太陽電池26.50%(274.3 cm2)的世界紀(jì)錄[1],進(jìn)一步推進(jìn)了HJT電池產(chǎn)業(yè)化的進(jìn)程。HJT太陽電池發(fā)射結(jié)為摻雜磷或硼的非晶硅薄膜,電阻率高,需要在其表面沉積透明導(dǎo)電氧化物薄膜(transparent conductive oxide, TCO)收集光生載流子,同時用作減反層,降低表面的光反射損失。此外,TCO還用作阻擋層禁止銀電極等金屬擴(kuò)散進(jìn)硅層。在HJT太陽電池制備優(yōu)化過程中,TCO要兼具高的載流子遷移率和透過率,同時要調(diào)控功函數(shù)實(shí)現(xiàn)良好的界面接觸。
HJT太陽電池中主要是錫摻雜氧化銦(indium tin oxide, ITO)薄膜。ITO是具有代表性的n型TCO薄膜,其可見光透過率高達(dá)85%以上,電阻率低至10-4 Ω·cm[2],且具有硬度高、耐磨、耐化學(xué)腐蝕等特點(diǎn),被廣泛應(yīng)用于發(fā)光二極管、平板液晶顯示器和太陽電池中。In2O3基薄膜由于含有稀有金屬In,價格昂貴、資源儲量少,且In的回收工藝繁瑣[3],為降低生產(chǎn)成本,也在采用ZnO基TCO薄膜做HJT太陽電池的電極。
1 TCO薄膜的摻雜
TCO薄膜是通過摻入金屬元素?fù)诫s劑電離出自由電子實(shí)現(xiàn)導(dǎo)電。目前,常用的摻雜元素主要有Ga、In、Zr、Sn 等[4-8]。In2O3基TCO薄膜,其金屬元素的摻雜通常滿足的條件是:1) 價態(tài)高于3,滿足施主摻雜;2) 離子半徑接近In3+。
Kanai[9]研究得到不同摻雜元素的In2O3基TCO薄膜的電阻率及載流子濃度隨摻雜原子和銦原子數(shù)量比例的變化關(guān)系,如圖1所示[9]。其電阻率隨摻雜原子和銦原子數(shù)量比例的增大逐漸降低,而載流子濃度逐漸增加,當(dāng)增大到一定的摻雜比例時均達(dá)到飽和狀態(tài)。
一些研究嘗試摻雜多種元素調(diào)控薄膜能帶結(jié)構(gòu)、功函數(shù)和載流子濃度等。Al-Ga、Al-Ti和Ga-B等[10-12]共摻雜ZnO薄膜的研究表明:共摻雜ZnO基TCO薄膜呈現(xiàn)出低電阻率和高透過率,具有廣闊的應(yīng)用前景。
2 TCO薄膜的制備技術(shù)及性能
TCO薄膜制備方法可分為真空沉積和非真空沉積。非真空沉積法如超聲噴霧及溶膠-凝膠法[13]等;真空沉積如磁控濺射(magnetron sputtering, MS)[14]、反應(yīng)等離子體沉積(reactive plasma deposition, RPD)[15]及原子層沉積等。在HJT太陽電池中,制備TCO薄膜多采用MS和RPD技術(shù)[14-15]。
MS技術(shù)對靶材有較高的要求,無法使用不能壓制成高密度陶瓷靶材的TCO材料,如氧化鎢摻雜氧化銦(tungsten doped indium oxide, IWO),這是MS制備TCO薄膜需要解決的問題。
目前,對銦錫質(zhì)量分?jǐn)?shù)比例為90∶10的ITO靶材研究較多[16-17],也有研究采用97∶3及95∶5[6]。黃梅等[16]采用MS技術(shù)和單變量控制方法,其他參數(shù)不變,適量升高氧含量,使電阻率降至1×10-3 Ω·cm,透過率升至89%。ITO對氧非常敏感,適量的氧可提高電導(dǎo)率和透過率;但過高的氧含量,會使載流子濃度變小,電阻率增加。Koida等[18]與Barraud等[19]采用MS技術(shù),通過在沉積In2O3薄膜過程中引入水汽,鈍化ITO薄膜中缺陷,達(dá)到提升遷移率的目的;Nishimura等[20]在采用MS沉積ITO薄膜過程中引入水汽,降低ITO薄膜的擇優(yōu)取向,使薄膜遷移率提升至40 cm2/(V·s);Fujiwara等[18]使用In2O3陶瓷靶并通入Ar、O2和H2O,實(shí)現(xiàn)對In2O3薄膜的H摻雜,在不加熱的襯底上采用MS沉積薄膜后,進(jìn)行100~200 ℃、2 h的真空退火處理,得到遷移率高于100 cm2/(V·s)的IO∶H薄膜。
RPD技術(shù)具有低離子損傷、高生長速率及高薄膜結(jié)晶度等優(yōu)點(diǎn),但設(shè)備成本較高。相比于MS,RPD對襯底的轟擊弱,靶材物質(zhì)通過升溫蒸發(fā)生成薄膜沉積活性基元,幾乎不存在高能粒子對襯底表面的轟擊損傷,鍍膜質(zhì)量更易控制。RPD可降低非晶硅表面的損傷,不會使非晶硅鈍化后硅片的少子壽命降低。RPD類似蒸發(fā)的原理使其可以制備的材料種類受到限制,高蒸發(fā)溫度的材料難用RPD進(jìn)行鍍膜。目前,適合RPD技術(shù)的TCO材料主要有摻鎵的氧化鋅(gallium-doped zinc oxide, GZO)、ITO、摻鎢的氧化銦(IWO)及摻鈰的氧化銦(cerium-doped indium oxide, ICO)等,其中IWO及ICO與ITO相比具有更高的載流子遷移率[8,15]。不同于MS技術(shù),RPD為便于實(shí)現(xiàn)蒸發(fā),所采用的靶材結(jié)構(gòu)相對疏松,致密度小。常用的IWO靶振實(shí)密度只有約60%,使用MS技術(shù)很難匹配這種低密度靶材,只能采用RPD技術(shù)。
石建華等[8]采用RPD技術(shù)制備不同厚度的ICO(3% CeO2,質(zhì)量分?jǐn)?shù))薄膜,載流子濃度和遷移率對厚度顯示出強(qiáng)烈的依賴性,厚度為30 nm時,遷移率最高為153.7 cm2/(V·s)。孟凡英等[15]采用RPD技術(shù)制備IWO(1% WO3,質(zhì)量分?jǐn)?shù))薄膜,氧分壓為9.6×10-2 Pa時,632.8 nm波長處的折射率為2.01,禁帶寬度為3.83 eV,遷移率最大為89 cm2/(V·s),載流子濃度為1.6×1020 cm-3,用于HJT電池實(shí)現(xiàn)20.8 %的效率。沈磊磊等[21]采用RPD技術(shù)制備IWO薄膜,獲得了60 cm2/(V·s)的遷移率,經(jīng)過高溫退火處理后,遷移率可達(dá)到120 cm2/(V·s)。周忠信等[22]采用RPD技術(shù),ICO靶材及Ar稀釋的H2混合氣體制備ICOH薄膜,獲得了94 cm2/(V·s)的遷移率。Kobayashi等[23]采用RPD技術(shù),CeO2及H2共摻雜In2O3薄膜,獲得了遷移率高達(dá)142 cm2/(V·s)的ICOH薄膜。Shirakata等[24]采用RPD技術(shù)制備Ga摻雜ZnO薄膜,180 nm厚的GZO薄膜遷移率為27 cm2/(V·s)。黃偉等[25]采用RPD技術(shù)在室溫下實(shí)現(xiàn)W和H2O共摻雜In2O3制備IWOH薄膜,在空氣中退火使遷移率從43.7 cm2/(V·s)提高至65.2 cm2/(V·s)。
圖2[26]給出了不同制備技術(shù)不同摻雜成分In2O3及ZnO基TCO薄膜的電阻率、載流子濃度和遷移率。RPD技術(shù)制備的TCO薄膜遷移率相對較高,Ce和H共摻雜的In2O3薄膜遷移率高達(dá)160 cm2/(V·s),且電阻率小于3×10-4 Ω·cm。此外,經(jīng)過固相結(jié)晶(solid-phase crystallization, spc)的TCO薄膜,無論采用MS或RPD技術(shù)制備,都獲得了較高的遷移率,這主要得益于其具有較長的弛豫時間[26-27]。Koida等[28]將MS低溫工藝制備的非晶IO∶H薄膜真空退火處理,薄膜由非晶轉(zhuǎn)變?yōu)槎嗑?,證明了固相結(jié)晶的發(fā)生。
3 TCO薄膜對HJT太陽電池性能的影響
目前,很多公司和科研機(jī)構(gòu)制備的HJT太陽電池的效率均已超過20%,部分已達(dá)到24 %以上,TCO性能如表1所示。
作為減反射層,TCO薄膜的折射率一般約為2,根據(jù)薄膜在600 nm波長處反射率最小進(jìn)行測算,其厚度約為75 nm。Cruz等[36]通過軟件模擬了太陽光從電池前表面或后表面入射時,具有不同TCO薄膜載流子濃度及厚度的太陽電池電子和空穴輸運(yùn)功率、電流、及總體功率損失,如圖3所示[36]。TCO薄膜載流子濃度為6×1019 cm-3較小值或4.1×1020 cm-3較大值,其厚度為20或80 nm時,太陽光從電池前表面及背表面輻照,電流及功率損失均較大。當(dāng)TCO薄膜厚度較小時,其電阻較大,而厚度較大時又具有較高的光學(xué)吸收損失。
TCO薄膜和摻雜硅層薄膜的良好接觸特性可通過提高摻雜硅層的摻雜濃度增強(qiáng)載流子隧穿能力來獲得,但非晶硅薄膜的摻雜效率遠(yuǎn)低于晶體硅,因此較難實(shí)現(xiàn)。可以對TCO的功函數(shù)進(jìn)行控制,功函數(shù)決定費(fèi)米能級的位置,從而確定結(jié)區(qū)內(nèi)的電場方向。文獻(xiàn)[37]較詳細(xì)研究了TCO/摻雜非晶硅肖特基結(jié)對HJT太陽電池的影響,通常與p型薄膜硅接觸的TCO需要具有較大的功函數(shù),與n型薄膜硅接觸的TCO功函數(shù)較小。圖4為不同TCO功函數(shù)的HJT太陽電池
(ITO:Zr/a-Si∶H(p)/a-Si∶H(i)/c-Si(n))的能帶結(jié)構(gòu)示意圖[38]。各層材料功函數(shù)的不同導(dǎo)致能帶彎曲。ITO∶Zr層的功函數(shù)低于a-Si∶H層,但其增大可提高空穴從a-Si∶H(p)到ITO∶Zr層的輸運(yùn),使填充因子增加,內(nèi)建電場的增強(qiáng)提高了電池的開路電壓,因此電池性能得到提高??傊?,ITO∶Zr/a-Si∶H(p)接觸界面肖特基勢壘高度的降低導(dǎo)致了空穴載流子收集的增強(qiáng)。
趙雷等[39]采用AFORS-HET軟件模擬得到TCO/a-Si∶H(n)/c-Si(p)太陽電池性能隨TCO功函數(shù)變化的關(guān)系,如圖5所示[39],TCO功函數(shù)高于4.1 eV時,太陽電池性能隨著功函數(shù)的增加迅速降低。當(dāng)TCO功函數(shù)較低時,TCO/a-Si∶H(n)肖特基接觸的內(nèi)建電場方向與a-Si∶H(n)/c-Si(p)相同;反之,當(dāng)TCO功函數(shù)較高時,內(nèi)建電場方向相反。TCO功函數(shù)的增加會導(dǎo)致TCO/a-Si∶H(n)接觸的內(nèi)建電勢增大,使得發(fā)射極內(nèi)的耗盡區(qū)變寬。如果發(fā)射極厚度較小,以至于TCO/a-Si∶H(n)與a-Si∶H(n)/c-Si(p)接觸區(qū)重疊,將使得a-Si∶H(n)/c-Si(p)接觸的內(nèi)建電勢降低,從而導(dǎo)致太陽電池開路電壓和填充因子減小,效率變差。
Bivour等[40]模擬了不同摻雜濃度a-Si∶H(p)層與接觸層功函數(shù)不匹配對HJT電池填充因子的影響,如圖6所示[40]。通常TCO的功函數(shù)小于a-Si∶H(p)層的功函數(shù),在界面處甚至a-Si∶H(p)層內(nèi)會出現(xiàn)耗盡區(qū)或反型區(qū)。在耗盡區(qū)或反型區(qū),3種摻雜的a-Si∶H(p)層接觸層功函數(shù)不匹配導(dǎo)致電池填充因子均較低;在平帶時,接觸層功函數(shù)匹配,因此功函數(shù)對結(jié)的性能影響較??;在積累區(qū),因a-Si∶H(p)層的高摻雜,降低了界面接觸層功函數(shù)的不匹配程度,有利于電池填充因子的改善。
4 TCO薄膜應(yīng)用的最新進(jìn)展及發(fā)展趨勢
目前,用于HJT電池的ITO薄膜主要是單層ITO薄膜,在兼顧高透過率、低電阻率和良好接觸時,會舍棄掉一些優(yōu)異的性能。改進(jìn)TCO的一個重要方法是采用多層薄膜,以此來提高電池效率或降低成本。一些學(xué)者基于ITO進(jìn)行薄膜結(jié)構(gòu)上的調(diào)整,如增加蓋帽層或多層ITO薄膜,以期獲得薄膜整體性能的改進(jìn)。采用多層TCO除了提高薄膜自身特性,還具有如下優(yōu)點(diǎn)。
4.1 降低成本
德國HZB研究了在ITO外側(cè)覆蓋一層SiO2蓋帽層可改善HJT電池效率[41]。如圖7所示[41],在ITO外側(cè)覆蓋50 nm的SiO2蓋帽層,有效增加了ITO中的氫含量,提高了薄膜載流子濃度和遷移率。從SIMS分析來看,氫原子主要來源于非晶硅層,退火使非晶硅層中的氫向ITO擴(kuò)散,但I(xiàn)TO外表面的氫原子會向真空中逸出,使用蓋帽層可有效阻止這種逸出。
ITO/SiO2或ITO/SiNX復(fù)合膜組成減反射結(jié)構(gòu),可降低ITO用量,從而降低成本。Meyer Burger公司提出HJT 2.0的概念[42],如圖8所示,在ITO上鍍SiNX膜,SiNX和ITO共同作減反射層,ITO起導(dǎo)電作用,電池性能明顯提高,且可降低成本。
4.2 降低接觸電阻
多層TCO薄膜有利于降低TCO和襯底的接觸電阻[43]。漢能公司創(chuàng)造世界紀(jì)錄的效率為25.1%的HJT太陽電池使用了多層ITO薄膜,包含緩沖層、種子層和導(dǎo)電層,其中緩沖層主要用于減少a-Si(n)/TCO的接觸電阻,種子層用于改善TCO的結(jié)晶特性和光電特性,如圖9所示[44]。使用多層TCO使電池效率大幅提高0.51%,這主要?dú)w功于短路電流和填充因子的提高。
4.3 提高電池穩(wěn)定性
氫作為施主雜質(zhì)可提高TCO薄膜(如摻氫的氧化銦,IO:H)載流子濃度,降低電阻率,適量引入氫可鈍化晶界缺陷,提高遷移率,改善薄膜電學(xué)特性[18-20]。但薄膜內(nèi)的氫易脫附,導(dǎo)致薄膜性能降低。因此,在IO∶H薄膜上覆蓋一層ITO可增強(qiáng)薄膜的穩(wěn)定性,雙層膜遷移率的衰減在雙85實(shí)驗(yàn)中遠(yuǎn)小于IO:H單層膜[45]。
5 結(jié) 論
HJT太陽電池中的TCO薄膜起著導(dǎo)電、減反射及阻擋層的作用,其優(yōu)化需要從高遷移率特性入手。選擇合適的金屬元素?fù)诫s劑實(shí)現(xiàn)高導(dǎo)電特性,RPD技術(shù)制備的In2O3∶Ce,H薄膜遷移率高達(dá)160 cm2/(V·s),電阻率小于3×10-4 Ω·cm。TCO薄膜的產(chǎn)業(yè)化制備技術(shù)需要滿足高效率低成本的需求,目前產(chǎn)業(yè)化主要采用MS及RPD技術(shù)。TCO薄膜與摻雜薄膜硅之間的良好歐姆接觸主要通過調(diào)節(jié)TCO的功函數(shù)來實(shí)現(xiàn),與p型和n型非晶硅摻雜層接觸的TCO分別需要有高的功函數(shù)和低的功函數(shù)。對TCO薄膜的最新進(jìn)展及發(fā)展趨勢進(jìn)行討論,多層TCO薄膜是未來提高HJT電池性能及其穩(wěn)定性的趨勢之一。
[參考文獻(xiàn)]
[1]"""" GERRN M A, DUNLOP E D, SIEFER G, et al. Solar cell efficiency"""" tables"""" (Version"""" 61)[J].""" Progress""""" in photovoltaics: research and application, 2023, 31(1): 3-16.
[2]"""" ALI D, BUTT M Z, MUNEER I, et al. Correlation between structural and optoelectronic properties of tin doped indium oxide thin films[J]. Optik, 2017, 128:235-246.
[3]"""" 劉明, 王磊, 于書魁, 等. 高效硅基異質(zhì)結(jié)太陽電池銦回收技術(shù)研究[J]. 太陽能學(xué)報, 2022, 43(4): 137-141.
LIU M, WANG L, YU S K, et al. Study of recovery technology for indium in efficient crystalline silicon heterojunction solar cells[J]. Acta energiae solaris sinica, 2022, 43(4): 137-141.
[4]"""" YU J, BIAN J T, DUAN W Y, et al. Tungsten doped indium oxide film: ready for bifacial copper metallization of"" silicon"" heterojunction"" solar"" cell[J]." Solar"" energy materials and solar cells, 2016, 144: 359-363.
[5]"""" PARTHIBAN S, GOKULAKRISHNAN V, RAMAMURTHI K, et al. High near-infrared transparent molybdenum-doped indium oxide thin films for nanocrystalline silicon solar cell applications[J]. Solar energy materials and solar cells, 2009, 93(1): 92-97.
[6]"""" GONG W B, WANG G H, GONG Y B, et al. Investigation of In2O3∶SnO2 films with different doping ratio and application as transparent conducting electrode in silicon heterojunction solar cell[J]. Solar energy materials and solar cells, 2022, 234: 111404.
[7]"""" KHOKHAR M Q, HUSSAIN S Q, PHAM D P, et al. ITO:Zr bi-layers deposited by reactive O2 and Ar plasma with high work function for silicon heterojunction solar cells[J]. Current applied physics, 2020, 20(8): 994-1000.
[8]"""" SHI J H, MENG F Y, BAO J, et al. Surface scattering effect on the electrical mobility of ultrathin Ce doped In2O3 film prepared at low temperature[J]. Materials letters, 2018, 225: 54-56.
[9]"""" KANAI Y. Electrical properties of In2O3 single crystals doped with metallic donor impurity[J]. Japanese journal of applied physics, 1984, 23(1): 127.
[10]""" JIANG M H, LIU X Y. Structural, electrical and optical properties of Al-Ti codoped ZnO (ZATO) thin films prepared by RF magnetron sputtering[J]. Applied surface science, 2008, 255(5): 3175-3178.
[11]""" LEE W, SHIN S, JUNG D R, et al. Investigation of electronic and optical properties in Al-Ga codoped ZnO thin films[J]. Current applied physics, 2012, 12(3): 628-631.
[12]""" ABDUEV A K, AKHMEDOV A K, ASVAROV A S. The structural and electrical properties of Ga-doped and Ga, B codoped ZnO thin films: the effects of additional boron impurity[J]. Solar energy materials and solar cells, 2007, 91(4): 258-260.
[13]""" EO I S, HWANGBO S, KIM J T, et al. Photoluminescence of chemical solution-derived amorphous ZnO layers prepared by low-temperature process[J]. Current applied physics, 2010, 10(1): 1-4.
[14]""" KHATAMI S, FEKRI AVAL L, BEHZADI POUR G. Investigation of nanostructure and optical properties of flexible AZO thin films at different powers of RF magnetron sputtering[J]. Nano, 2018, 13(6): 1850062(1-9).
[15]""" MENG F Y, SHI J H, LIU Z X, et al. High mobility transparent conductive W-doped In2O3 thin films prepared at low substrate temperature and its application to solar cells[J]. Solar energy materials and solar cells, 2014, 122: 70-74.
[16]""" HUANG M, HAMEIRI Z, VENKATARAJ S, et al. Characterisation and optimisation of indium tin oxide films deposited by pulsed DC magnetron sputtering for heterojunction" silicon" wafer"" solar" cell"" applications[J]. Energy procedia, 2013, 33: 91-98.
[17]""" 何永才, 董剛強(qiáng), 張小燕, 等. 高效硅基異質(zhì)結(jié)太陽電池的ITO薄膜研究[J]. 太陽能學(xué)報, 2020, 41(4): 1-6.
HE Y C, DONG M G, ZHANG X Y, et al. Investigation on high quality ito films used for SHJ solar cell[J]. Acta energiae solaris sinica, 2020, 41(4): 1-6.
[18]""" KOIDA T, FUJIWARA H, KONDO M. High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells[J]. Solar energy materials and solar cells, 2009, 93(6/7): 851-854.
[19]""" BARRAUD L, HOLMAN Z C, BADEL N, et al. Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cells[J]. Solar energy materials and solar cells, 2013, 115: 151-156.
[20]""" NISHIMURA E, OHKAWA H, SONG P, et al. Microstructures of ITO films deposited by DC magnetron sputtering with H2O introduction[J]. Thin solid films, 2003, 445(2): 235-240.
[21]""" 沈磊磊, 孟凡英, 石建華, 等. 高遷移率IWO薄膜特性及其在薄膜硅/晶體硅異質(zhì)結(jié)太陽電池中的應(yīng)用研究[J]. 太陽能學(xué)報,2018, 39(5): 1329-1334.
SHEN L L, MENG F Y, SHI J H, et al. Study of high mobility IWO thin films and its application to SHJ solar cells[J]. Acta energiae solaris sinica, 2018, 39(5): 1329-1334.
[22]""" 周忠信, 陳新亮, 張云龍, 等. RPD技術(shù)生長ICO:H薄膜及其在晶體硅異質(zhì)結(jié)太陽電池中的應(yīng)用[J]. 太陽能學(xué)報, 2021, 42(1): 50-55.
ZHOU Z X, CHEN X L, ZHANG Y L, et al. RPD-grown ICO∶H thin films for crystalline sillicon heterojunction solar cells[J]. Acta energiae solaris sinica, 2021, 42(1): 50-55.
[23]""" KOBAYASHI E, WATABE Y, YAMAMOTO T, et al. Cerium oxide and hydrogen co-doped indium oxide films for high-efficiency silicon heterojunction solar cells[J]. Solar energy materials and solar cells, 2016, 149: 75-80.
[24]""" SHIRAKATA S, SAKEMI T, AWAI K, et al. Electrical and optical properties of large area Ga-doped ZnO thin films prepared by reactive plasma deposition[J]. Superlattices and microstructures, 2006, 39(1/2/3/4): 218-228.
[25]""" HUANG W, SHI J H, LIU Y Y, et al. Effect of crystalline structure on optical and electrical properties of IWOH films fabricated by low-damage reactive plasma deposition at room temperature[J]. Journal of alloys and compounds, 2020, 843: 155151.
[26]""" KOIDA T. Environmental and thermal stability of high-mobility In2O3-based transparent conducting oxide films fabricated at low process temperatures[C]//Research Center for Photovoltaics, AIST, 1st SHJ Workshop. Shanghai, China, 2018.
[27]""" KOIDA T, NOMOTO J. Effective mass of high-mobility In2O3-based transparent conductive oxides fabricated by solid-phase crystallization[J]. Physical review materials, 2022, 6(5): 055401.
[28]""" KOIDA T, KONDO M, TSUTSUMI K, et al. Hydrogen-doped In2O3 transparent conducting oxide films prepared by solid-phase crystallization method[J]. Journal of applied physics, 2010, 107(3): 033514.
[29]""" LACHAUME R, FAVRE W, SCHEIBLIN P, et al. Influence"" of"" a-Si:H/ITO"" interface"" properties"" on performance of heterojunction solar cells[J]. Energy procedia, 2013, 38: 770-776.
[30]""" SCHERG-KURMES H, K?RNER S, RING S, et al. High mobility In2O3:H as contact layer for a-Si:H/c-Si heterojunction and μc-Si:H thin film solar cells[J]. Thin solid films, 2015, 594: 316-322.
[31]""" KIM S, IFTIQUAR S M, LEE D, et al. Improvement in front-contact"" resistance"" and"" interface"" passivation"" of heterojunction amorphous/crystalline silicon solar cell by hydrogen-diluted" stacked" emitter[J]. IEEE" journal" of photovoltaics, 2016, 6(4): 837-845.
[32]""" WU Z P, DUAN W Y, LAMBERTZ A, et al. Low-resistivity" p-type"" a-Si:H/AZO"" hole"" contact"" in"" high-efficiency silicon heterojunction solar cells[J]. Applied surface science, 2021, 542: 148749.
[33]""" HUANG W, SHI J H, LIU Y Y, et al. High-performance Ti and W co-doped indium oxide films for silicon heterojunction solar cells prepared by reactive plasma deposition[J]. Journal of power sources, 2021, 506: 230101.
[34]""" QIU D P, DUAN W Y, LAMBERTZ A, et al. Effect of oxygen and hydrogen flow ratio on indium tin oxide films in rear-junction silicon heterojunction solar cells[J]. Solar energy, 2022, 231: 578-585.
[35]""" RU X N, QU M H, WANG J Q, et al. 25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers[J]. Solar energy materials and solar cells, 2020, 215: 110643.
[36]""" CRUZ A, ERFURT D, WAGNER P, et al. Optoelectrical analysis of TCO+Silicon oxide double layers at the front and rear side of silicon heterojunction solar cells[J]. Solar energy materials and solar cells, 2022, 236: 111493.
[37]""" ZHAO L, ZHOU C L, LI H L, et al. Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation[J]. Solar energy materials and solar cells, 2008, 92(6): 673-681.
[38]""" HUSSAIN S Q, KIM S, AHN S, et al. Influence of high work function ITO:Zr films for the barrier height modification in a-Si:H/c-Si heterojunction solar cells[J]. Solar energy materials and solar cells, 2014, 122: 130-135.
[39]""" ZHAO L, ZHOU C L, LI H L, et al. Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation[J]. Physica status solidi (a), 2008, 205(5): 1215-1221.
[40]""" BIVOUR M, REICHEL C, HERMLE M, et al. Improving the a-Si:H(p) rear emitter contact of n-type silicon solar cells[J]. Solar energy materials and solar cells, 2012, 106: 11-16.
[41]""" STANNOWSKI B, ERFURT D, CRUZ A. TCOs for SHJ solar cells[C]//3rd International Workshop on SHJ Solar cell, Web. Meeting, 2020.
[42]""" B?TZNER D L, PAPET P, LEGRADIC B, et al. Alleviating performance and cost constraints in silicon heterojunction cells with HJT 2.0[C]//2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). Chicago, USA, 2020: 1471-1474.
[43]""" LUDERER C, TUTSCH L, MESSMER C, et al. Influence of TCO and a-Si:H doping on SHJ contact resistivity[J]. IEEE journal of photovoltaics, 2021, 11(2): 329-336.
[44]""" CHRIS X X. Micro-crystalline silicon oxide front contact layer for silicon heterojunction solar cells[C]//2nd International Workshop on SHJ Solar Cells. Chengdu, China, 2019.
[45]""" TOHSOPHON T, DABIRIAN A, DE WOLF, et al. Environmental stability of high-mobility indium-oxide based transparent electrodes[J]. APL materials, 2015, 3(11): 116105.
RESEARCH PROGRESS OF TCO FILMS FOR SILICON
HETEROJUNCTION SOLAR CELLS
Wang Mengxiao1,2,Wang Guanghong1,2,Zhao Lei1,2,Mo Libin1,Diao Hongwei1,Wang Wenjing1,2
(1. Key Laboratory of Solar Thermal Energy and Photovoltaic System of Chinese Academy of Sciences, Institute of Electrical Engineering,
Chinese Academy of Sciences, Beijing 100190, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract:Increasing the current of the silicon heterojunction(HJT) solar cell is expected to further improve its efficiency. Transparent conductive oxide film (TCO) is an important functional layer that affects the current of the HJT solar cell. In this paper, the characteristics of TCO films are firstly introduced, including the effects of doping elements, doping ratios and preparation techniques on the film properties. Moreover, the influence of film properties on the performance of HJT cells is summarised. Finally, the latest progress and development trend of TCO film application are described. Increasing the cap layer or adopting multilayer TCO film structure is expected to improve the characteristics of TCO films and solar cell performance. It is expected to guide the optimization of TCO films characteristics, so as to further improve the efficiency of HJT solar cell and accelerate its industrialization process.
Keywords:silicon heterojunction; solar cells; transparent conductive oxide films; multilayer TCO films; carrier mobility; work function