• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metabolomic and transcriptomic analysis reveals the molecular mechanism by which blue light promotes lutein synthesis in strawberry

    2023-06-07 11:29:44CHENXiaodongCAlWeijianXlAJinYUANHuazhaoWANGQinglianPANGFuhuaZHAOMizhen
    Journal of Integrative Agriculture 2023年6期

    CHEN Xiao-dong,CAl Wei-jian,XlA Jin,YUAN Hua-zhao,WANG Qing-lian,PANG Fu-hua,ZHAO Mizhen

    Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210000, P.R.China

    Abstract Carotenoids are an important component of the human diet,and fruit is a primary source of carotenoids.The synthesis and regulation of carotenoids in fruit are important contributors to the formation of fruit quality.In China,strawberry is one of the main seasonal fruits grown in the winter.Previous studies have shown that light has a significant effect on the metabolism of anthocyanins,sugars,and polyphenols in strawberry.However,the understanding of the role of light in regulating the metabolism of carotenoids in strawberry remains limited.This study investigated the effects of blue,red,yellow-green,and white light on carotenoid metabolism in strawberry.Blue light treatment promoted the synthesis of multiple carotenoids,including lutein,compared with the other three treatment groups.The RNA sequencing data revealed that blue light treatment promoted the expression of lycopene ε-cyclase (LCYE),and the transient overexpression of LCYE in strawberry fruit promoted lutein accumulation in strawberry.Overall,the results suggest that blue light can promote the synthesis of lutein in strawberry by inducing the expression of LCYE.

    Keywords: carotenoid,LED light,strawberry,lutein

    1.lntroduction

    Strawberry is a highly popular fruit among consumers.It is rich in vitamins,ellagic acid,and various micronutrients,making its fruits a nutritious food source for humans.Strawberry has a high production value,with a global industry value of approximately 17 billion USD (Afrinet al.2016;Warneret al.2021;Chonget al.2022).Producing strawberries with higher nutritional value can satisfy the demand for high-quality fruit and enhance the economic benefits of strawberry cultivation.

    Carotenoids,a class of terpenoid pigments with C40 backbones,are beneficial to human health (Renet al.2021).Studies have revealed that the dominant carotenoids in strawberries are lutein and β-carotene (Zhuet al.2015).Lutein,a fat-soluble pigment belonging to the carotenoid family,is an important precursor of vitamin A synthesis and is the main component of human retinal macular pigment (Gazzoloet al.2021;Mitraet al.2021).In higher plants,lutein synthesis mainly occurs in plastids.In plastids,two molecules of geranylgeranyl diphosphate(GGPP) synthesize phytoene under the action of phytoene synthase (PSY) (Nisaret al.2015).Then,lycopene is gradually produced through the catalysis of phytoene desaturase (PDS),ζ-carotene desaturase (ZDS),and carotenoid isomerase (CRTISO) (Sunet al.2018).Lycopene is catalyzed by lycopene ε-cyclase (LCYE)and lycopene β-cyclase (LCYB) to produce α-carotene and β-carotene (Ronenet al.2000;Ohmiyaet al.2019).Carotene is catalyzed by β-hydroxylase (CHYb) and ε-hydroxylase (CHYe) to produce lutein (Tianet al.2003;Ohmiyaet al.2019).

    Light is the most important environmental factor affecting carotenoid synthesis in plants (Sunet al.2018).Many studies have shown that light quality has a great impact on carotenoid metabolism (Stanley and Yuan 2019).Studies on carotenoid metabolism in ‘Jinli’peach have found that blue light treatment promotes the accumulation of lutein,β-cryptoxanthin,lutein,zeaxanthin,and β-carotene during storage (Caoet al.2017).It has also been found that blue light treatment can promote chlorophyll synthesis and induce regreening in the flavedo of citrus and can also promote the synthesis of lutein,β-carotene,and all-trans-violaxanthin(Maet al.2021).In China,strawberry production is primarily carried out in the winter.However,in many areas,the light in winter is insufficient for strawberry growth and development,so supplementation with artificial light is necessary.

    Exogenous light supplementation can increase the yield and promote the synthesis of anthocyanins in strawberry (Zhanget al.2018).In addition,a previous study by this research group has shown that blue light can promote the synthesis of chlorogenic acid in strawberry(Chenet al.2020).However,it is still unknown whether light quality affects carotenoid synthesis in strawberry.In the present study,metabolomics and transcriptomics were used to study the effects of four light qualities on carotenoid metabolism in strawberry.These findings offer a new research avenue for exploring the role of light regulation in lutein synthesis in strawberry and provide technical support for the scientific use of LED lights in strawberry production.

    2.Materials and methods

    2.1.Plant materials

    The material used in this study was the octoploid strawberry ‘Ningyu’,which was planted in 12 cm×15 cm pots supplemented with a mixture of nutrients.The matrix was composed of peat,vermiculite,and perlite (2:1:1).The strawberry seedlings were fertilized twice a month with Yamasaki nutrient solution and watered twice a week.When the plants in the receptacles developed to the big green stage,strawberry seedlings with similar growth states were randomly selected for the light treatment experiment.Strawberries used for instantaneous transformation were cultivated in a greenhouse under natural light conditions.

    2.2.Light treatment

    Light intensity was maintained at 150 μmol m?2s?1,and the light quality treatments included blue (480 nm),red(660 nm),yellow (590 nm)-green (520 nm),and white light(Appendix A).The photoperiod was 10 h of light and 14 h of darkness.Completely red fruits were selected from three biological replicates (10 fruits for each replicate)of each treatment.The strawberry fruits ripened fastest under the white light treatment (about 12 days after the light treatment),and the ripening times under the red light and blue light treatments were similar (about 15 days after the light treatment).The fruit ripening time for the yellow-green light treatment group was about 26 days.The fruit was cut into small pieces,frozen immediately in liquid nitrogen,and stored at ?80°C for carotenoid and transcriptome detection.

    2.3.Carotenoid determination

    The plant materials were homogenized and powdered in a mill.Then,50 mg of dried powder was extracted with a mixed solution of N-hexane:acetone:ethanol (2:1:1)containing 0.01% butylated hydroxytoluene (BHT).The extract was vortexed for 20 min at room temperature(25°C),and the supernatant was collected.The supernatant was evaporated to dryness under a nitrogen gas stream and reconstituted in methyl tert-butyl ether(MTBE).The solution was filtered through a 0.22-μm filter for further spectrometric analysis.

    The sample extracts were analyzed using a liquid chromatography–atmospheric pressure chemical ionization–tandem mass spectrometry (LC-APCI-MS/MS) system.The analytical conditions were as follows:high-performance liquid chromatography (HPLC)column,YMC C30;column temperature,28°C;injection volume,5 μL;mobile phase A,methanol:acetonitrile(3:1;0.01% BHT and 0.1% formic acid);and mobile phase B,methyl tert-butyl ether (add 0.01% BHT).The chromatographic conditions were as follows: flow rate of 300 μL min–1;0 min,100% (A);3 min,100% (A);6 min,58% (A) 42% (B);8 min,20% (A) 80% (B);9 min,5%(A) 95% (B);10 min,100% (A);and 11 min,100% (A).The effluent was alternatively connected to a triple quadrupole-linear ion trap (Q TRAP)-MS API 6500 Q TRAP LC/MS/MS system,equipped with an APCI Turbo Ion-Spray interface,operating in positive ion mode,and controlled using Analyst 1.6.3 Software (AB Sciex).The APCI source operation parameters were as follows:ion source,APCI+;source temperature,350°C;curtain gas (CUR),25.0 psi;and collision gas (CAD),medium.Declustering Potential (DP) and Collision Energy (CE) for individual multiple reaction monitoring (MRM) transitions were performed with further DP and CE optimization.A specific set of MRM transitions was monitored for each period according to the carotenoids eluted within that period.

    A MetWare (http://www.metware.cn/) database was constructed based on authentic carotenoid standards(Olchemim Ltd.,Olomouc,Czech Republic;Sigma,St.Louis,MO,USA) for the qualitative analysis of mass spectrometry (MS) data.According to the retention time and ion pair information of the carotenoids,the mass spectrum peaks of each carotenoid detected in the samples were corrected.Different concentrations of a carotenoid standard solution were prepared to obtain the mass spectrum peak intensity data of the corresponding quantitative signal of each concentration standard.The standard curves of different carotenoids were drawn with the standard concentration as the abscissa and the peak area of the mass spectrum peak as the ordinate.The integral area values of the carotenoids detected in all samples were substituted into the linear equation of the standard curve for calculation,and the carotenoid content was finally obtained from the samples.

    2.4.RNA-sequencing (RNA-seq)

    Total RNA was extracted using a TRIzol reagent kit(Invitrogen,Carlsbad,CA,USA) according to the manufacturer’s protocol.The RNA-seq was performed using the Illumina HiSeq2500 by Gene Denovo Biotechnology Co.,Ltd.(Guangzhou,China).Reads were mapped to the cultivated octoploid strawberry genome (Fragaria×ananassaCamarosa Genome Assembly v1.0.a1) using HISAT2 (Kimet al.2015).The RNA differential expression analysis was performed using DESeq2 Software (Loveet al.2014) between two groups.Genes/transcripts with a false discovery rate (FDR)below 0.05 and absolute fold change ≥2 were considered differentially expressed genes/transcripts.

    2.5.Quantitative reverse-transcription PCR (qRTPCR)

    The qRT-PCR was conducted as previously described(Chenet al.2020).The qRT-PCR results were presented as the relative transcript levels normalized against the geometric mean ofFaACTIN(Liet al.2016) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)(Chenet al.2020).The primers used for qRT-PCR are listed in Appendix B.

    2.6.Bioinformatics analysis of the LCYE protein

    TheArabidopsisLCYE protein sequence (Lameschet al.2011) was used as the query sequence to conduct BLASTP searches against peach (Prunuspersicav.2.1) (Verdeet al.2013),tomato (SolanumlycopersicumiTAG 2.4) (Tomato Genome Consortium 2012),apple (Malusdomesticav1.1)(Daccordet al.2017),and citrus (Citrusclementinav1.0)(Wuet al.2018) databases using Phytozome 13 (Goodsteinet al.2012).In each,the sequence with the highest score and an E-value of 0 was selected (Appendix C).Phylogenetic tree and protein domain analyses were performed as previously described (Chenet al.2020).

    2.7.Gene cloning and Agrobacterium infiltration

    The coding sequence ofFaLCYE(Appendix D)was inserted into the pMON530 vector to construct35Spro:LCYE.The empty vectorpMON530or the35Spro:LCYEwas transformed intoAgrobacteriumstrain GV3101.Single colonies were selected and cultured in 5 mL Luria-Bertani (LB) liquid medium (50 μg mL–1spectinomycin,20 μg mL–1gentamicin,and 20 μg mL–1rifampicin) at 28°C (200 r min–1) overnight.Bacterial solution (100 μL) was added to 100 mL LB liquid medium and cultured at 28°C (200 r min–1) for 14–16 h.The cells were collectedviacentrifugation and resuspended in infiltration buffer (10 mmol L?1MgCl2,10 mmol L?1MES,and 20 μmol L?1acetosyringone),adjusted to an optical density (OD600) of 0.8–1.0 and left to stand at room temperature for 3 h.Strawberries in the big green fruit stage were injected with 1 mL ofAgrobacteriumper fruit.After 14 days of transformation,the strawberry fruits were collected for subsequent analysis.

    3.Results

    3.1.Analysis of the carotenoid content in strawberry fruit under different light-quality treatments

    To study the effects of different wavelengths of light on carotenoid metabolism in strawberry fruit,we evaluated the metabolomic changes in carotenoid contents under blue,red,yellow-green,and white light treatments.The ripening times of the strawberry fruits differed under different light treatments.Strawberry fruits that had turned completely red were collected for the metabolomic and transcriptomic detection of carotenoids.As shown in Table 1,16 carotenes were detected in the strawberry fruit,including β-carotene,lutein,and neoxanthin.The content of lutein was the highest,especially under the blue light treatment.The content of lutein in the strawberry fruit reached 10.627 μg g–1fresh weight (FW),which was 7.9 times that of the β-carotene content.

    Table 1 Carotenoid content in strawberry under different light treatments (μg g–1 fresh weight)1)

    Compared with the blue light treatment,the content of 11 carotenes in the red light treatment decreased significantly.In the yellow-green light treatment,the content of four carotenes decreased significantly,and the content of 13 carotenes decreased significantly in the white light treatment.Among them,the contents of four carotenes,namely lutein,lutein myristate,neoxanthin,and violaxanthin dibutyrate,were significantly higher under blue light treatment than under other treatments(Table 1).These results suggest that blue light treatment can promote the synthesis of various carotenoids in strawberry fruit.

    3.2.Analysis of gene expression in strawberry fruit under different light-quality treatments

    To further evaluate the mechanism by which light quality influences carotenoids in strawberry fruit,the gene expression in strawberry fruits under different light-quality treatments was investigated using RNA-seq.Blue light treatment resulted in the upregulation of 81 genes and the downregulation of 100 genes compared to the red light treatment (Fig.1-A;Appendix E).Compared to the yellow-green light treatment,the blue light treatment increased the expression of 223 genes and decreased the expression of 318 genes (Fig.1-B;Appendix E).Compared to the white light treatment,the blue light treatment resulted in the upregulation of 996 genes and the downregulation of 626 genes (Fig.1-C;Appendix E).To study the mechanism by which blue light promotes the synthesis of various carotenoids,the upregulated and downregulated genes in the three groups were analyzed using a Venn diagram (Hulsenet al.2008).The results showed that there were 25 upregulated and 15 downregulated genes across three groups,respectively(Fig.1-D and E;Appendix F).We further conducted KEGG enrichment analysis on these co-upregulated and downregulated genes.In KEGG map00906(CAROTENOID BIOSYNTHESIS),LCYE(maker-Fvb1-4-augustus-gene-34.46-mRNA-1) encoding lycopene cyclase was specifically overexpressed in the blue light treatment group (Fig.1-F).Studies have shown that LCYE catalyzes the transformation of lycopene to lutein in the carotenoid metabolic pathway (Hermannset al.2020).

    Fig.1 Summary of the RNA-seq data and FaLCYE identification.A–C,volcano plot of differentially expressed genes (DEGs) in a comparison between R-vs.-B (A),YG-vs.-B (B) and W-vs.-B (C).B,R,YG,and W represent blue,red,yellow-green,and white light,respectively.FC,fold change;FDR,false discovery rate.The upregulated,downregulated,and unchanged unigenes are dotted in red,blue,and grey,respectively.D and E,Venn diagram analysis of upregulated (D) and downregulated (E) genes among the three different groups.F,detailed diagram of carotenoid biosynthesis.Enzymes with enhanced expression during the blue light treatment are shown in red.G,genetic evolution analysis of six LCYE proteins retrieved from Arabidopsis thaliana (At),Prunus persica (Pp),Solanum lycopersicum (Sl),Malus domestica (Md),Citrus clementina (Cit) and Fragaria ananassa (Fa).The protein motifs of LCYE are shown below the graph and are denoted by rectangles of different colors.The sequences of these motifs are shown in Appendix G.

    This work further analyzed the conserved domain and genetic evolution of the LCYE protein in seven different species.The LCYE proteins in strawberry,apple,and peach,all of which belong to the Rosaceae family,were closely related (Fig.1-G).MEME (Baileyet al.2015)was used to analyze the domains of the LCYE proteins in different species.Seven protein domains were identified in the LCYE proteins of these different species,indicating that the LCYE protein is highly conserved in different species (Fig.1-G).

    3.3.FaLCYE expression was induced by blue light

    The transcriptome results showed that the expression ofFaLCYEin strawberry fruit under blue light treatment was significantly higher than that under the red,yellow-green,and white light treatments (Fig.2-A).To further validate the transcriptome analysis results,qRT-PCR was used to verify the expression ofFaLCYEin strawberry.The results were highly consistent with the transcriptome data.FaLCYEexpression under the blue light treatment was 1.9,1.7,and 1.7 times higher than that in the red,yellowgreen,and white light treatments,respectively (Fig.2-B).

    Fig.2 Effects of blue,red,yellow-green,and white light on FaLCYE expression in strawberry.A,schematic diagram of carotenoid metabolism and FaLCYE expression based on RNA-seq data represented by a heat map.B,the quantitative reverse transcription PCR (qRT-PCR) analysis of FaLCYE expression under different light-quality treatments.B,R,YG,and W represent blue,red,yellow-green,and white light,respectively.Data represent the mean±standard error (n=3).**,P<0.01 in a two-sided Student’s t-test with the control.

    3.4.FaLCYE overexpression promoted lutein synthesis in strawberry

    To study the biological function ofFaLCYEin strawberry,FaLCYEwas transiently overexpressed in the strawberry fruit.The qRT-PCR results showed that the expression ofFaLCYEin the transiently transformed strawberry fruit35Spro:LCYE-OE#1and35Spro:LCYE-OE#2was 219 and 184 times higher,respectively,than that of the control(Fig.3-A).Furthermore,the lutein content in these transiently transformed strawberry fruits increased by 3.9 and 2.4 times for35Spro:LCYE-OE#1and35Spro:LCYEOE#2,respectively (Fig.3-B).These results indicate thatFaLCYEcan promote lutein synthesis in strawberry fruit.

    Fig.3 Effects of FaLCYE overexpression on lutein metabolism.A,expression level of FaLCYE in transiently transformed fruit.B,analysis of the lutein content in transiently transformed fruit.Data represent the mean±standard error (n=3).The individual values are indicated by black squares.**,P<0.01 in a two-sided Student’s t-test with the control.

    4.Discussion

    The light quality,light intensity,and photoperiod have important effects on plant growth and secondary metabolism (Alrifaiet al.2019;Warneret al.2021).To reveal the effects of different LED lights on the growth and development of strawberry,we conducted a series of experiments to examine the effects of light quality on the metabolism of strawberry.Previous studies have found that blue light treatment promoted chlorogenic acid synthesis in strawberry (Chenet al.2020).The present study compared the differential metabolites and transcripts in the blue light treatment with the other three treatment groups (red light,yellow-green light,and white light),which found that blue light treatment induced lutein synthesis in strawberry.

    Lutein has antioxidant effects,can reduce the occurrence of skin wrinkles or pigmentation,and can prevent age-related macular degeneration and Alzheimer’s disease (Bhat and Mamatha 2021).Lutein can accumulate in the human retina,filter blue light,and protect vision (Renet al.2021).Lutein metabolism in plants is regulated by a variety of environmental factors(Renet al.2021).Blue light treatment can promote lutein synthesis in peach and microgreens (Caoet al.2017;Samuolien?et al.2017),which is consistent with our findings in strawberry.These studies suggest that the promotional effect of blue light on lutein synthesis is present in a variety of plant species.

    The expression of many genes involved in the carotenoid metabolic pathway is regulated by light(Hermannset al.2020).In this study,the expression ofFaLCYEwas induced by blue light.Studies on peach and citrus have also revealed that blue light treatment can induceLCYEexpression (Caoet al.2017;Maet al.2021).These studies suggest that the promotion ofLCYEexpression by blue light may be a conserved mechanism.

    Previous studies have shown that multiple members of the light-signaling pathway can regulate carotenoid metabolism (Hermannset al.2020).Phytochrome interacting factors (PIFs) are basic helix-loop-helix (bHLH)family transcription factors that interact with photoreceptor phytochrome proteins (Paiket al.2017).Studies inArabidopsisand tomato have shown that PIF proteins bind to the G-box element of thePSYpromoter of the carotenoid metabolic pathway and inhibitPSYexpression (Toledo-Ortizet al.2014;Llorenteet al.2016;Bianchettiet al.2018).In addition to the PIF protein,ELONGATED HYPOCOTYL 5(HY5),a positive regulator of the light-signaling pathway,can bind to the G-box element of thePSYgene promoter and promote the expression of thePSYgene (Toledo-Ortizet al.2014;Stanley and Yuan 2019).HY5 and PIFs are key factors of the light signal transduction pathway,among which HY5 is a positive regulator and PIFs act as negative regulators (Paiket al.2017;Balcerowicz 2020).Studies have shown that blue light treatment can promote the expression ofHY5and inhibit the protein accumulation of PIFs (Paiket al.2017;Xiaoet al.2022).These studies indicate that different light qualities can regulate carotenoid synthesis by regulating its downstream signal pathway members.However,research on the regulation of lycopene cyclase (LCYE and LCYB) coding genes by members of the light signaling pathway is limited.

    LCYE is the key enzyme of lutein metabolism and mediates the cyclization of lycopene to produce α-carotene,which is subsequently converted into lutein(Ohmiyaet al.2019;Hermannset al.2020).In tomato andChlamydomonasreinhardtii,LCYEoverexpression promotes lutein synthesis (Tokunagaet al.2021;Yuanet al.2022).The downregulation ofLCYEin apples dramatically decreases the lutein content (Ampomah-Dwamenaet al.2012).In strawberry,lutein accumulation has been associated with a high transcriptional level ofLCYE(Zhuet al.2015).Transiently overexpressingLCYEin strawberry fruit promoted lutein synthesis,suggesting that lutein metabolism can be regulated byLCYEexpression.This provides a theoretical basis for cultivating lutein-rich strawberry varieties in the future.

    5.Conclusion

    This study found that blue light promoted lutein synthesis andFaLCYEexpression,compared with red,yellowgreen,and white light.The transient overexpression ofFaLCYEin strawberry fruit promoted lutein synthesis.These results suggest that blue light can promote lutein synthesis by inducingFaLCYEexpression.This research revealed the mechanism of blue light regulation of lutein synthesis and provided a theoretical basis for the design of efficient LED lighting for use in strawberry production.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (31901996),the Natural Science Foundation of Jiangsu Province,China (BK20190264),and the Major Agricultural New Varieties Creation Project of Jiangsu Province,China (PZCZ201721).

    Declaration of competing interest

    The authors declare that they have no conflict of interest.

    Appendicesassociated with this paper are available on https://doi.org/10.1016/j.jia.2023.04.002

    国产aⅴ精品一区二区三区波| 女警被强在线播放| 老司机深夜福利视频在线观看| 中文在线观看免费www的网站| 国产一区二区在线av高清观看| 久久精品亚洲精品国产色婷小说| 久久久久性生活片| 熟女电影av网| 天堂网av新在线| 一本综合久久免费| 757午夜福利合集在线观看| 国产精品 欧美亚洲| 99久久国产精品久久久| 好男人在线观看高清免费视频| 亚洲精品久久国产高清桃花| 亚洲美女视频黄频| 午夜福利欧美成人| 夜夜看夜夜爽夜夜摸| 久久国产精品影院| 亚洲最大成人中文| 亚洲无线观看免费| 国产亚洲精品一区二区www| 国产激情偷乱视频一区二区| svipshipincom国产片| 校园春色视频在线观看| 两人在一起打扑克的视频| 性欧美人与动物交配| 国产激情久久老熟女| 精品日产1卡2卡| av在线天堂中文字幕| 99久久精品热视频| 偷拍熟女少妇极品色| 一个人观看的视频www高清免费观看 | 黑人操中国人逼视频| 欧美激情久久久久久爽电影| 国产精品亚洲美女久久久| 在线观看美女被高潮喷水网站 | 久久久久性生活片| www国产在线视频色| 成年女人毛片免费观看观看9| 女警被强在线播放| 久久久久国产一级毛片高清牌| 成人三级做爰电影| 成年免费大片在线观看| 黄色片一级片一级黄色片| av女优亚洲男人天堂 | 国产精品国产高清国产av| 国产午夜精品论理片| 99热这里只有是精品50| 伦理电影免费视频| 亚洲第一欧美日韩一区二区三区| 女警被强在线播放| 在线观看日韩欧美| 国产亚洲av嫩草精品影院| 岛国在线免费视频观看| 日韩欧美免费精品| 露出奶头的视频| www.999成人在线观看| 他把我摸到了高潮在线观看| 免费看a级黄色片| 精品国产亚洲在线| 在线观看免费视频日本深夜| 国产亚洲av高清不卡| 国产精品1区2区在线观看.| 国产精品国产高清国产av| 亚洲成人久久性| 99re在线观看精品视频| 琪琪午夜伦伦电影理论片6080| 日日干狠狠操夜夜爽| 国产精品 国内视频| 1024手机看黄色片| 国产v大片淫在线免费观看| 可以在线观看毛片的网站| 一级黄色大片毛片| 亚洲av成人不卡在线观看播放网| 精华霜和精华液先用哪个| 国产精品,欧美在线| 99热只有精品国产| 久久久久久久久久黄片| 国产私拍福利视频在线观看| 国产精品1区2区在线观看.| 亚洲色图 男人天堂 中文字幕| 午夜两性在线视频| 亚洲在线观看片| 日本在线视频免费播放| 欧美色欧美亚洲另类二区| xxxwww97欧美| 亚洲一区高清亚洲精品| 亚洲一区高清亚洲精品| 成人亚洲精品av一区二区| 国产成人欧美在线观看| 亚洲欧美激情综合另类| 三级毛片av免费| 女人被狂操c到高潮| 亚洲成a人片在线一区二区| 午夜激情欧美在线| 欧美日韩一级在线毛片| 99在线视频只有这里精品首页| 久99久视频精品免费| 很黄的视频免费| 变态另类成人亚洲欧美熟女| 又黄又爽又免费观看的视频| 亚洲专区字幕在线| 好看av亚洲va欧美ⅴa在| 成人高潮视频无遮挡免费网站| 老司机深夜福利视频在线观看| 香蕉久久夜色| 免费无遮挡裸体视频| 国产乱人伦免费视频| 老熟妇乱子伦视频在线观看| 婷婷亚洲欧美| 亚洲成人免费电影在线观看| 大型黄色视频在线免费观看| 男人舔奶头视频| 欧美+亚洲+日韩+国产| 午夜福利18| 国产三级在线视频| av欧美777| 久久99热这里只有精品18| 久久久久久久久久黄片| 成年女人永久免费观看视频| 欧美一区二区国产精品久久精品| 久久久国产精品麻豆| 一个人免费在线观看电影 | 久久国产精品人妻蜜桃| 欧美一级a爱片免费观看看| 欧美最黄视频在线播放免费| 国产伦精品一区二区三区四那| 看黄色毛片网站| 日韩精品中文字幕看吧| 精品福利观看| 国产精品1区2区在线观看.| 国产乱人伦免费视频| 黑人巨大精品欧美一区二区mp4| 小说图片视频综合网站| 精品不卡国产一区二区三区| 国语自产精品视频在线第100页| 国产乱人伦免费视频| 女同久久另类99精品国产91| 99国产精品一区二区三区| 亚洲午夜理论影院| 久久香蕉精品热| 久久精品人妻少妇| 国产高清视频在线播放一区| 老汉色∧v一级毛片| 97碰自拍视频| 午夜福利18| 国产真人三级小视频在线观看| 美女免费视频网站| 最新中文字幕久久久久 | a级毛片a级免费在线| 少妇裸体淫交视频免费看高清| 午夜亚洲福利在线播放| 色综合站精品国产| 成在线人永久免费视频| 国产亚洲欧美在线一区二区| 亚洲无线在线观看| 欧美zozozo另类| 嫁个100分男人电影在线观看| 精品久久久久久久末码| 成人无遮挡网站| 久久九九热精品免费| 在线观看免费午夜福利视频| 在线看三级毛片| 一卡2卡三卡四卡精品乱码亚洲| 蜜桃久久精品国产亚洲av| 国产精品久久电影中文字幕| 人妻久久中文字幕网| 一级毛片女人18水好多| 国产伦在线观看视频一区| 99视频精品全部免费 在线 | 久久久成人免费电影| 三级国产精品欧美在线观看 | 亚洲精品粉嫩美女一区| 午夜亚洲福利在线播放| 中国美女看黄片| 国产成人av教育| 亚洲第一欧美日韩一区二区三区| 伦理电影免费视频| 亚洲精品乱码久久久v下载方式 | 成人鲁丝片一二三区免费| 久久草成人影院| 亚洲国产中文字幕在线视频| 亚洲在线观看片| 亚洲国产欧美网| 国产伦在线观看视频一区| 夜夜看夜夜爽夜夜摸| 免费看a级黄色片| 久久欧美精品欧美久久欧美| 国内少妇人妻偷人精品xxx网站 | 午夜精品在线福利| 真人一进一出gif抽搐免费| 成年女人毛片免费观看观看9| 国产高清videossex| 99精品在免费线老司机午夜| 真人做人爱边吃奶动态| 亚洲专区字幕在线| 国产一级毛片七仙女欲春2| 午夜免费成人在线视频| 桃红色精品国产亚洲av| 午夜精品在线福利| 美女高潮的动态| 国产av麻豆久久久久久久| 久久国产精品影院| 日韩欧美国产一区二区入口| 亚洲精品一区av在线观看| 久久精品国产清高在天天线| 嫩草影院精品99| 亚洲黑人精品在线| 女警被强在线播放| 伦理电影免费视频| 国产精品99久久久久久久久| ponron亚洲| 草草在线视频免费看| 综合色av麻豆| 性色avwww在线观看| 99久久精品国产亚洲精品| 99热这里只有精品一区 | 婷婷亚洲欧美| 国产乱人视频| 色吧在线观看| 综合色av麻豆| 国产成人精品无人区| 十八禁人妻一区二区| 狂野欧美白嫩少妇大欣赏| 亚洲第一电影网av| 亚洲国产欧美网| 日韩中文字幕欧美一区二区| 97碰自拍视频| 亚洲乱码一区二区免费版| 国产精品av视频在线免费观看| 国产精品九九99| 俺也久久电影网| 成人鲁丝片一二三区免费| 亚洲在线观看片| 亚洲色图av天堂| 成人特级黄色片久久久久久久| 成人特级黄色片久久久久久久| 亚洲真实伦在线观看| 国产高清视频在线观看网站| 亚洲五月婷婷丁香| 美女扒开内裤让男人捅视频| 一区二区三区国产精品乱码| 手机成人av网站| 日韩精品青青久久久久久| 97超视频在线观看视频| 日本a在线网址| 男人的好看免费观看在线视频| 97超级碰碰碰精品色视频在线观看| 成人三级做爰电影| 小蜜桃在线观看免费完整版高清| 日本成人三级电影网站| 亚洲乱码一区二区免费版| 色综合站精品国产| 观看美女的网站| 午夜福利在线观看吧| 精品无人区乱码1区二区| 又爽又黄无遮挡网站| 国产综合懂色| 亚洲av中文字字幕乱码综合| 熟妇人妻久久中文字幕3abv| 老汉色∧v一级毛片| 中文字幕人成人乱码亚洲影| 亚洲熟妇熟女久久| 母亲3免费完整高清在线观看| 最新在线观看一区二区三区| 99国产精品99久久久久| 国产精品久久久久久久电影 | 成人高潮视频无遮挡免费网站| 国产精品综合久久久久久久免费| 久久婷婷人人爽人人干人人爱| 亚洲av电影在线进入| 精品欧美国产一区二区三| svipshipincom国产片| 成人国产综合亚洲| 国产三级在线视频| 美女高潮喷水抽搐中文字幕| 精品久久久久久久末码| 又爽又黄无遮挡网站| 亚洲 欧美一区二区三区| 在线观看免费视频日本深夜| 美女午夜性视频免费| 18禁美女被吸乳视频| 99热6这里只有精品| 一级毛片女人18水好多| 一级黄色大片毛片| 国产又色又爽无遮挡免费看| 亚洲国产欧美人成| 国产亚洲av嫩草精品影院| 制服人妻中文乱码| 亚洲av五月六月丁香网| 男女午夜视频在线观看| 天堂动漫精品| 午夜福利视频1000在线观看| 级片在线观看| 日韩中文字幕欧美一区二区| 精品国产美女av久久久久小说| 日韩av在线大香蕉| 18禁黄网站禁片午夜丰满| 日日夜夜操网爽| 悠悠久久av| 99精品欧美一区二区三区四区| 丝袜人妻中文字幕| 欧美日韩亚洲国产一区二区在线观看| 又黄又粗又硬又大视频| av欧美777| 日本a在线网址| 国产精品亚洲av一区麻豆| 亚洲国产日韩欧美精品在线观看 | 国产精品国产高清国产av| 国产不卡一卡二| 狠狠狠狠99中文字幕| 99久久综合精品五月天人人| 国产成+人综合+亚洲专区| 脱女人内裤的视频| 国产乱人伦免费视频| 丁香欧美五月| 欧美日韩乱码在线| 最新在线观看一区二区三区| 看片在线看免费视频| 黄色 视频免费看| 中文字幕人妻丝袜一区二区| 亚洲五月婷婷丁香| 日韩欧美国产在线观看| 一二三四在线观看免费中文在| 国产真人三级小视频在线观看| 久久中文字幕一级| 性欧美人与动物交配| 免费av不卡在线播放| 露出奶头的视频| www.精华液| www.自偷自拍.com| 久久久久久久精品吃奶| 国产精品电影一区二区三区| 巨乳人妻的诱惑在线观看| 午夜精品久久久久久毛片777| 又黄又粗又硬又大视频| 亚洲精品色激情综合| 女警被强在线播放| 国产精品亚洲美女久久久| 亚洲片人在线观看| 亚洲精品久久国产高清桃花| 国产亚洲精品综合一区在线观看| 在线永久观看黄色视频| 午夜福利视频1000在线观看| 亚洲成av人片在线播放无| 中文字幕人成人乱码亚洲影| 欧美成狂野欧美在线观看| 久久久久久久久中文| 亚洲精品一区av在线观看| 午夜福利免费观看在线| 在线观看免费午夜福利视频| 国产精品99久久久久久久久| 国产精品香港三级国产av潘金莲| 母亲3免费完整高清在线观看| 亚洲第一欧美日韩一区二区三区| 成人永久免费在线观看视频| 国内精品美女久久久久久| 最好的美女福利视频网| 天天添夜夜摸| 国产日本99.免费观看| xxx96com| 人人妻人人看人人澡| 女同久久另类99精品国产91| 欧美一区二区精品小视频在线| 中文字幕人妻丝袜一区二区| 精品一区二区三区视频在线 | 国产淫片久久久久久久久 | 成人国产综合亚洲| 中文字幕人成人乱码亚洲影| 搡老妇女老女人老熟妇| 国产69精品久久久久777片 | 亚洲熟妇熟女久久| 真人一进一出gif抽搐免费| 久久国产精品人妻蜜桃| 久久香蕉精品热| 免费av毛片视频| 亚洲精华国产精华精| 欧洲精品卡2卡3卡4卡5卡区| 国产精品国产高清国产av| 搡老岳熟女国产| 91在线精品国自产拍蜜月 | 国产淫片久久久久久久久 | 国产精品亚洲一级av第二区| 国产伦精品一区二区三区视频9 | 伊人久久大香线蕉亚洲五| 久久久国产精品麻豆| 精品无人区乱码1区二区| 99久久99久久久精品蜜桃| 婷婷精品国产亚洲av在线| а√天堂www在线а√下载| 99热这里只有是精品50| 国产一区二区三区视频了| 国产91精品成人一区二区三区| 18美女黄网站色大片免费观看| 国产人伦9x9x在线观看| 免费av不卡在线播放| 国产免费av片在线观看野外av| 国产精品久久视频播放| 亚洲第一电影网av| 日韩中文字幕欧美一区二区| 波多野结衣高清作品| 最近在线观看免费完整版| 日日夜夜操网爽| 好男人电影高清在线观看| 亚洲狠狠婷婷综合久久图片| 美女高潮的动态| 欧美精品啪啪一区二区三区| 一区福利在线观看| 日本 欧美在线| 日本一本二区三区精品| 老汉色∧v一级毛片| 色综合站精品国产| 日本黄色片子视频| 欧美日韩瑟瑟在线播放| 久久这里只有精品中国| 高清毛片免费观看视频网站| 天堂网av新在线| 亚洲专区中文字幕在线| 噜噜噜噜噜久久久久久91| 亚洲精品456在线播放app | 国产一区二区三区在线臀色熟女| 听说在线观看完整版免费高清| 日本黄大片高清| 国产精品一及| 欧美zozozo另类| 老司机午夜福利在线观看视频| 成人欧美大片| 亚洲成人免费电影在线观看| 午夜免费观看网址| 久久久久久久精品吃奶| 国产69精品久久久久777片 | aaaaa片日本免费| 亚洲第一电影网av| 国产熟女xx| 九九久久精品国产亚洲av麻豆 | 一夜夜www| 国产视频内射| 欧美日韩瑟瑟在线播放| 男女做爰动态图高潮gif福利片| 男插女下体视频免费在线播放| 天堂网av新在线| 欧美一区二区精品小视频在线| 国产精品av久久久久免费| 欧美国产日韩亚洲一区| 麻豆久久精品国产亚洲av| 黄色视频,在线免费观看| 人妻久久中文字幕网| 亚洲一区二区三区色噜噜| 免费观看人在逋| 日日夜夜操网爽| 国产精品一及| 法律面前人人平等表现在哪些方面| 嫩草影视91久久| 偷拍熟女少妇极品色| 99久久国产精品久久久| 国产综合懂色| 久久精品夜夜夜夜夜久久蜜豆| 少妇熟女aⅴ在线视频| 亚洲,欧美精品.| 日韩欧美免费精品| 亚洲精品乱码久久久v下载方式 | 久久精品夜夜夜夜夜久久蜜豆| 亚洲七黄色美女视频| 欧美一级a爱片免费观看看| 男人舔奶头视频| 日韩av在线大香蕉| 国产精品电影一区二区三区| 搡老岳熟女国产| 亚洲五月婷婷丁香| 婷婷亚洲欧美| 老汉色av国产亚洲站长工具| 色综合欧美亚洲国产小说| 免费看a级黄色片| 久99久视频精品免费| 国产精品亚洲一级av第二区| 亚洲av熟女| 欧美乱色亚洲激情| 亚洲熟妇熟女久久| 美女扒开内裤让男人捅视频| www.自偷自拍.com| 俺也久久电影网| 少妇熟女aⅴ在线视频| 久久99热这里只有精品18| 精品无人区乱码1区二区| 无限看片的www在线观看| 国产精品九九99| 久久精品国产99精品国产亚洲性色| 岛国在线观看网站| 久久久精品欧美日韩精品| 制服人妻中文乱码| 国产伦精品一区二区三区视频9 | 九九热线精品视视频播放| 精品久久久久久久久久免费视频| 国产私拍福利视频在线观看| 国产高清videossex| 国产精品久久久久久精品电影| 欧美日韩亚洲国产一区二区在线观看| 国产一级毛片七仙女欲春2| 色精品久久人妻99蜜桃| 白带黄色成豆腐渣| 一个人免费在线观看的高清视频| 看片在线看免费视频| 国产亚洲欧美在线一区二区| 成人精品一区二区免费| 亚洲精品国产精品久久久不卡| 一级毛片女人18水好多| 一二三四社区在线视频社区8| 国产精品一区二区免费欧美| 黄色女人牲交| 成人鲁丝片一二三区免费| 男人舔奶头视频| 热99re8久久精品国产| 精品电影一区二区在线| 美女cb高潮喷水在线观看 | 亚洲欧美一区二区三区黑人| 欧美日本视频| 听说在线观看完整版免费高清| 成人欧美大片| 欧美性猛交黑人性爽| 欧美另类亚洲清纯唯美| 村上凉子中文字幕在线| 中文字幕精品亚洲无线码一区| 中文亚洲av片在线观看爽| 亚洲精品久久国产高清桃花| 曰老女人黄片| 一夜夜www| 欧美乱色亚洲激情| 天天添夜夜摸| 少妇的逼水好多| 美女高潮喷水抽搐中文字幕| 国产精品 欧美亚洲| 午夜a级毛片| 成人鲁丝片一二三区免费| 神马国产精品三级电影在线观看| 亚洲国产色片| 国产爱豆传媒在线观看| 亚洲欧美日韩高清专用| 亚洲熟女毛片儿| 啪啪无遮挡十八禁网站| 国内精品一区二区在线观看| 观看美女的网站| 韩国av一区二区三区四区| 亚洲熟妇熟女久久| 美女被艹到高潮喷水动态| 欧美黑人欧美精品刺激| 国产高清videossex| 免费av毛片视频| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久,| 欧美色欧美亚洲另类二区| 欧美又色又爽又黄视频| 亚洲成人久久爱视频| 亚洲色图av天堂| 一个人观看的视频www高清免费观看 | 亚洲七黄色美女视频| 国产精品一区二区三区四区免费观看 | 丰满人妻熟妇乱又伦精品不卡| 国产真人三级小视频在线观看| 欧美3d第一页| 午夜影院日韩av| 三级毛片av免费| 成人国产一区最新在线观看| 青草久久国产| 国产午夜福利久久久久久| 免费观看的影片在线观看| 亚洲国产高清在线一区二区三| 一边摸一边抽搐一进一小说| 亚洲欧美精品综合一区二区三区| 免费看美女性在线毛片视频| 国产午夜精品论理片| 国产精品精品国产色婷婷| 色综合婷婷激情| 噜噜噜噜噜久久久久久91| netflix在线观看网站| 视频区欧美日本亚洲| netflix在线观看网站| 欧美性猛交╳xxx乱大交人| 中文资源天堂在线| 久久香蕉国产精品| 久久久久久久久免费视频了| 波多野结衣高清作品| 国产激情欧美一区二区| 露出奶头的视频| 亚洲一区二区三区不卡视频| 欧美激情在线99| 在线观看66精品国产| 午夜精品在线福利| 日韩欧美 国产精品| 国产日本99.免费观看| 一级a爱片免费观看的视频| 蜜桃久久精品国产亚洲av| 国产蜜桃级精品一区二区三区| 中文字幕久久专区| 90打野战视频偷拍视频| 亚洲最大成人中文| 亚洲黑人精品在线| 亚洲欧美精品综合一区二区三区| 午夜福利在线观看吧| 国产精品1区2区在线观看.| 国产成人影院久久av| 日韩欧美 国产精品| 99久久国产精品久久久| 欧美日本亚洲视频在线播放| 国产日本99.免费观看| 在线视频色国产色| 欧美中文综合在线视频| 婷婷六月久久综合丁香| 法律面前人人平等表现在哪些方面| 在线免费观看的www视频| xxx96com| 麻豆国产97在线/欧美| 午夜日韩欧美国产| 51午夜福利影视在线观看| 色老头精品视频在线观看|