• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of high-molecular-weight glutenin subunit Dy10 on wheat dough properties and end-use quality

    2023-06-07 11:29:32WANGYanGUOZhenruCHENQingLlYangZHAOKanWANYongfangMalcolmHAWKESFORDJlANGYunfengKONGLiPUZhienDENGMeiJlANGQiantaoLANXiujinWANGJiruiCHENGuoyueMAJianZHENGYouliangWElYumingQlPengfei
    Journal of Integrative Agriculture 2023年6期

    WANG Yan ,GUO Zhen-ru ,CHEN Qing ,Ll Yang ,ZHAO Kan ,WAN Yong-fang ,Malcolm J.HAWKESFORD,JlANG Yun-feng,KONG Li,PU Zhi-en,DENG Mei,JlANG Qian-tao,LAN Xiu-jin,WANG Ji-rui,CHEN Guo-yue,MA Jian,ZHENG You-liang#,WEl Yu-ming,Ql Peng-fei#

    1 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, P.R.China

    2 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R.China

    3 Rothamsted Research, Harpenden AL5 2JQ, UK

    Abstract High-molecular-weight glutenin subunits (HMW-GSs) are the most critical grain storage proteins that determine the unique processing qualities of wheat.Although it is a part of the superior HMW-GS pair (Dx5+Dy10),the contribution of the Dy10 subunit to wheat processing quality remains unclear.In this study,we elucidated the effect of Dy10 on wheat processing quality by generating and analyzing a deletion mutant (with the Dy10-null allele),and by elucidating the changes to wheat flour following the incorporation of purified Dy10.The Dy10-null allele was transcribed normally,but the Dy10 subunit was lacking.These findings implied that the Dy10-null allele reduced the glutenin:gliadin ratio and negatively affected dough strength (i.e.,Zeleny sedimentation value,gluten index,and dough development and stability times) and the bread-making quality;however,it positively affected the biscuit-making quality.The incorporation of various amounts of purified Dy10 into wheat flour had a detrimental effect on biscuit-making quality.The results of this study demonstrate that the Dy10 subunit is essential for maintaining wheat dough strength.Furthermore,the Dy10-null allele may be exploited by soft wheat breeding programs.

    Keywords: HMW-GS,nonsense mutation,Dy10-null allele,end-use quality

    1.lntroduction

    Among cereal crops,wheat is unique because the biomechanical properties of the gluten proteins when hydrated enable its flour to be used to make various food products,including bread,noodles,and biscuits.Gluten proteins are classically divided into gliadins and glutenins.Gliadins are usually monomeric and mainly influence the extensibility of wheat dough (Qiet al.2011;Baraket al.2015).Glutenins consist of high-molecular-weight glutenin subunits (HMW-GSs) and low-molecular-weight glutenin subunits (LMW-GSs),which can form glutenin macropolymers (GMPs) through intermolecular disulfide bonds,thereby enhancing dough strength and elasticity(Shewryet al.2003).

    The HMW-GSs account for only 7–15% of the glutenins in common wheat (Triticumaestivum),but their composition and concentration have critical effects on gluten structure and determine the viscoelastic properties of dough (Shewryet al.2003;Rustgiet al.2019).Additionally,the HMW-GS genes are included in theGlu-A1,Glu-B1,andGlu-D1loci on the long arms of chromosomes 1A,1B,and 1D,respectively (Payneet al.1982).Each locus contains two closely linked genes that encode a small y-type subunit and a large x-type subunit.However,because of allelic variation and gene silencing,only 3–5 HMW-GS genes are typically expressed in common wheat cultivars (Payneet al.1982).Moreover,HMW-GSs possess a long central repetitive domain consisting of repeating units surrounded by highly conserved non-repetitive N-and C-terminal domains(Shewry and Halford 2002).The N-terminal domain of HMW-GSs usually has three or five cysteine (Cys)residues,whereas the C-terminal domain has only one Cys and the central repetitive domain either lacks Cys or contains only one (Shewry and Halford 2002).The length of the HMW-GS repetitive domain has crucial effects on wheat processing quality (Shewry and Halford 2002;Shewryet al.2003;Rustgiet al.2019).Because the Cys residues are important for generating intermolecular disulfide bonds,the number and distribution of Cys residues affect the GMP structure and dough strength(Shewryet al.2003).Consequently,HMW-GS alleles vary in terms of their contribution to processing quality.

    Previous research indicated that Dx5+Dy10 is the superior HMW-GS subunit pair for wheat processing quality (Anderson and Bekes 2011),and the lack of Dx5+Dy10 adversely affects gluten strength and bread quality (Jianget al.2019).The absence of only Dx5 reduces the sodium dodecyl sulfate sedimentation value(Wuet al.2010).The overexpression ofDx5increases the mixing time and lowers the peak resistance,which may result in overly strong dough that is unsuitable for bread-making (Blechlet al.2007;Leónet al.2009).The expression ofDy10in transgenic wheat increases dough development time and mixing tolerance (Blechlet al.2007;Leónet al.2009).However,the critical effects of Dy10 on wheat processing quality remain uncharacterized.

    In this study,we identified aDy10deletion mutant (SM482-Dy10null) by screening an ethyl methanesulfonate (EMS)-induced mutant population of common wheatcv.‘Shumai 482’.The effect of Dy10 on wheat dough properties and processing quality was thoroughly investigated.

    2.Materials and methods

    2.1.Plant materials and growth conditions

    Common wheat (T.aestivum)cv.‘Shumai 482’ produces five HMW-GSs (i.e.,Ax1,Bx7+By9,and Dx5+Dy10).TheDy10deletion mutant (SM482-Dy10null) was isolated from ‘Shumai 482’ seeds treated with 0.8% EMS (Sigma-Aldrich,St.Louis,MO) on the basis of a sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)analysis (Qiet al.2011).The glutenins analyzed by SDSPAGE were extracted from 10 mg whole-seed powder using 100 μL extraction buffer (62.5 mmol L–1Tris-HCl,pH 6.8,10% (v/v) glycerol,2% (w/v) SDS,0.002% (w/v)bromophenol blue,and 1.5% (w/v) dithiothreitol).

    To examine quality-related properties,theDy10deletion mutant was backcrossed two or three times with ‘Shumai 482’ (Appendix A).The wild-type (WT)‘Shumai 482’ andDy10deletion mutant homozygous plants were grown at the experimental farm of Sichuan Agricultural University (30°43′16′′N(xiāo),103°52′15′′E) for two wheat growing seasons (2019–2020 and 2020–2021).The field trials were performed using a randomized block design,with seven replicates for the WT and mutant lines.Each replicate was grown in a 2 m×2 m area,with 20 cm between rows and 60 plants per row.A compound fertilizer (N:P:K=15:15:15) was applied before sowing at a rate of 450 kg ha–1.The WT and mutant lines were compared in terms of their agronomic performance at maturity.After harvesting,the grains were dried under the sun at about 35°C and stored for 2 mon at room temperature for the subsequent analyses.The harvested seeds for each replicate were analyzed by SDS-PAGE and acid polyacrylamide gel electrophoresis (A-PAGE) as described by Lafiandra and Kasarda (1985).

    2.2.Nucleic acid extraction and gene cloning

    Genomic DNA was extracted from fresh leaves using the Plant Genomic DNA Kit (Biofit,Chengdu,China).Immature seeds (25 days post-anthesis) were collected and ground to a fine powder in liquid nitrogen.Total RNA was extracted from the ground material using the MiniBEST Universal RNA Extraction Kit with DNase(TaKaRa,Dalian,China).The RNA concentration was determined using a NanoDrop One Spectrophotometer(Thermo Fisher Scientific,Waltham,MA).The RNA samples were reverse transcribed using the Prime Script?First Strand cDNA Synthesis Kit (TaKaRa).A primer pair (F1: 5′-ATGGCTAAGCGGCTGGTCCTCTTTG-3′and R1: 5′-CTATCACTGGCTAGCCGACAATGCG-3′)was designed and used to amplify the fullDy10coding sequence (CDS) (Wanget al.2021a).The 25 μL PCR mixtures consisted of 100 ng genomic DNA or cDNA template,2.5 nmol each dNTP,37.5 nmol Mg2+,4 pmol each primer,0.75 U high-fidelity LATaqpolymerase(TaKaRa),and 2.5 μL of 10× buffer.The PCR amplification was conducted in an Applied Biosystems?Veriti? PCR instrument (Thermo Fisher Scientific),with the following program: 94°C for 5 min;35 cycles of 94°C for 45 s,61°C for 30 s,and 72°C for 2 min;and 72°C for 12 min.The PCR products were separated on 1.0%agarose gels.The expected PCR fragments were purified and inserted into the pMD19-T vector (TaKaRa) according to the manufacturer’s instructions.The recombinant plasmids in the positive colonies were sequenced by Tsingke Biotechnology (Chengdu,China).All experiments were independently repeated at least three times.

    2.3.Determination of the glutenin and gliadin contents

    The glutenin and gliadin contents in white flour samples were analyzed by reversed phase high-performance liquid chromatography (RP-HPLC).The total glutenin(including HMW-GSs and LMW-GSs) and gliadin contents were estimated by combining the relevant chromatogram peak areas as described by Zhenget al.(2018).The glutenin:gliadin ratio was then calculated.

    2.4.Evaluation of the processing quality parameters

    Wheat seeds were milled to produce white flour using the CD1 Laboratory Mill (CHOPIN Technologies,Villeneuvela-Garenne Cedex,France) according to AACC Approved Method 26–70 (AACC International 2010).The processing quality parameters,including grain protein content,Zeleny sedimentation value,wet gluten content,gluten index,and GMP content,were assessed as described by Wanget al.(2021a).Rheological properties were evaluated using a standard farinograph (Brabender GmbH &Co.,KG,Germany) as described by AACC Approved Method 54–21 (AACC International 2010).

    Bread-making and biscuit-making qualities were examined as described by Wanget al.(2021a).The loaf volume was determined using the BVM6630 volume meter (Perten,Stockholm,Sweden) following the manufacturer’s instructions.The biscuit surface area (SA),which is an accurate indicator of the biscuit diameter(SA=πd2/4,d=diameter and π=3.14),was measured using the C-Cell Imaging System (Calibre Control International Ltd.,Warrington,UK).Biscuit hardness and thickness were determined using the TA.XTC texture analyzer(BisinTech,Shanghai,China) (Wanget al.2021a).The spread ratio was calculated as the biscuit diameter:biscuit thickness ratio.

    2.5.In vitro expression of Dy10 and the Western blot analysis

    The ‘Shumai 482’Dy10allele CDS (without the signal peptide-encoding fragment) was amplified by PCR using the F2/R2 primer pair (F2 with theNdeI restriction site:5′-ACCCATATGGAAGGTGAGGCCTCTAGGC-3′ and R2 with theXhoI restriction site: 5′-TTCCTCGAGCT ATCACTGGCTAGCCGAC-3′).The amplified sequence was inserted into the bacterial expression vector pET-30a(Novagen,Merck,Darmstadt,Germany).Escherichia colistrain BL21 (DE3) chemically competent cells (Weidi,Shanghai,China) were transformed with the recombinant plasmid and grown at 37°C until the culture optical density at 600 nm reached 0.6.Bacterial expression was induced by adding 0.8 mmol L–1isopropylβ-Dthiogalactopyranoside (IPTG;Solarbio,Beijing,China)to the culture,which was then incubated for 6 h at 37°C.The Dy10 subunit was purified from theE.colicells as described by Uthayakumaranet al.(2000) and confirmed by SDS-PAGE and the Western blot analyses.Immunoblotting was performed using the mouse anti-HMW-GS polyclonal antibody (1:4 000) and the HRPconjugated anti-mouse secondary antibody (1:5 000;Sangon Biotech,Shanghai,China) as described by Wanget al.(2021a).The mouse anti-HMW-GS polyclonal antibody,which was obtained from Zoonbio Biotechnology(Nanjing,China),was generated using the peptide“GYYPTSPQQPGC” as described by Denery-Papiniet al.(1996).

    To express a truncated Dy10 peptide (196 residues)fused to the glutathione S-transferase (GST) tag,theDy10-nullallele CDS (without the signal peptideencoding fragment) was amplified by PCR using the mutant and the F3/R3 primer pair (F3 with theBamHI restriction site: 5′-TTCCAGGGGCCCCTGGGATCCG AAGGTGAGGCCTCTAGG-3′ and R3 with theEcoRI restriction site: 5′-CTCGAGTCGACCCGGGAATTCTT ATTGCCTTTGTCCTGTGTGCTGCA-3′).The amplified sequence was inserted into the pEGX-6p-1 vector(Novagen),after whichE.colicells were transformed with the recombinant plasmid.The bacterial cells were cultured and protein expression was induced as described above.Additionally,an immunoblotting assay using the mouse anti-HMW-GS antibody (1:4 000),the HRPconjugated anti-mouse secondary antibody (1:5 000),the rabbit anti-GST polyclonal antibody (1:5 000;Sangon Biotech),and the HRP-conjugated anti-rabbit secondary antibody (1:5 000;Sangon Biotech) was completed as described above.

    2.6.Micro-biscuit processing test

    The Dy10 subunit purified fromE.colicells was incorporated into the WT and mutant flour according to a slightly modified reduction–oxidation protocol (Bekeset al.1994).Briefly,10 g wheat flour (14% moisture content)and the purified Dy10 (0,20,40,and 60 mg) were mixed with 1.5 mL dithiothreitol (3 mg mL–1in distilled water) for 2 min and then rested for 5 min.After adding 0.75 mL KIO3oxidant (25 mg mL–1in distilled water),the sample was mixed for 2 min and then rested for 10 min.To prepare micro-biscuits,the following ingredients were added to the dough: 6 g sucrose,300 mg nonfat milk powder,100 mg NaHCO3,50 mg NH4Cl,45 mg NaCl,3 g shortening,and 0.5 mL H2O.The micro-biscuit processing test was performed in triplicate.

    2.7.Statistical analysis

    Student’st-test was performed using the Data Procession System Software (version 17.10) (Zhejiang University,Hangzhou,China) to determine the significance of any differences in the mean values for the processing parameters and agronomic characteristics.

    3.Results

    3.1.ldentification of the Dy10 deletion mutant

    ADy10deletion mutant line (SM482-Dy10null),which produces four HMW-GSs (Ax1,Bx7+By9,and Dx5),was identified in an EMS-mutagenized ‘Shumai 482’population that was analyzed by SDS-PAGE (Appendix A).There were no significant differences in the agronomic characteristics between the WT and mutant lines(Appendices B and C).The alignment of the mutantDy10(Dy10-nullallele;GenBank no.OK482716) and the WTDy10(GenBank no.X12929) sequences revealed a nonsense mutation (C to T) in theDy10-nullallele(Appendix D),which resulted in a premature termination of translation at the 217th amino acid residue (Fig.1-A).Reverse transcription (RT)-PCR results indicated that theDy10-nullallele was normally expressed at the transcript level (Appendix E).The anti-HMW-GS antibody crossreacted with the truncated Dy10 peptide (which has a predicted molecular mass of 21.6 kDa) produced by the heterologous expression system (Fig.1-C).In contrast,the anti-HMW-GS antibody did not detect the Dy10 peptide in the mutant seeds (Fig.1-B),thereby confirming the lack of Dy10 in the mutant.

    Fig.1 The Dy10-null allele results in the absence of Dy10 in seeds.A,alignment of the deduced amino acid sequences of Dy10 in the wild type (WT) and mutant lines.Cysteine residues are indicated by black asterisks.The thick black arrow indicates the premature stop codon site (red asterisk).The signal peptide,N-terminal domain,repetitive domain,and C-terminal domain are indicated.B,Western blot analysis of the gluten proteins in the mutant (lanes 1 and 3) and WT (lanes 2 and 4) lines using the anti-high-molecular-weight glutenin subunit (HMW-GS) antibody.C,Western blot analysis of the glutathione S-transferase (GST)-tagged truncated peptide (196 residues) using the anti-HMW-GS antibody or the anti-GST antibody.The proteins extracted from Escherichia coli cells expressing the GST-tagged truncated peptide (196 residues) with (lanes 2,4,and 6) and without (lanes 1,3,and 5) the addition of isopropyl β-D-thiogalactopyranoside (IPTG) are presented.Red arrows indicate the target protein band.SDS-PAGE,sodium dodecyl sulfate polyacrylamide gel electrophoresis;WB,Western blot.

    3.2.Effects of Dy10 on processing quality

    The HMW-GS and gliadin contents were respectively significantly lower and higher in the mutant line than in the WT line (Fig.2).Additionally,the LMW-GS content was slightly higher in the mutant line than in the WT line,but this difference was not significant (Fig.2).The glutenin:gliadin ratio was significantly lower in the mutant than in the WT control.

    Fig.2 Glutenin and gliadin contents in the wild type (WT) and mutant lines as determined by reversed phase high-performance liquid chromatography (RP-HPLC).A,RP-UPLC profile of high-molecular-weight glutenin subunits (HMW-GSs) and low-molecularweight glutenin subunits (LMW-GSs);the peaks corresponding to the different HMW-GSs are indicated.B,RP-HPLC profile of gliadins.C,relative contents of HMW-GSs,LMW-GSs,and gliadins.Data are presented as the mean±standard deviation,n=7.** indicates significance at P<0.01.

    The grain protein and wet gluten contents were similar between the mutant and WT lines (Table 1).In contrast,the gluten index,Zeleny sedimentation value,and GMP content were significantly lower in the mutant than in the WT control.Regarding the dough rheological characteristics,the development and stability times of the mutant were significantly shorter than those of the WT control.As expected,the mutant dough was softer than the WT dough (see degree of softening in Table 1).Therefore,the lack of Dy10 resulted in reduced dough strength,but it had no effect on the grain protein content.

    Table 1 Comparison of the processing quality parameters of the wild type (WT) and mutant lines

    The loaf volume was significantly smaller for the mutant than for the WT (Fig.3-A and B;Table 1).Compared with the WT biscuits,the mutant biscuits were not as thick and had a larger diameter,a higher spread ratio,and a similar hardness (Fig.3-C and D;Table 1).There were no obvious differences in the loaf and biscuit sensory properties between the mutant and WT samples.

    Fig.3 Comparison of the wild type (WT) and mutant loaves and biscuits.A,loaf shape.B,loaf slices.C,biscuit shape.D,biscuit thickness.Scale bar=1 cm.

    To confirm its effect on the biscuit-making quality,the Dy10 subunit was purified fromE.colicells (Fig.4),after which various amounts (0,20,40,and 60 mg) were incorporated into the WT and mutant flour as described by Bekes and Gras (1999).In all cases,the addition of the purified Dy10 adversely affected the biscuit-making quality.More specifically,the incorporation of purified Dy10 into the wheat flour resulted in a decrease in the biscuit area,an increase in biscuit thickness,and a decrease in the spread ratio (Fig.5).Moreover,the biscuit quality was negatively correlated with the Dy10 content.

    Fig.4 Purification of the Dy10 subunit from Escherichia coli cells.The glutenins extracted from the mutant and wild type(WT) lines were used as the controls (lanes 1 and 2).The heterologous expression of the Dy10 subunit was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) (lane 3) and Western blot (lane 4) analyses.

    Fig.5 Incorporation of the purified Dy10 subunit negatively affects biscuit quality.A–D,biscuits produced from the mutant flour with the incorporation of 0 mg (A),20 mg (B),40 mg (C),and 60 mg (D) of the Dy10 subunit.E–H,biscuits produced from the wild type (WT) flour with the incorporation of 0 mg (E),20 mg (F),40 mg (G),and 60 mg (H) of the Dy10 subunit.Scale bar=1 cm.I–K,comparisons of the biscuit area (I),biscuit thickness (J),and spread ratio (K) for the mutant and WT flour with and without the addition of Dy10.Data are presented as the mean±standard deviation (n=3).

    4.Discussion

    4.1.Mechanism on the silencing of Dy10-null allele

    Deletion mutants are suitable for clarifying the effects of HMW-GSs on wheat processing quality.In this study,aDy10deletion mutant line (SM482-Dy10null)was isolated from an EMS-mutagenized population(Appendix A).Previous research verified the utility of EMS for modifying single nucleotides in order to introduce a stop codon or a missense mutation (a C-to-T mutation is the most common) (Kimet al.2006).TheDy10-nullallele had a single point mutation (C-to-T;Appendix D) that introduced a premature stop codon(TAA).Two major gene-silencing mechanisms in plants have been described,namely transcriptional gene silencing (TGS) and post-TGS (PTGS);and the silenced gene is transcribed normally during PTGS (Sijenet al.2001).In the current study,theDy10-nullallele in the mutant line and theDy10allele in the WT line were similarly transcribed (Appendix E),implying that the silencing of theDy10-nullallele wasviaPTGS (Fig.1).Previous research has suggested that a premature stop codon in HMW-GS genes leads to the production of truncated proteins (De Bustoset al.2000;Chenet al.2021),which is detrimental for investigations regarding the effect of HMW-GSs on processing quality.The Western blot analysis performed in this study revealed the absence of the Dy10 subunit in the mutant with theDy10-nullallele (Fig.1-B and C).Therefore,our analysis of theDy10-nullallele has clearly shown that wheat processing quality is influenced by the Dy10 subunit.

    4.2.Mechanism of Dy10-null allele on wheat processing quality

    The absence of Dy10 in the mutant likely results in the restructuring of the inherent gluten network,ultimately leading to decreased dough strength.Wheat HMWGSs,especially the Dx5+Dy10 subunit pair,are major determinants of bread-making quality (Shewryet al.2003).Additionally,Dx5,which encodes a protein that contains one more Cys residue in the repetitive domain than the other HMW-GSs,is always expressed as a part of an allelic pair withDy10.Compared with Dx5,the Dy10 subunit contains more Cys residues that form intermolecular disulfide bonds during dough development,enabling the extensive cross-linking of glutenin polymers(Shewry and Halford 2002).There is an evidence that dimers comprising these two subunits are present as“building blocks” in glutenin polymers (Wieser 2007;Wanget al.2021b).In the present study,the lack of Dy10 reduced the gluten index,Zeleny sedimentation value,dough development and stability times,and GMP content,which helps to explain the observed reduction in breadmaking quality (Table 1).

    The balance between different gluten protein fractions is an important factor governing the end-use quality of wheat.For different types of food products,diverse dough strength and extensibility values may reflect the optimum balance between gluten fractions (Oliver and Allen 1992).Our results indicated that theDy10-nullallele in the mutant reduced the glutenin:gliadin ratio,but did not alter the grain protein content.TheDy10-nullallele significantly reduced the HMW-GS contents,while significantly increasing the gliadin contents.These findings are in accordance with the reported compensatory interaction between HMW-GSs and gliadins (Diaet al.2022;Liuet al.2022;Scossaet al.2008;Zhanget al.2018).Several studies have revealed that HMW-GSs and gliadins mainly contribute to the viscoelastic properties and extensibility of wheat dough,respectively (Shewryet al.2003;Baraket al.2015).Therefore,it is not surprising that in response to the deletion of Dy10,the biscuit-making quality (Fig.3-C and D;Table 1) and bread-making quality (Fig.3-A and B;Table 1)increased and decreased,respectively.Furthermore,the incorporation of the purified Dy10 subunit had adverse effects on the biscuit-making quality of the wheat dough(Fig.5).In contrast,supplementing wheat flour with purified gliadins reportedly leads to enhanced biscuitmaking quality (Kuraganoet al.1991).Unexpectedly,both positive and negative effects of the silencing of HMWGS genes on biscuit-making quality have been reported.For example,the deletion of a single HMW-GS gene inT.aestivumcv.‘Ningmai 9’ (which normally contains Ax1,Bx7+By8,and Dx2+Dy12) results in improved biscuitmaking quality (Zhanget al.2016),whereas the absence of the Dy12 subunit inT.aestivumcv.‘Kenong 199’ (which normally contains Ax1,Bx7+By9,and Dx2+Dy12) leads to reduced biscuit-making quality (Chenet al.2021).We speculate that the glutenin:gliadin ratio and the HMW-GS composition are essential determinants of biscuit-making quality.

    5.Conclusion

    A common wheat mutant carrying theDy10-nullallele was identified by screening an EMS-mutagenized ‘Shumai 482’population.TheDy10-nullallele resulted in the absence of Dy10.Based on an analysis of this mutant,we demonstrated that the Dy10 subunit is essential for maintaining dough strength.Furthermore,theDy10-nullallele positively affects the biscuit-making quality of wheat dough,making it potentially useful for soft wheat breeding programs.

    Acknowledgements

    This research was supported by the National Natural Science Foundation of China (31971939,32072054,and 31901961),the Science and Technology Department of Sichuan Province,China (2019YFH0066 and 2020YFH0150),and the Designing Future Wheat Strategic Program of the UK (BB/P016855/1).

    Declaration of competing interest

    The authors declare that they have no conflict of interest.

    Appendicesassociated with this paper are available on https://doi.org/10.1016/j.jia.2022.08.041

    欧美人与性动交α欧美软件| 国产精品av久久久久免费| 男女边摸边吃奶| 日本wwww免费看| 9色porny在线观看| 性色av一级| 精品一区二区三卡| 国产免费福利视频在线观看| 国产成人欧美在线观看 | 成人手机av| 多毛熟女@视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲成人国产一区在线观看| 欧美在线一区亚洲| 日本猛色少妇xxxxx猛交久久| 午夜日韩欧美国产| 男女午夜视频在线观看| 免费观看av网站的网址| 亚洲国产欧美在线一区| 一边摸一边抽搐一进一出视频| 精品人妻一区二区三区麻豆| 亚洲精品粉嫩美女一区| 亚洲国产av影院在线观看| 久久综合国产亚洲精品| 欧美 日韩 精品 国产| 一本一本久久a久久精品综合妖精| 亚洲一码二码三码区别大吗| 国产精品欧美亚洲77777| 国产精品熟女久久久久浪| 午夜免费成人在线视频| 香蕉丝袜av| 精品一区二区三区四区五区乱码| 午夜91福利影院| 亚洲专区中文字幕在线| 一级,二级,三级黄色视频| 18禁黄网站禁片午夜丰满| 久久99热这里只频精品6学生| 午夜两性在线视频| 国产欧美日韩一区二区三 | 丝袜美足系列| 精品人妻一区二区三区麻豆| 国产亚洲精品久久久久5区| 极品人妻少妇av视频| 男男h啪啪无遮挡| 亚洲精品中文字幕在线视频| 女人久久www免费人成看片| 亚洲色图 男人天堂 中文字幕| 丰满迷人的少妇在线观看| 亚洲精品成人av观看孕妇| 欧美黑人精品巨大| 欧美精品一区二区大全| 亚洲国产中文字幕在线视频| 亚洲五月色婷婷综合| 91麻豆精品激情在线观看国产 | 国产高清视频在线播放一区 | 欧美人与性动交α欧美软件| 两个人免费观看高清视频| 一级片免费观看大全| 国产精品免费大片| 亚洲欧美精品综合一区二区三区| 久久av网站| 免费高清在线观看视频在线观看| 久久99热这里只频精品6学生| 美女视频免费永久观看网站| 国产男女超爽视频在线观看| 国产一区二区在线观看av| 日本av手机在线免费观看| 999久久久精品免费观看国产| 黄片小视频在线播放| 亚洲精品久久久久久婷婷小说| 男女高潮啪啪啪动态图| 999久久久精品免费观看国产| 99国产精品免费福利视频| 成年人黄色毛片网站| 国产精品一区二区免费欧美 | 国产成人免费观看mmmm| 岛国在线观看网站| 国产不卡av网站在线观看| 国产黄色免费在线视频| 脱女人内裤的视频| 一个人免费看片子| 男女下面插进去视频免费观看| 久久久国产一区二区| 老司机亚洲免费影院| 自拍欧美九色日韩亚洲蝌蚪91| 超碰成人久久| 亚洲精品一二三| 视频区欧美日本亚洲| 91国产中文字幕| 婷婷丁香在线五月| 啦啦啦中文免费视频观看日本| 免费在线观看影片大全网站| 国产精品九九99| 三级毛片av免费| 搡老熟女国产l中国老女人| 新久久久久国产一级毛片| 少妇裸体淫交视频免费看高清 | 国产一级毛片在线| 国产成人精品在线电影| 菩萨蛮人人尽说江南好唐韦庄| 黑人操中国人逼视频| 精品亚洲成a人片在线观看| 欧美日韩亚洲综合一区二区三区_| 一本—道久久a久久精品蜜桃钙片| 中文字幕精品免费在线观看视频| 国产一卡二卡三卡精品| 欧美日韩一级在线毛片| 欧美人与性动交α欧美软件| 欧美激情 高清一区二区三区| 国产av又大| 久久国产亚洲av麻豆专区| 亚洲精品一区蜜桃| 永久免费av网站大全| 欧美少妇被猛烈插入视频| 一边摸一边做爽爽视频免费| 午夜福利在线免费观看网站| 欧美日韩亚洲国产一区二区在线观看 | 在线观看免费日韩欧美大片| 日日夜夜操网爽| www.自偷自拍.com| 亚洲国产欧美一区二区综合| 9色porny在线观看| 三上悠亚av全集在线观看| 免费高清在线观看日韩| 男女高潮啪啪啪动态图| 国产深夜福利视频在线观看| 亚洲一码二码三码区别大吗| 国产99久久九九免费精品| 成年av动漫网址| 免费观看人在逋| 一级片'在线观看视频| 亚洲欧美精品综合一区二区三区| 国产亚洲欧美在线一区二区| 欧美日韩亚洲国产一区二区在线观看 | 国产av又大| 丝袜美足系列| 国产黄色免费在线视频| 青青草视频在线视频观看| 久久久久久人人人人人| cao死你这个sao货| 国产99久久九九免费精品| 国产在线一区二区三区精| 最近最新中文字幕大全免费视频| 久久影院123| 12—13女人毛片做爰片一| 国产精品一区二区在线观看99| 中文字幕色久视频| 狂野欧美激情性bbbbbb| 91成年电影在线观看| 一本色道久久久久久精品综合| 我要看黄色一级片免费的| 久久精品国产亚洲av香蕉五月 | 美女大奶头黄色视频| 国产精品一区二区在线不卡| 在线观看人妻少妇| 后天国语完整版免费观看| 真人做人爱边吃奶动态| 欧美97在线视频| 最新的欧美精品一区二区| 脱女人内裤的视频| 欧美黑人精品巨大| 少妇人妻久久综合中文| 亚洲成人免费电影在线观看| 性色av乱码一区二区三区2| 欧美国产精品一级二级三级| 久久精品国产a三级三级三级| 免费观看av网站的网址| 色视频在线一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 男女边摸边吃奶| 啦啦啦在线免费观看视频4| 在线观看人妻少妇| 久久久国产成人免费| 无限看片的www在线观看| 日韩欧美一区二区三区在线观看 | 亚洲av美国av| 女警被强在线播放| 侵犯人妻中文字幕一二三四区| 欧美激情极品国产一区二区三区| 亚洲第一欧美日韩一区二区三区 | 18禁观看日本| 亚洲欧美一区二区三区黑人| 脱女人内裤的视频| 在线永久观看黄色视频| 老司机午夜十八禁免费视频| 亚洲精品在线美女| 久久99一区二区三区| 国产成人av激情在线播放| 国产亚洲精品第一综合不卡| 欧美人与性动交α欧美精品济南到| 在线观看舔阴道视频| 久久精品aⅴ一区二区三区四区| 麻豆国产av国片精品| 一本久久精品| 18禁国产床啪视频网站| 大码成人一级视频| 国产精品久久久久久精品古装| 成在线人永久免费视频| 精品国产乱子伦一区二区三区 | av一本久久久久| 成人av一区二区三区在线看 | 另类精品久久| 人成视频在线观看免费观看| netflix在线观看网站| 日韩欧美一区视频在线观看| 18禁黄网站禁片午夜丰满| 曰老女人黄片| 国产男女超爽视频在线观看| 午夜免费鲁丝| 日本欧美视频一区| 日韩制服骚丝袜av| 一二三四在线观看免费中文在| 欧美激情极品国产一区二区三区| 精品久久蜜臀av无| 美女视频免费永久观看网站| 麻豆av在线久日| 在线观看免费高清a一片| 国产真人三级小视频在线观看| 亚洲天堂av无毛| 欧美人与性动交α欧美软件| 久久人妻熟女aⅴ| av天堂久久9| 日本五十路高清| 亚洲精品自拍成人| 欧美性长视频在线观看| 在线天堂中文资源库| 自拍欧美九色日韩亚洲蝌蚪91| 丝袜在线中文字幕| 亚洲精品久久久久久婷婷小说| 在线观看舔阴道视频| 亚洲国产精品999| 国产一区二区在线观看av| 麻豆乱淫一区二区| 老鸭窝网址在线观看| 国产成人a∨麻豆精品| 一个人免费看片子| 午夜老司机福利片| 黄网站色视频无遮挡免费观看| 亚洲av美国av| 女人精品久久久久毛片| 国产日韩欧美视频二区| 伊人亚洲综合成人网| 91精品伊人久久大香线蕉| 国产精品国产av在线观看| 色婷婷久久久亚洲欧美| 1024香蕉在线观看| 中文精品一卡2卡3卡4更新| 超碰97精品在线观看| 纵有疾风起免费观看全集完整版| 一本久久精品| 99国产精品免费福利视频| 国产亚洲欧美精品永久| 乱人伦中国视频| 亚洲人成电影观看| 欧美日韩av久久| 日韩视频一区二区在线观看| 久久 成人 亚洲| 热99久久久久精品小说推荐| 亚洲国产欧美在线一区| 精品亚洲成a人片在线观看| 国产欧美日韩一区二区精品| 精品少妇一区二区三区视频日本电影| 亚洲一码二码三码区别大吗| 亚洲欧美清纯卡通| 久久精品人人爽人人爽视色| 精品一区二区三区av网在线观看 | 欧美午夜高清在线| 国产亚洲欧美精品永久| 国产野战对白在线观看| 欧美人与性动交α欧美精品济南到| 午夜激情av网站| 一个人免费在线观看的高清视频 | 久久亚洲精品不卡| av又黄又爽大尺度在线免费看| 国产欧美日韩一区二区三区在线| 日韩大码丰满熟妇| av免费在线观看网站| 俄罗斯特黄特色一大片| 美女福利国产在线| 国产在线视频一区二区| 亚洲国产精品一区三区| 日韩欧美一区视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 日韩一卡2卡3卡4卡2021年| 国产精品免费视频内射| 久久久久久久久久久久大奶| 亚洲国产精品成人久久小说| 黄频高清免费视频| 欧美乱码精品一区二区三区| 国产免费现黄频在线看| 久久久久精品国产欧美久久久 | 深夜精品福利| 久久免费观看电影| 老司机午夜十八禁免费视频| 777久久人妻少妇嫩草av网站| 久久天堂一区二区三区四区| 亚洲美女黄色视频免费看| 多毛熟女@视频| 不卡av一区二区三区| 欧美在线黄色| 母亲3免费完整高清在线观看| a级毛片在线看网站| 伊人亚洲综合成人网| 正在播放国产对白刺激| 久久精品熟女亚洲av麻豆精品| 久久精品久久久久久噜噜老黄| 国产亚洲av高清不卡| 最近最新中文字幕大全免费视频| 我要看黄色一级片免费的| 91成年电影在线观看| 一级毛片女人18水好多| av超薄肉色丝袜交足视频| av在线播放精品| 欧美黄色片欧美黄色片| 免费av中文字幕在线| 男女午夜视频在线观看| 午夜精品久久久久久毛片777| 午夜两性在线视频| 在线看a的网站| netflix在线观看网站| 国产一区二区三区综合在线观看| 一级毛片女人18水好多| 亚洲国产日韩一区二区| 日日夜夜操网爽| 亚洲成av片中文字幕在线观看| 久久ye,这里只有精品| 国产真人三级小视频在线观看| e午夜精品久久久久久久| 悠悠久久av| 免费人妻精品一区二区三区视频| 久久久久国产精品人妻一区二区| 男女边摸边吃奶| a 毛片基地| 精品免费久久久久久久清纯 | 亚洲精品日韩在线中文字幕| 无限看片的www在线观看| 久久久国产精品麻豆| 成人18禁高潮啪啪吃奶动态图| 80岁老熟妇乱子伦牲交| 夫妻午夜视频| 久久精品国产亚洲av香蕉五月 | 伊人亚洲综合成人网| 在线十欧美十亚洲十日本专区| 国产精品av久久久久免费| 午夜日韩欧美国产| 美女脱内裤让男人舔精品视频| 亚洲av片天天在线观看| 俄罗斯特黄特色一大片| 老司机深夜福利视频在线观看 | 亚洲五月色婷婷综合| 亚洲国产欧美一区二区综合| 亚洲五月色婷婷综合| 色精品久久人妻99蜜桃| 成年人午夜在线观看视频| 国产亚洲精品久久久久5区| av电影中文网址| 日韩三级视频一区二区三区| 国产av国产精品国产| 亚洲精品美女久久av网站| 亚洲欧美日韩高清在线视频 | 久9热在线精品视频| 蜜桃国产av成人99| 免费观看a级毛片全部| 欧美性长视频在线观看| 国产一区二区激情短视频 | 国产麻豆69| 韩国精品一区二区三区| 国产97色在线日韩免费| 国产又爽黄色视频| av片东京热男人的天堂| av在线app专区| 桃花免费在线播放| 美女午夜性视频免费| av又黄又爽大尺度在线免费看| 国产一区有黄有色的免费视频| 国产国语露脸激情在线看| 每晚都被弄得嗷嗷叫到高潮| 国产成人一区二区三区免费视频网站| 午夜两性在线视频| 亚洲天堂av无毛| 成人av一区二区三区在线看 | 国产深夜福利视频在线观看| 国产97色在线日韩免费| 精品一区二区三卡| av一本久久久久| 1024香蕉在线观看| 久久久久久久精品精品| 国产精品九九99| 99国产精品99久久久久| videosex国产| 天天躁日日躁夜夜躁夜夜| 久久人妻福利社区极品人妻图片| 欧美乱码精品一区二区三区| 亚洲七黄色美女视频| 在线观看免费高清a一片| 国产精品九九99| 色播在线永久视频| av有码第一页| 午夜福利影视在线免费观看| 永久免费av网站大全| 国产精品久久久久成人av| 香蕉丝袜av| 丰满少妇做爰视频| 久久人妻福利社区极品人妻图片| 亚洲av成人一区二区三| 成在线人永久免费视频| 亚洲av片天天在线观看| 少妇裸体淫交视频免费看高清 | 中文字幕制服av| 一区在线观看完整版| 每晚都被弄得嗷嗷叫到高潮| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲精品第一综合不卡| 免费久久久久久久精品成人欧美视频| 丝袜人妻中文字幕| 又紧又爽又黄一区二区| 国产精品偷伦视频观看了| 国产无遮挡羞羞视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 久久久精品国产亚洲av高清涩受| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品av麻豆狂野| 新久久久久国产一级毛片| 夜夜夜夜夜久久久久| 亚洲精品一区蜜桃| 久久这里只有精品19| 免费黄频网站在线观看国产| 亚洲欧洲日产国产| 欧美97在线视频| 两人在一起打扑克的视频| 久久久久久久大尺度免费视频| 这个男人来自地球电影免费观看| 亚洲欧美清纯卡通| 性高湖久久久久久久久免费观看| av又黄又爽大尺度在线免费看| 每晚都被弄得嗷嗷叫到高潮| a在线观看视频网站| 日韩免费高清中文字幕av| 在线天堂中文资源库| 中文字幕最新亚洲高清| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美成人综合另类久久久| 亚洲成人免费电影在线观看| 精品福利永久在线观看| 国产在视频线精品| 岛国毛片在线播放| 搡老乐熟女国产| 国产淫语在线视频| 成人国产av品久久久| 亚洲va日本ⅴa欧美va伊人久久 | 国产成人免费观看mmmm| 伊人久久大香线蕉亚洲五| tocl精华| 欧美成人午夜精品| 纵有疾风起免费观看全集完整版| 欧美精品亚洲一区二区| 中文欧美无线码| 999久久久国产精品视频| 最新在线观看一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产精品欧美亚洲77777| 男女床上黄色一级片免费看| 日日夜夜操网爽| 一个人免费在线观看的高清视频 | 日韩视频一区二区在线观看| 下体分泌物呈黄色| 中文欧美无线码| 亚洲av成人不卡在线观看播放网 | 国产伦理片在线播放av一区| 国产成人精品久久二区二区免费| 永久免费av网站大全| 一级a爱视频在线免费观看| 香蕉国产在线看| 欧美+亚洲+日韩+国产| 一本—道久久a久久精品蜜桃钙片| 日韩欧美一区视频在线观看| 看免费av毛片| 男女之事视频高清在线观看| 日韩中文字幕欧美一区二区| 一进一出抽搐动态| 男女无遮挡免费网站观看| 久久人人爽av亚洲精品天堂| 亚洲av电影在线进入| 亚洲国产精品成人久久小说| 免费观看a级毛片全部| 国产亚洲av片在线观看秒播厂| 亚洲欧洲日产国产| www.av在线官网国产| av不卡在线播放| 丝袜人妻中文字幕| 久久亚洲国产成人精品v| 男女高潮啪啪啪动态图| 女人久久www免费人成看片| 在线十欧美十亚洲十日本专区| 桃红色精品国产亚洲av| 十八禁高潮呻吟视频| 欧美国产精品一级二级三级| 国产三级黄色录像| 老司机亚洲免费影院| 成人手机av| 十八禁高潮呻吟视频| svipshipincom国产片| 久久久久精品人妻al黑| 99国产精品一区二区三区| 国产黄色免费在线视频| 日韩制服丝袜自拍偷拍| 多毛熟女@视频| 亚洲精品国产精品久久久不卡| 久久精品亚洲熟妇少妇任你| 日本av免费视频播放| 亚洲少妇的诱惑av| 大片电影免费在线观看免费| av欧美777| 男女高潮啪啪啪动态图| 国产又色又爽无遮挡免| 国产亚洲午夜精品一区二区久久| 欧美精品高潮呻吟av久久| 桃花免费在线播放| 97在线人人人人妻| 香蕉国产在线看| 动漫黄色视频在线观看| 美女主播在线视频| 成年av动漫网址| 国产成人免费观看mmmm| 国产在线观看jvid| 国产亚洲午夜精品一区二区久久| 欧美变态另类bdsm刘玥| 久久ye,这里只有精品| 久热这里只有精品99| 亚洲avbb在线观看| 国产真人三级小视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产xxxxx性猛交| av又黄又爽大尺度在线免费看| 青春草视频在线免费观看| 制服诱惑二区| 亚洲精品中文字幕在线视频| 99香蕉大伊视频| 婷婷成人精品国产| 欧美日韩福利视频一区二区| 新久久久久国产一级毛片| 首页视频小说图片口味搜索| 欧美av亚洲av综合av国产av| 亚洲国产精品一区三区| 久热这里只有精品99| 成人18禁高潮啪啪吃奶动态图| 黄色视频不卡| 人妻人人澡人人爽人人| 91av网站免费观看| 欧美 亚洲 国产 日韩一| 欧美在线一区亚洲| 少妇 在线观看| 天天添夜夜摸| 一区二区三区乱码不卡18| 日本黄色日本黄色录像| 精品少妇久久久久久888优播| 91精品三级在线观看| 一级毛片精品| 午夜福利免费观看在线| 99九九在线精品视频| 久久女婷五月综合色啪小说| 丰满少妇做爰视频| 男女免费视频国产| 日韩 亚洲 欧美在线| 久久精品亚洲av国产电影网| 久久久久久人人人人人| 性少妇av在线| 欧美97在线视频| 久久ye,这里只有精品| 十八禁网站免费在线| 亚洲成人手机| 丝袜美腿诱惑在线| 色老头精品视频在线观看| 这个男人来自地球电影免费观看| 不卡一级毛片| 精品国产一区二区久久| 亚洲国产毛片av蜜桃av| 精品欧美一区二区三区在线| 欧美变态另类bdsm刘玥| 9色porny在线观看| 亚洲av日韩精品久久久久久密| 国产精品久久久久成人av| 久久99一区二区三区| 悠悠久久av| 欧美另类一区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲情色 制服丝袜| 久久精品国产亚洲av高清一级| 亚洲精品国产av蜜桃| 伦理电影免费视频| 免费女性裸体啪啪无遮挡网站| 午夜视频精品福利| 伦理电影免费视频| 性色av乱码一区二区三区2| 在线亚洲精品国产二区图片欧美| av一本久久久久| 国产亚洲精品久久久久5区| 成人av一区二区三区在线看 | 性高湖久久久久久久久免费观看| 99热全是精品| 婷婷丁香在线五月| 色94色欧美一区二区| 性色av一级| 免费久久久久久久精品成人欧美视频| 日韩视频一区二区在线观看| 国产一级毛片在线| 丰满人妻熟妇乱又伦精品不卡| 黑丝袜美女国产一区| 美女视频免费永久观看网站| 熟女少妇亚洲综合色aaa.| 午夜福利在线免费观看网站| 欧美日韩黄片免| 久久久久视频综合| 欧美亚洲 丝袜 人妻 在线| 亚洲伊人色综图|