• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of Central Intensity Ratio of Seyfert Galaxies in Nearby Universe

    2023-05-29 10:28:38VinodBaheejaAswathyandRavikumar

    K.T.Vinod, C.Baheeja, S.Aswathy, and C.D.Ravikumar

    1 Department of Physics, University of Calicut, Malappuram-673635, India; vinod2085@gmail.com

    2Department of Physics, Providence Women’s College, Calicut-673009, India

    Abstract We use the recently discovered simple photometric parameter Central Intensity Ratio (CIR) determined for a sample of 57 nearby (z <0.02) Seyfert galaxies to explore the central features of galaxies and their possible connection with galaxy evolution.The sample of galaxies shows strong anti-correlation between CIR and mass of their central supermassive black holes (SMBHs).The SMBH masses of ellipticals are systematically higher for a given CIR value than those for lenticulars and spirals in the sample.However, the correlation between CIR and central velocity dispersion is weak.CIR appears less influenced by the excess flux produced by the central engine in these galaxies,when compared to spectroscopic parameters like velocity dispersion and O IV flux,and proves to be a fast and reliable tool for estimating central SMBH mass.

    Key words:Galaxy:evolution–galaxies:active–galaxies:photometry–(galaxies:)quasars:supermassive black holes – galaxies: Seyfert

    1.Introduction

    The central supermassive black hole (SMBH) residing in massive galaxies is believed to play a key role in the evolution scenario of host galaxies.The evolution mechanism of the central engine of every galaxy is connected with the star formation process in the host galaxy.It is commonly accepted that the accretion mechanism is the prime reason for the origin and growth of active galactic nuclei (AGNs) in the nuclear region of galaxies (Kawakatu et al.2006; Ellison et al.2011;Silverman et al.2011; Villforth et al.2012).

    AGNs are hosted at the centers of elliptical galaxies or bulge dominating spheroids across all redshifts (Kauffmann et al.2003; Povi? et al.2009), whereas the morphology of local Seyfert galaxies is generally spiral (Ho et al.1995; Ho 2008).Intense circumnuclear star formation plays a crucial role in the evolution and emission process of Seyfert galaxies, specifically, Sy2 galaxies (e.g., Terlevich & Melnick 1985; Cid Fernandes et al.1995; Maiolino et al.1998; Cid Fernandes et al.2001; González Delgado et al.2001).

    Seyfert galaxies are among the most studied objects in the radio quiet(RQ)category,along with quasars(Weedman 1977;Osterbrock & Martel 1993; Rashed et al.2015).The role of feedback by the central SMBH in the relationships between the mass of the SMBH and bulge properties of Seyfert galaxies is still unclear because the merger events govern the formation of bulges while Seyfert galaxies are believed to be evolving through secular evolution (Hopkins et al.2006; Kormendy &Ho 2013; Heckman & Best 2014).Recent studies revealed the existence of fast outflows of ionized gas in nearby Seyfert galaxies, but their influence on star formation is still under debate(Christensen et al.2006;Krause et al.2007;Wang et al.2012; García-Burillo et al.2014; Morganti et al.2015;Querejeta et al.2016).However, if the host galaxies possess such outflows,they could expel the gas from the central region and suppress the star formation (Alexander & Hickox 2012;García-Burillo et al.2014; Alatalo et al.2015; Hopkins et al.2016; Wylezalek & Zakamska 2016).

    The masses of central SMBHs are reported to correlate well with the stellar mass and stellar velocity dispersion of the bulges of their host galaxies (see, e.g., Magorrian et al.1998;Ferrarese & Merritt 2000; Gebhardt et al.2000; Marconi &Hunt 2003; H?ring & Rix 2004; Kormendy & Ho 2013;McConnell & Ma 2013; Savorgnan & Graham 2015).The bulges and SMBHs seem to evolve together and regulate each other (Alonso-Herrero et al.2013).The relations (between MBH, bulge mass and stellar velocity dispersion) propose a strong connection between the formation of black hole mass,emergence of AGNs and the host galaxy evolution(Ferrarese&Merritt 2000; Gültekin et al.2009) as well.

    Central light concentration is a vital parameter,which can be used as a tracer of the disk to bulge ratio,star formation activity and galaxy evolution (Abraham et al.1994; Conselice 2003).The Central Intensity Ratio (CIR), a new photometric parameter,is well correlated with the masses of central SMBHs of the spheroid of early-type galaxies (ETGs, Aswathy &Ravikumar 2018).Furthermore,CIR is an efficient photometric tool to study the central and structural properties of spiral galaxies, especially barred systems, and also gives some valid information regarding nuclear star formation and AGN formalism in host galaxies (Aswathy & Ravikumar 2020).Inthis light, we perform an optical analysis by utilizing the parameter,CIR,to study the central properties and evolution of Seyfert galaxies.

    Table 1 Table 1 Lists the Properties of Sample Galaxies

    Table 1(Continued)

    This paper is organized as follows; Section 2 describes the properties of the sample galaxies and the data reduction techniques employed in this study, and Section 3 deals with results consisting of various correlations.Discussions and conclusions are provided in Section 4.

    Throughout this paper, we have used the cosmological parameters:H0=73.0 km s-1Mpc-1;Ωmatter=0.27;Ωvacuum=0.73.

    2.The Data and Data Reduction

    Following Aswathy & Ravikumar (2018), the CIR is determined for the sample galaxies by using the aperture photometry (MAG_APER) technique, which is provided in Source-Extractor (SExtractor, Bertin & Arnouts 1996).

    where I1and I2are the intensities and m1and m2are the corresponding magnitudes of the light within the inner and outer apertures of radii R1and R2, respectively.The inner radius is chosen such that it is a few times the point spread function(PSF).The outer radius(conventionally 2R1)is chosen such that the aperture is lying fairly within the galaxy image.For the sample, we chose the inner and outer radii as 1 5 and 3″, respectively.

    Ultraviolet (UV) observations are vital in providing recent star formation activity in galaxies (e.g., Thilker et al.2005; Gil de Paz et al.2005, 2007; Koribalski & López-Sánchez 2009).For the estimation of circumnuclear star formation rate (SFR), we examined far-UV (FUV, 1350–1750 ?) data on the sample galaxies observed by the Galaxy Evolution Explorer (GALEX) mission.We considered an aperture size of 10″ at the center of the image to estimate the circumnuclear SFR following López-Sánchez (2010) using the calibration reported by Salim et al.(2007) which is provided in Table 1.

    Figure 1.Correlation between the CIR and mass of the SMBH of the sample galaxies.Filled circles, triangles and squares represent spiral, lenticular and elliptical galaxies, respectively.Estimations of masses of SMBHs using dynamical methods are signified as red data points,while gray color is used to represent those from the stellar velocity dispersion measurements of host galaxies.

    3.Results

    Scaling relations displayed by various structural and dynamical observables of galaxies can shed vital information on formation and evolution processes in galaxies.We have estimated the CIR at the optical centers of 57 Seyfert galaxies observed using HST.The sample properties, along with the estimated values of CIR, are tabulated in Table 1.We next explore various trends involving CIR.

    3.1.Variation of CIR with SMBH Mass

    The scaling relations of black hole mass are generally determined and explored utilizing the bulge properties of the host galaxies, specifically in ETGs (Kormendy & Richstone 1995; Ferrarese & Merritt 2000; McConnell & Ma 2013).Structural properties of late-type galaxies(LTGs),like the pitch angle of spiral arms, share an intriguing scaling relation with black hole mass (Davis et al.2018, 2019).

    Figure 1 shows the variation of CIR with mass of SMBH for the sample galaxies.Filled circles, triangles and squares represent spiral, lenticular and elliptical galaxies, respectively.We find a strong correlation between the CIR of the Seyfert galaxies and the mass of their central SMBH.However, the ETGs in the sample hosts systematically have high black hole mass when compared to lenticulars and spirals, for the same value of CIR considered.The Pearson’s linear correlation coefficient, r, for the correlation exhibited by spirals and lenticulars together is -0.74 with a significance, s, >99.99%(Press et al.1992)while that for elliptical galaxies is-0.94 with a significance of 99.40%.

    Two galaxies,NGC 4594 and NGC 7582,exhibit significant deviation from this correlation.NGC 4594, the Sombrero Galaxy,is reported to have an unusually large bulge mass and a very massive SMBH at the center of the galaxy.It is usually classified as a normal spiral, Sa, galaxy (de Vaucouleurs et al.1991) but it follows many scaling relations of ellipticals(Gadotti & Sánchez-Janssen 2012).NGC 7582 is reported to host a ring with active star formation within the pc scale radius(≈190 pc)surrounding the nucleus of the galaxy,along with a high stellar velocity dispersion(Riffel et al.2009).The intense nuclear starburst activity (Cid-Fernandes et al.2001; Bianchi et al.2007) can affect its CIR value.

    In Section 3.2,we notice that there is no apparent correlation between CIR and stellar velocity dispersion of host galaxies in our sample, even though the latter and mass of SMBH are reported to share a strong correlation.In order to explore this discrepancy, we also employed a color code to distinguish the method adopted to estimate the masses of SMBHs.Masses estimated using a dynamical method (e.g., reverberation mapping,stellar dynamics,maser dynamics and gas dynamics)are shown in red while mass estimations based on stellar velocity dispersion are displayed in gray in Figure 1.If we include only dynamically estimated masses, the correlation coefficient improves to -0.77 at a significance of s=99.97%,while it reduces drastically to -0.68 (s=99.98%) when these data points are excluded.

    When the moon appeared they got up, but they found no crumbs, for the thousands of birds30 that fly about the woods and fields had picked them all up

    3.2.Variation between the CIR and σ

    The variation of CIR with stellar velocity dispersion of the sample galaxies is depicted in Figure 2(a).As already mentioned, there is no significant correlation between CIR and stellar velocity dispersion (σ) of Seyfert galaxies.However, if we exclude the eight ETGs in the sample, the velocity dispersion measurements of galaxies with dynamical estimation of SMBH (red triangles and circles) exhibit larger scatter compared to their gray counterparts.Such a discrepancy is not clear in ETGs.The extreme emission from AGN activity can complicate the measurement of central velocity dispersion in these galaxies (Riffel et al.2013).

    Measurements of stellar velocity dispersion may be biased by the contribution of rotating stellar disks because of the rotational broadening of the stellar absorption lines and the velocity dispersion measurements could be noticeably increased by the rotational effect (Woo et al.2015).Due to higher velocity-to-dispersion (V/σ) ratios, the rotational effect is significantly more prominent in LTGs than in ETGs.

    Figure 2.Variations between the CIR and(a)stellar velocity dispersion adopted from HyperLEDA database,(b)circumnuclear SFR,(c)O IV flux of AGN and(d)the inter-connection between MBH and O IV flux of the sample galaxies.O IV flux values are taken from Diamond-Stanic et al.(2009).The symbols used to represent the galaxies are same as those in Figure 1.

    3.3.Variation between the CIR and SFR

    In Figure 2(b), we explore the connection between CIR and circumnuclear SFR traced by the UV luminosity (FUV) in an aperture of radius 10″at the galactic center.We find that there is no correlation between CIR and circumnuclear SFR.The properties of sub-structures in the nuclear region of host galaxies may influence the star formation process, thereby affecting CIR.The galaxies IC 2560, NGC 0788, NGC 1667,NGC 3516,NGC 5427 and NGC 6814,denoted by numbers 1 to 6 respectively in the figure, possess nuclear dust spirals,which can regulate the nuclear SFR at the central region of the galaxies (Evans et al.1996; Pérez-Ramírez et al.2000;Martini et al.2003; Mu?oz Marín et al.2007).The galaxies IC 3639, NGC 2782, NGC 5135 and NGC 7582, numbered 7 to 10, with nuclear starburst activity (Boer et al.1992;González Delgado et al.2001; Mu?oz Marín et al.2007;Bianchi et al.2007) are also apparent outliers in the figure.NGC 1365 and NGC 7469 are the galaxies showing intense nuclear SFR, with star-forming regions concentrated in hot spots around the nucleus (Davies et al.2007; Ramos Almeida et al.2009), which are displayed in the figure by the numbers 11 and 12 respectively.By excluding these galaxies, we may see a negative trend in CIR and SFR.However,it is insufficient to confirm any connection between CIR and SFR,necessitating a thorough investigation with larger sample size.

    3.4.Variation Between the CIR and O IV Flux

    In Figure 2(c), we show the observed correlation between CIR and O IV flux of the host galaxy, which is taken from Diamond-Stanic et al.(2009).O IV flux is an accurate measureof intrinsic AGN luminosity (Diamond-Stanic et al.2009) and we find a positive correlation with CIR (r=0.70 with s >99.99%).O IV emission (25.9 μm) is a tracer of highly ionized gas of the order of 35–97 eV, and these types of midinfrared emission lines can be produced in the vicinity of hot stars in the central region of AGN host galaxies(Pottasch et al.2001; Smith et al.2004; Devost 2007).AGN luminosity depends upon the fuel consumed by the SMBH at the nuclear region of the galaxy, and ETGs have less fuel than LTGs(Rieke 2002).This suggests that AGN power is likely to decrease while SMBH grows in the host galaxy.However,NGC 3081,NGC 3185,NGC 3281,NGC 5273 and NGC 7743 deviated from this correlation.

    Table 2 The Table Lists the Best-fitting Parameters for the Relation x=α CIR+β and Correlation Coefficients for Various Relations

    4.Discussion and Conclusion

    We report photometric analysis of Seyfert galaxies using the recently discovered parameter CIR.The CIR shows good correlations with many structural parameters of host galaxies,especially with the mass of the SMBHs residing at the centers of galaxies (Aswathy & Ravikumar 2018, 2020).For Seyfert galaxies also, the CIR shows strong anti-correlation with the mass of SMBHs.However, the massive SMBHs hosted by ellipticals in the sample display a distinctive trend from that displayed by lenticulars and spirals,in the sense that ellipticals host more massive SMBHs than those hosted by lenticulars and spirals.The disky systems are indistinguishable in the correlation.It is possible that the more massive the central SMBH, the higher the suppression of star formation due to feedback (Harrison 2017).As a decrease in the light in the inner aperture reduces the value of CIR,we can expect the anticorrelation between CIR and mass of SMBH.

    The AGN feedback mechanism has a significant role in the evolution process of galaxies, in which the energy released by an AGN to the surrounding galactic medium halts the cooling of gas in the central region of galaxies and also removes the gas in the form of massive outflows (Morganti 2017).The AGN feedback process is considered to be a key factor of galaxy evolution and has been included in several simulations and analytical models for years(e.g.,Kauffmann&Haehnelt 2000;Di Matteo et al.2005; Schaye et al.2015; Sijacki et al.2015).This feedback may suppress star formation at the central part of the galaxy and may decrease or stall completely the growth of the SMBH (e.g., Croton et al.2006; Sijacki et al.2007), thus setting up a co-evolution scenario for the galaxy and its SMBH(Aswathy & Ravikumar 2018).Around 30% of Seyfert galaxies are reported to possess outflow incidents (Crenshaw et al.2003;Crenshaw&Kraemer 2007;Crenshaw et al.2012).The pc scale AGN-driven outflows in the massive galaxies can expel the gas from the nuclear region, which may reduce the gas accretion toward the center of the galaxy and lead to quenching of star formation at the central region (Morganti 2017).This interesting phenomenon has been observed in optical, UV and X-ray emissions, and could be traced to such outflows using ionized gas and absorption lines (e.g., Veilleux et al.2005;Bland-Hawthorn et al.2007;Tadhunter 2008;King& Pounds 2015).

    Different studies argued for the probability of AGN feedback by a thermal process in the vicinity of the SMBH (e.g., Di Matteo et al.2005;Springel et al.2005;Johansson et al.2009).Simulations of the AGN feedback mechanism suggest that the Compton heating effect can raise the temperature of the the gas at the nuclear region, about 10–35 pc, to ~109K (e.g., Gan et al.2014; Melioli & de Gouveia Dal Pino 2015).This AGN heating may also reduce star formation in the central region of the galaxy, and thus the value of CIR.

    Stellar velocity dispersion (σ) of the bulge component is strongly connected with the central SMBH (Ferrarese &Merritt 2000; Gebhardt et al.2000; Tremaine et al.2002;Gültekin et al.2009).Active galaxies also obey the σ-MBHrelation, but with significant scatter (Caglar et al.2020).It is also reported that CIR of ETGs is well correlated with the stellar velocity dispersion(Aswathy&Ravikumar 2018).In the present study,however,Seyfert galaxies show a large scatter in the CIR-σ relation, even though there is a strong CIR - MBHrelation.The uncertainties present in the measurement of stellar velocity dispersion could be high when excessively illuminated by the central AGN (Riffel et al.2013).Furthermore, stellar velocity dispersion measurements may be skewed due to the rotational effect of stellar disks (Woo et al.2015).In order to explain this further, we have plotted the variation of MBHwith σ in Figure 3.The velocity dispersion measurements for galaxies with dynamical estimation of mass of the SMBH available, shown in red, clearly display a larger scatter than those of galaxies without dynamical estimation of MBH(gray points).For the σ-MBHcorrelation in the combined sample of spirals and lenticulars, we obtained a linear correlation coefficient of r=0.65 with significance s >99.99%.At the same time, the correlation coefficient of the CIR - MBH(for spirals + lenticulars) relation is r=-0.74 with significance s >99.99%.The scatters of the correlations σ-MBHand CIR-MBHare 2.63 and 2.04 dex respectively,further establishing that the CIR is, in fact, a better tracer of the MBHthan the central velocity dispersion.

    Figure 3.Variation between stellar velocity dispersion and mass of the SMBH of sample galaxies along with the best fit adopted from Caglar et al.(2020).The symbols used to represent the galaxies are the same as those in Figure 1.

    The observed correlation between CIR and O IV flux,shown in Figure 2(c), also displays the possibility of larger uncertainties present in measurement of emission lines in galaxies associated with AGNs (e.g., Lutz et al.2003; Armus et al.2006, 2007; Diamond-Stanic et al.2009; Veilleux et al.2009).In this case also, the correlation coefficient increases to 0.76 with a significance of s=99.38% if we just consider galaxies with dynamically estimated SMBH masses, but it drops to 0.62 (s=99.74%) when these data points are excluded.Seyfert galaxies with high O IV flux emission possess enhanced nuclear star formation (Diamond-Stanic &Rieke 2012), and an increase in CIR is expected in galaxies with increased O IV emission.However, the O IV flux of the sample galaxies shows only a weak anti-correlation(r=-0.58 with s=99.95%) with the mass of SMBH shown in Figure 2(d), possibly due to the increased uncertainties involved in both the quantities.

    Generally, Seyfert galaxies can be observed and located through the UV emission coming out from the sources(Rieke 2002).Apart from age and morphological classification,the common feature of Seyfert galaxies is their intense star formation(Cid Fernandes et al.2004;Davies et al.2007;Sarzi et al.2007; Kauffmann & Heckman 2009).We explore the variation of the estimated circumnuclear SFR by the excess UV with CIR, as depicted in Figure 2(b).We notice that the galaxies harboring central structures such as pc scale nuclear dust spiral, nuclear starburst and the galaxies possessing high SFR exhibit large deviation in the observed CIR-SFR relation.The measure of nuclear SFR has been shown to increase from the central region to the outskirts of galaxies(Diamond-Stanic & Rieke 2012; Esquej et al.2014).The outflow from the central part of the galaxy due to the AGN feedback mechanism can interact with the interstellar medium(ISM)effectively(Ostriker et al.2010;Weinberger et al.2017;Yuan et al.2018).The feedback-driven outflow of gas enhances the star formation at larger radii from the core of the galaxy (Ishibashi et al.2013; Ishibashi & Fabian 2014).This outflow of gas can be responsible for enhancing the circumnuclear SFR.All these can affect measurements of both SFR and CIR, rendering a weak correlation between the two.

    We employed CIR to explore the presence of central features in Seyfert galaxies and their role in galaxy evolution.The analysis shows that CIR measured for Seyfert galaxies predicts the mass of central SMBHs even better than the estimates obtained by spectroscopic parameters like the central velocity dispersion.Being a photometric tool,this promises a cheap and fast technique to explore large galaxy samples,which has great potential in observations of new generation facilities like the James Webb Space Telescope.

    Acknowledgments

    We sincerely thank the anonymous referee for her/his comments which improved the quality of the paper significantly.V.K.T.would like to acknowledge the financial support from the Council of Scientific & Industrial Research (CSIR),Government of India.We acknowledge the use of the NASA/IPAC Extragalactic Database (NED), https://ned.ipac.caltech.edu/ operated by the Jet Propulsion Laboratory, California Institute of Technology, and the Hyperleda database, http://leda.univ-lyon1.fr/.We acknowledge the use of data publicly available at the Mikulski Archive for Space Telescopes(MAST), http://archive.stsci.edu/ observed by the NASA/ESA Hubble Space Telescope and Galaxy Evolution Explorer(GALEX)led by the California Institute of Technology http://galex.stsci.edu/.

    国产不卡一卡二| 少妇裸体淫交视频免费看高清| 国国产精品蜜臀av免费| 国产精品av视频在线免费观看| 1000部很黄的大片| 亚洲欧美日韩高清在线视频| 中国美白少妇内射xxxbb| av女优亚洲男人天堂| 最近手机中文字幕大全| 嫩草影院精品99| 噜噜噜噜噜久久久久久91| 毛片女人毛片| 国产 一区 欧美 日韩| 少妇的逼水好多| 午夜免费男女啪啪视频观看| 女的被弄到高潮叫床怎么办| 亚洲最大成人av| 久久亚洲精品不卡| 亚洲乱码一区二区免费版| 欧美+亚洲+日韩+国产| 亚洲精品亚洲一区二区| 国产精品福利在线免费观看| 免费看a级黄色片| www.av在线官网国产| 夜夜夜夜夜久久久久| 国产人妻一区二区三区在| 欧美成人a在线观看| 欧美在线一区亚洲| 特大巨黑吊av在线直播| 少妇高潮的动态图| 久久99热这里只有精品18| 最新中文字幕久久久久| 美女国产视频在线观看| 日韩一本色道免费dvd| 国产精品.久久久| 免费av观看视频| 国产精品99久久久久久久久| 国产成人午夜福利电影在线观看| 国内精品一区二区在线观看| 18禁黄网站禁片免费观看直播| 噜噜噜噜噜久久久久久91| 久久6这里有精品| 欧美成人一区二区免费高清观看| 亚洲综合色惰| 精品一区二区三区人妻视频| 看免费成人av毛片| 亚洲欧美日韩东京热| 中文资源天堂在线| 久久99精品国语久久久| 国产一区二区亚洲精品在线观看| 深爱激情五月婷婷| 国产一区二区亚洲精品在线观看| 日韩av不卡免费在线播放| 亚洲最大成人中文| av福利片在线观看| 插逼视频在线观看| 精品熟女少妇av免费看| 97人妻精品一区二区三区麻豆| 久久久精品欧美日韩精品| 久久精品夜色国产| 国产免费男女视频| 草草在线视频免费看| 99国产精品一区二区蜜桃av| 欧美极品一区二区三区四区| 欧美日韩综合久久久久久| 国产精品av视频在线免费观看| 久久韩国三级中文字幕| 国产亚洲av片在线观看秒播厂 | 日日摸夜夜添夜夜爱| 亚洲精品456在线播放app| 欧美变态另类bdsm刘玥| 国内精品一区二区在线观看| 国产白丝娇喘喷水9色精品| 网址你懂的国产日韩在线| 久久久欧美国产精品| 又黄又爽又刺激的免费视频.| 高清毛片免费看| 成人亚洲精品av一区二区| 日本在线视频免费播放| 亚洲av电影不卡..在线观看| 国产av一区在线观看免费| 免费看光身美女| 亚洲国产精品sss在线观看| 一级毛片久久久久久久久女| 亚洲精品456在线播放app| 一个人看视频在线观看www免费| 日韩欧美 国产精品| 国产精品无大码| 3wmmmm亚洲av在线观看| 天天躁夜夜躁狠狠久久av| 欧美区成人在线视频| 91久久精品电影网| 亚洲乱码一区二区免费版| 亚洲欧美精品专区久久| 国产成人91sexporn| 久久久久九九精品影院| 国产在线男女| 亚洲欧美精品专区久久| 亚洲高清免费不卡视频| 又黄又爽又刺激的免费视频.| 日本-黄色视频高清免费观看| 久久精品国产清高在天天线| 亚洲av一区综合| 久久久国产成人免费| 最近的中文字幕免费完整| 美女cb高潮喷水在线观看| 免费大片18禁| 一区二区三区四区激情视频 | 男女那种视频在线观看| 国产伦一二天堂av在线观看| 国内少妇人妻偷人精品xxx网站| 欧美性猛交黑人性爽| 一级黄片播放器| 国产免费男女视频| av免费在线看不卡| 午夜精品在线福利| 国产午夜精品一二区理论片| 97人妻精品一区二区三区麻豆| 免费搜索国产男女视频| 日韩大尺度精品在线看网址| 久久99精品国语久久久| 久久6这里有精品| 久久精品国产鲁丝片午夜精品| 九九在线视频观看精品| 久久久精品欧美日韩精品| 韩国av在线不卡| 欧美一级a爱片免费观看看| 久久精品国产亚洲av涩爱 | 国产片特级美女逼逼视频| 亚洲丝袜综合中文字幕| 少妇被粗大猛烈的视频| 男人和女人高潮做爰伦理| 国产在线男女| 男人舔女人下体高潮全视频| 久久韩国三级中文字幕| 一级毛片aaaaaa免费看小| 久久欧美精品欧美久久欧美| 成人午夜高清在线视频| 国产亚洲av片在线观看秒播厂 | 亚洲三级黄色毛片| av天堂在线播放| 狠狠狠狠99中文字幕| 国产精品永久免费网站| 国产极品精品免费视频能看的| 久久精品影院6| 最近2019中文字幕mv第一页| 欧美不卡视频在线免费观看| 免费av毛片视频| 久久久国产成人免费| 亚洲成av人片在线播放无| www日本黄色视频网| 成人无遮挡网站| 欧美一级a爱片免费观看看| 亚洲精品亚洲一区二区| 国产精品爽爽va在线观看网站| 亚洲国产精品成人久久小说 | av.在线天堂| 国产三级中文精品| 美女国产视频在线观看| 成人特级av手机在线观看| 91久久精品国产一区二区成人| 精品无人区乱码1区二区| 国产综合懂色| 人妻制服诱惑在线中文字幕| 亚洲,欧美,日韩| 精品熟女少妇av免费看| 亚洲熟妇中文字幕五十中出| 高清毛片免费观看视频网站| 麻豆成人av视频| 男女下面进入的视频免费午夜| 狠狠狠狠99中文字幕| 夜夜夜夜夜久久久久| 国内久久婷婷六月综合欲色啪| 精品人妻一区二区三区麻豆| 亚洲欧美日韩高清在线视频| 欧美变态另类bdsm刘玥| 1000部很黄的大片| 国产亚洲91精品色在线| 美女cb高潮喷水在线观看| 中文在线观看免费www的网站| 三级经典国产精品| 久久精品久久久久久噜噜老黄 | 69人妻影院| 蜜桃亚洲精品一区二区三区| 91狼人影院| 自拍偷自拍亚洲精品老妇| 最近视频中文字幕2019在线8| 99热6这里只有精品| a级一级毛片免费在线观看| 欧美一区二区精品小视频在线| av又黄又爽大尺度在线免费看 | 中国国产av一级| 日韩一区二区三区影片| 国产午夜精品一二区理论片| 欧美+亚洲+日韩+国产| 国国产精品蜜臀av免费| 最近2019中文字幕mv第一页| 波多野结衣巨乳人妻| 欧美+亚洲+日韩+国产| 亚洲无线在线观看| 一进一出抽搐动态| 午夜视频国产福利| 精品人妻偷拍中文字幕| 亚洲国产欧洲综合997久久,| 午夜精品在线福利| 精品国内亚洲2022精品成人| 寂寞人妻少妇视频99o| 我的女老师完整版在线观看| 亚洲最大成人手机在线| 99热这里只有是精品50| 国产亚洲精品久久久久久毛片| 菩萨蛮人人尽说江南好唐韦庄 | 午夜福利在线观看免费完整高清在 | 免费看a级黄色片| 日韩av在线大香蕉| 欧美变态另类bdsm刘玥| 免费电影在线观看免费观看| 干丝袜人妻中文字幕| 日本成人三级电影网站| 午夜亚洲福利在线播放| 国产午夜精品一二区理论片| avwww免费| 欧美xxxx黑人xx丫x性爽| 国产乱人偷精品视频| 亚洲无线观看免费| 天堂中文最新版在线下载 | 又爽又黄a免费视频| 看黄色毛片网站| 亚洲一区二区三区色噜噜| 久久精品影院6| 国产v大片淫在线免费观看| 永久网站在线| 嫩草影院入口| 特级一级黄色大片| a级毛片免费高清观看在线播放| 亚洲国产精品久久男人天堂| 人人妻人人澡人人爽人人夜夜 | 午夜福利在线观看免费完整高清在 | 国产精品麻豆人妻色哟哟久久 | 久久久久久九九精品二区国产| 亚洲国产精品成人综合色| 久久这里有精品视频免费| 久久99热这里只有精品18| 欧美色欧美亚洲另类二区| 精品熟女少妇av免费看| 亚洲五月天丁香| 日韩欧美在线乱码| 亚洲国产欧洲综合997久久,| 亚洲天堂国产精品一区在线| 最新中文字幕久久久久| 又爽又黄无遮挡网站| 边亲边吃奶的免费视频| 99国产精品一区二区蜜桃av| 亚洲,欧美,日韩| 久久精品影院6| 亚洲精品乱码久久久v下载方式| 日日啪夜夜撸| 在线免费十八禁| 变态另类成人亚洲欧美熟女| 久久6这里有精品| 久久久久久久久中文| 久久精品国产清高在天天线| 亚洲美女搞黄在线观看| 欧美日韩精品成人综合77777| 成人av在线播放网站| 黄色日韩在线| 岛国在线免费视频观看| 久久精品国产亚洲av涩爱 | 国产毛片a区久久久久| or卡值多少钱| 亚洲av中文字字幕乱码综合| 国产精品一区二区三区四区久久| 老女人水多毛片| 久久国产乱子免费精品| 韩国av在线不卡| 午夜福利在线观看免费完整高清在 | 赤兔流量卡办理| www.色视频.com| 国产人妻一区二区三区在| 尾随美女入室| 人人妻人人澡欧美一区二区| 亚洲内射少妇av| 18禁在线播放成人免费| 国产美女午夜福利| 成人一区二区视频在线观看| 久久热精品热| 欧美日韩乱码在线| 如何舔出高潮| h日本视频在线播放| www.色视频.com| 久久草成人影院| 此物有八面人人有两片| 毛片女人毛片| 成人特级黄色片久久久久久久| 最近中文字幕高清免费大全6| 国产精品野战在线观看| 亚洲综合色惰| 在线免费十八禁| 成人永久免费在线观看视频| 欧美日韩在线观看h| 一级毛片电影观看 | 日韩精品青青久久久久久| 欧美性猛交╳xxx乱大交人| 晚上一个人看的免费电影| 夜夜看夜夜爽夜夜摸| 国产一区二区亚洲精品在线观看| 男人狂女人下面高潮的视频| 夫妻性生交免费视频一级片| 少妇的逼好多水| 国产69精品久久久久777片| 亚洲av二区三区四区| 亚洲精品粉嫩美女一区| 99久国产av精品| 亚洲电影在线观看av| 91久久精品国产一区二区三区| 人妻久久中文字幕网| 亚洲中文字幕日韩| 国产精品爽爽va在线观看网站| 亚洲av电影不卡..在线观看| 亚洲一区二区三区色噜噜| 少妇裸体淫交视频免费看高清| 中文字幕人妻熟人妻熟丝袜美| 男女啪啪激烈高潮av片| 亚洲七黄色美女视频| 国产精品麻豆人妻色哟哟久久 | 精品国内亚洲2022精品成人| 深夜a级毛片| 99久久精品国产国产毛片| 日韩成人伦理影院| 日日撸夜夜添| 午夜激情欧美在线| 国产精品一区二区在线观看99 | 久久这里有精品视频免费| 欧美bdsm另类| 1024手机看黄色片| 国产精品99久久久久久久久| 在线免费观看的www视频| 麻豆av噜噜一区二区三区| 国产熟女欧美一区二区| 国产精品爽爽va在线观看网站| 久久精品国产亚洲av天美| 国产乱人视频| 亚洲国产精品成人综合色| av专区在线播放| 久久亚洲精品不卡| 最近的中文字幕免费完整| 亚洲经典国产精华液单| 久久久精品94久久精品| 色尼玛亚洲综合影院| 久久热精品热| 18禁在线无遮挡免费观看视频| 中文字幕av在线有码专区| 国产伦精品一区二区三区视频9| 乱系列少妇在线播放| 国语自产精品视频在线第100页| 国产一区二区激情短视频| 亚洲美女搞黄在线观看| 波多野结衣高清无吗| 精品久久久久久久末码| 午夜视频国产福利| 丰满的人妻完整版| 麻豆乱淫一区二区| av.在线天堂| 日日干狠狠操夜夜爽| 国产探花在线观看一区二区| 26uuu在线亚洲综合色| 国产麻豆成人av免费视频| 黄色日韩在线| 青春草亚洲视频在线观看| 老女人水多毛片| 2021天堂中文幕一二区在线观| 春色校园在线视频观看| 中文资源天堂在线| www.色视频.com| 精品欧美国产一区二区三| 精品少妇黑人巨大在线播放 | 亚洲av免费在线观看| 久久精品国产亚洲网站| 波野结衣二区三区在线| 男女边吃奶边做爰视频| 蜜桃亚洲精品一区二区三区| 永久网站在线| 日韩亚洲欧美综合| 男女啪啪激烈高潮av片| 国产探花在线观看一区二区| 男女做爰动态图高潮gif福利片| 国产日本99.免费观看| 亚洲av二区三区四区| 国产一区二区激情短视频| 嘟嘟电影网在线观看| 色综合色国产| 久久亚洲精品不卡| 嫩草影院入口| 十八禁国产超污无遮挡网站| 久久精品91蜜桃| 亚洲无线在线观看| 级片在线观看| 久久99蜜桃精品久久| 精品久久久久久久末码| 中文字幕av在线有码专区| 菩萨蛮人人尽说江南好唐韦庄 | 免费观看人在逋| 午夜视频国产福利| 狂野欧美激情性xxxx在线观看| 小蜜桃在线观看免费完整版高清| 激情 狠狠 欧美| 尾随美女入室| 免费人成视频x8x8入口观看| 亚洲人成网站在线播放欧美日韩| 麻豆成人午夜福利视频| 蜜臀久久99精品久久宅男| 成人鲁丝片一二三区免费| av国产免费在线观看| 高清毛片免费看| av免费在线看不卡| 美女被艹到高潮喷水动态| 综合色av麻豆| 日本熟妇午夜| 能在线免费看毛片的网站| 精品熟女少妇av免费看| 国产麻豆成人av免费视频| 蜜臀久久99精品久久宅男| 成人二区视频| 色综合亚洲欧美另类图片| 国产精品麻豆人妻色哟哟久久 | 国产精品一及| 免费观看精品视频网站| 黄色视频,在线免费观看| 久久久久久久久久成人| 精品久久久久久久末码| 我的老师免费观看完整版| 国产成人aa在线观看| 99国产极品粉嫩在线观看| 嘟嘟电影网在线观看| 国产精品av视频在线免费观看| 最近最新中文字幕大全电影3| 国产亚洲91精品色在线| 中文资源天堂在线| 99久久无色码亚洲精品果冻| 国产一级毛片七仙女欲春2| 国产黄色视频一区二区在线观看 | 深爱激情五月婷婷| 九草在线视频观看| 美女cb高潮喷水在线观看| 国产女主播在线喷水免费视频网站 | 国产精品一区二区三区四区久久| 久久久欧美国产精品| 亚洲av第一区精品v没综合| 欧美最新免费一区二区三区| av女优亚洲男人天堂| av在线观看视频网站免费| 午夜福利成人在线免费观看| 久久久久久久久久黄片| 99精品在免费线老司机午夜| 亚洲av一区综合| 国产精品.久久久| 禁无遮挡网站| 日产精品乱码卡一卡2卡三| 女的被弄到高潮叫床怎么办| 日韩欧美三级三区| 99热这里只有精品一区| 日日撸夜夜添| 国产午夜精品一二区理论片| 欧美激情在线99| 亚洲电影在线观看av| 热99re8久久精品国产| 精华霜和精华液先用哪个| 国产精品永久免费网站| 男女边吃奶边做爰视频| 少妇熟女aⅴ在线视频| 一级毛片我不卡| 日本免费一区二区三区高清不卡| 中出人妻视频一区二区| 爱豆传媒免费全集在线观看| 久久久久久久久中文| 亚洲av熟女| 你懂的网址亚洲精品在线观看 | 欧美高清成人免费视频www| 岛国在线免费视频观看| 亚洲一区二区三区色噜噜| a级毛色黄片| 国产精品av视频在线免费观看| 精品久久久噜噜| 久久精品综合一区二区三区| 日韩视频在线欧美| 国产精品一区二区三区四区久久| 老女人水多毛片| 国产精品久久久久久精品电影| 人妻久久中文字幕网| 免费看a级黄色片| 久久久国产成人免费| 国产老妇女一区| 日日摸夜夜添夜夜爱| 伊人久久精品亚洲午夜| 国产精品精品国产色婷婷| 国产av麻豆久久久久久久| 亚洲一级一片aⅴ在线观看| 成人亚洲精品av一区二区| 久久欧美精品欧美久久欧美| 精品久久久久久久末码| 久久久欧美国产精品| 变态另类丝袜制服| 久久久久久久久久久丰满| 深夜a级毛片| 在线免费观看不下载黄p国产| 三级国产精品欧美在线观看| 我要搜黄色片| 精品久久久久久久人妻蜜臀av| 深夜精品福利| 色尼玛亚洲综合影院| 五月伊人婷婷丁香| 久久99热6这里只有精品| 身体一侧抽搐| 性插视频无遮挡在线免费观看| 欧美日本视频| 长腿黑丝高跟| 午夜精品国产一区二区电影 | 国产片特级美女逼逼视频| 欧美三级亚洲精品| av卡一久久| 精品不卡国产一区二区三区| 最近2019中文字幕mv第一页| 久久精品国产自在天天线| 国产在线精品亚洲第一网站| 激情 狠狠 欧美| 免费无遮挡裸体视频| 好男人在线观看高清免费视频| 成年女人看的毛片在线观看| 一级毛片我不卡| 精品熟女少妇av免费看| 国产精品一二三区在线看| 国产三级中文精品| 中国美女看黄片| 国内精品一区二区在线观看| 国产黄色小视频在线观看| 久久这里有精品视频免费| 久久99热这里只有精品18| 青春草国产在线视频 | 国产高潮美女av| 男人和女人高潮做爰伦理| 成人亚洲欧美一区二区av| 69av精品久久久久久| 久久亚洲国产成人精品v| 岛国在线免费视频观看| av在线蜜桃| 欧美3d第一页| 国产精品,欧美在线| 日韩在线高清观看一区二区三区| 99九九线精品视频在线观看视频| 国产成人午夜福利电影在线观看| 综合色av麻豆| 成人综合一区亚洲| 九色成人免费人妻av| 99精品在免费线老司机午夜| 黑人高潮一二区| 观看免费一级毛片| 精品一区二区免费观看| 亚洲天堂国产精品一区在线| 久久精品国产清高在天天线| 免费在线观看成人毛片| 91久久精品电影网| 一级黄片播放器| 黄片无遮挡物在线观看| 人妻系列 视频| 国产精品无大码| 如何舔出高潮| 久久精品国产亚洲av香蕉五月| 亚洲在线自拍视频| 久久6这里有精品| 日韩人妻高清精品专区| 级片在线观看| 午夜亚洲福利在线播放| 一区二区三区高清视频在线| 亚洲美女搞黄在线观看| 中国国产av一级| 在线天堂最新版资源| 日韩 亚洲 欧美在线| 少妇人妻一区二区三区视频| 国产精品蜜桃在线观看 | 九色成人免费人妻av| 乱码一卡2卡4卡精品| 久久中文看片网| av在线老鸭窝| 久久久成人免费电影| 国产亚洲av片在线观看秒播厂 | 国产精华一区二区三区| 12—13女人毛片做爰片一| 精品无人区乱码1区二区| 亚洲精品久久久久久婷婷小说 | 在线观看午夜福利视频| 中文亚洲av片在线观看爽| 男人的好看免费观看在线视频| 成人毛片60女人毛片免费| 日韩一区二区三区影片| 黄片wwwwww| 51国产日韩欧美| 日本-黄色视频高清免费观看| 老司机影院成人| 我的老师免费观看完整版| 国产精品一区www在线观看| 日本五十路高清| 免费看av在线观看网站| 国产精品福利在线免费观看| 成熟少妇高潮喷水视频| 色吧在线观看| 成人美女网站在线观看视频| 国产一区二区在线av高清观看| 亚洲人成网站在线观看播放| 一夜夜www| 看十八女毛片水多多多| 久久国内精品自在自线图片| 亚洲精品乱码久久久久久按摩| 欧美3d第一页| 久久久久久久久大av| 日韩一区二区视频免费看|