• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of Central Intensity Ratio of Seyfert Galaxies in Nearby Universe

    2023-05-29 10:28:38VinodBaheejaAswathyandRavikumar

    K.T.Vinod, C.Baheeja, S.Aswathy, and C.D.Ravikumar

    1 Department of Physics, University of Calicut, Malappuram-673635, India; vinod2085@gmail.com

    2Department of Physics, Providence Women’s College, Calicut-673009, India

    Abstract We use the recently discovered simple photometric parameter Central Intensity Ratio (CIR) determined for a sample of 57 nearby (z <0.02) Seyfert galaxies to explore the central features of galaxies and their possible connection with galaxy evolution.The sample of galaxies shows strong anti-correlation between CIR and mass of their central supermassive black holes (SMBHs).The SMBH masses of ellipticals are systematically higher for a given CIR value than those for lenticulars and spirals in the sample.However, the correlation between CIR and central velocity dispersion is weak.CIR appears less influenced by the excess flux produced by the central engine in these galaxies,when compared to spectroscopic parameters like velocity dispersion and O IV flux,and proves to be a fast and reliable tool for estimating central SMBH mass.

    Key words:Galaxy:evolution–galaxies:active–galaxies:photometry–(galaxies:)quasars:supermassive black holes – galaxies: Seyfert

    1.Introduction

    The central supermassive black hole (SMBH) residing in massive galaxies is believed to play a key role in the evolution scenario of host galaxies.The evolution mechanism of the central engine of every galaxy is connected with the star formation process in the host galaxy.It is commonly accepted that the accretion mechanism is the prime reason for the origin and growth of active galactic nuclei (AGNs) in the nuclear region of galaxies (Kawakatu et al.2006; Ellison et al.2011;Silverman et al.2011; Villforth et al.2012).

    AGNs are hosted at the centers of elliptical galaxies or bulge dominating spheroids across all redshifts (Kauffmann et al.2003; Povi? et al.2009), whereas the morphology of local Seyfert galaxies is generally spiral (Ho et al.1995; Ho 2008).Intense circumnuclear star formation plays a crucial role in the evolution and emission process of Seyfert galaxies, specifically, Sy2 galaxies (e.g., Terlevich & Melnick 1985; Cid Fernandes et al.1995; Maiolino et al.1998; Cid Fernandes et al.2001; González Delgado et al.2001).

    Seyfert galaxies are among the most studied objects in the radio quiet(RQ)category,along with quasars(Weedman 1977;Osterbrock & Martel 1993; Rashed et al.2015).The role of feedback by the central SMBH in the relationships between the mass of the SMBH and bulge properties of Seyfert galaxies is still unclear because the merger events govern the formation of bulges while Seyfert galaxies are believed to be evolving through secular evolution (Hopkins et al.2006; Kormendy &Ho 2013; Heckman & Best 2014).Recent studies revealed the existence of fast outflows of ionized gas in nearby Seyfert galaxies, but their influence on star formation is still under debate(Christensen et al.2006;Krause et al.2007;Wang et al.2012; García-Burillo et al.2014; Morganti et al.2015;Querejeta et al.2016).However, if the host galaxies possess such outflows,they could expel the gas from the central region and suppress the star formation (Alexander & Hickox 2012;García-Burillo et al.2014; Alatalo et al.2015; Hopkins et al.2016; Wylezalek & Zakamska 2016).

    The masses of central SMBHs are reported to correlate well with the stellar mass and stellar velocity dispersion of the bulges of their host galaxies (see, e.g., Magorrian et al.1998;Ferrarese & Merritt 2000; Gebhardt et al.2000; Marconi &Hunt 2003; H?ring & Rix 2004; Kormendy & Ho 2013;McConnell & Ma 2013; Savorgnan & Graham 2015).The bulges and SMBHs seem to evolve together and regulate each other (Alonso-Herrero et al.2013).The relations (between MBH, bulge mass and stellar velocity dispersion) propose a strong connection between the formation of black hole mass,emergence of AGNs and the host galaxy evolution(Ferrarese&Merritt 2000; Gültekin et al.2009) as well.

    Central light concentration is a vital parameter,which can be used as a tracer of the disk to bulge ratio,star formation activity and galaxy evolution (Abraham et al.1994; Conselice 2003).The Central Intensity Ratio (CIR), a new photometric parameter,is well correlated with the masses of central SMBHs of the spheroid of early-type galaxies (ETGs, Aswathy &Ravikumar 2018).Furthermore,CIR is an efficient photometric tool to study the central and structural properties of spiral galaxies, especially barred systems, and also gives some valid information regarding nuclear star formation and AGN formalism in host galaxies (Aswathy & Ravikumar 2020).Inthis light, we perform an optical analysis by utilizing the parameter,CIR,to study the central properties and evolution of Seyfert galaxies.

    Table 1 Table 1 Lists the Properties of Sample Galaxies

    Table 1(Continued)

    This paper is organized as follows; Section 2 describes the properties of the sample galaxies and the data reduction techniques employed in this study, and Section 3 deals with results consisting of various correlations.Discussions and conclusions are provided in Section 4.

    Throughout this paper, we have used the cosmological parameters:H0=73.0 km s-1Mpc-1;Ωmatter=0.27;Ωvacuum=0.73.

    2.The Data and Data Reduction

    Following Aswathy & Ravikumar (2018), the CIR is determined for the sample galaxies by using the aperture photometry (MAG_APER) technique, which is provided in Source-Extractor (SExtractor, Bertin & Arnouts 1996).

    where I1and I2are the intensities and m1and m2are the corresponding magnitudes of the light within the inner and outer apertures of radii R1and R2, respectively.The inner radius is chosen such that it is a few times the point spread function(PSF).The outer radius(conventionally 2R1)is chosen such that the aperture is lying fairly within the galaxy image.For the sample, we chose the inner and outer radii as 1 5 and 3″, respectively.

    Ultraviolet (UV) observations are vital in providing recent star formation activity in galaxies (e.g., Thilker et al.2005; Gil de Paz et al.2005, 2007; Koribalski & López-Sánchez 2009).For the estimation of circumnuclear star formation rate (SFR), we examined far-UV (FUV, 1350–1750 ?) data on the sample galaxies observed by the Galaxy Evolution Explorer (GALEX) mission.We considered an aperture size of 10″ at the center of the image to estimate the circumnuclear SFR following López-Sánchez (2010) using the calibration reported by Salim et al.(2007) which is provided in Table 1.

    Figure 1.Correlation between the CIR and mass of the SMBH of the sample galaxies.Filled circles, triangles and squares represent spiral, lenticular and elliptical galaxies, respectively.Estimations of masses of SMBHs using dynamical methods are signified as red data points,while gray color is used to represent those from the stellar velocity dispersion measurements of host galaxies.

    3.Results

    Scaling relations displayed by various structural and dynamical observables of galaxies can shed vital information on formation and evolution processes in galaxies.We have estimated the CIR at the optical centers of 57 Seyfert galaxies observed using HST.The sample properties, along with the estimated values of CIR, are tabulated in Table 1.We next explore various trends involving CIR.

    3.1.Variation of CIR with SMBH Mass

    The scaling relations of black hole mass are generally determined and explored utilizing the bulge properties of the host galaxies, specifically in ETGs (Kormendy & Richstone 1995; Ferrarese & Merritt 2000; McConnell & Ma 2013).Structural properties of late-type galaxies(LTGs),like the pitch angle of spiral arms, share an intriguing scaling relation with black hole mass (Davis et al.2018, 2019).

    Figure 1 shows the variation of CIR with mass of SMBH for the sample galaxies.Filled circles, triangles and squares represent spiral, lenticular and elliptical galaxies, respectively.We find a strong correlation between the CIR of the Seyfert galaxies and the mass of their central SMBH.However, the ETGs in the sample hosts systematically have high black hole mass when compared to lenticulars and spirals, for the same value of CIR considered.The Pearson’s linear correlation coefficient, r, for the correlation exhibited by spirals and lenticulars together is -0.74 with a significance, s, >99.99%(Press et al.1992)while that for elliptical galaxies is-0.94 with a significance of 99.40%.

    Two galaxies,NGC 4594 and NGC 7582,exhibit significant deviation from this correlation.NGC 4594, the Sombrero Galaxy,is reported to have an unusually large bulge mass and a very massive SMBH at the center of the galaxy.It is usually classified as a normal spiral, Sa, galaxy (de Vaucouleurs et al.1991) but it follows many scaling relations of ellipticals(Gadotti & Sánchez-Janssen 2012).NGC 7582 is reported to host a ring with active star formation within the pc scale radius(≈190 pc)surrounding the nucleus of the galaxy,along with a high stellar velocity dispersion(Riffel et al.2009).The intense nuclear starburst activity (Cid-Fernandes et al.2001; Bianchi et al.2007) can affect its CIR value.

    In Section 3.2,we notice that there is no apparent correlation between CIR and stellar velocity dispersion of host galaxies in our sample, even though the latter and mass of SMBH are reported to share a strong correlation.In order to explore this discrepancy, we also employed a color code to distinguish the method adopted to estimate the masses of SMBHs.Masses estimated using a dynamical method (e.g., reverberation mapping,stellar dynamics,maser dynamics and gas dynamics)are shown in red while mass estimations based on stellar velocity dispersion are displayed in gray in Figure 1.If we include only dynamically estimated masses, the correlation coefficient improves to -0.77 at a significance of s=99.97%,while it reduces drastically to -0.68 (s=99.98%) when these data points are excluded.

    When the moon appeared they got up, but they found no crumbs, for the thousands of birds30 that fly about the woods and fields had picked them all up

    3.2.Variation between the CIR and σ

    The variation of CIR with stellar velocity dispersion of the sample galaxies is depicted in Figure 2(a).As already mentioned, there is no significant correlation between CIR and stellar velocity dispersion (σ) of Seyfert galaxies.However, if we exclude the eight ETGs in the sample, the velocity dispersion measurements of galaxies with dynamical estimation of SMBH (red triangles and circles) exhibit larger scatter compared to their gray counterparts.Such a discrepancy is not clear in ETGs.The extreme emission from AGN activity can complicate the measurement of central velocity dispersion in these galaxies (Riffel et al.2013).

    Measurements of stellar velocity dispersion may be biased by the contribution of rotating stellar disks because of the rotational broadening of the stellar absorption lines and the velocity dispersion measurements could be noticeably increased by the rotational effect (Woo et al.2015).Due to higher velocity-to-dispersion (V/σ) ratios, the rotational effect is significantly more prominent in LTGs than in ETGs.

    Figure 2.Variations between the CIR and(a)stellar velocity dispersion adopted from HyperLEDA database,(b)circumnuclear SFR,(c)O IV flux of AGN and(d)the inter-connection between MBH and O IV flux of the sample galaxies.O IV flux values are taken from Diamond-Stanic et al.(2009).The symbols used to represent the galaxies are same as those in Figure 1.

    3.3.Variation between the CIR and SFR

    In Figure 2(b), we explore the connection between CIR and circumnuclear SFR traced by the UV luminosity (FUV) in an aperture of radius 10″at the galactic center.We find that there is no correlation between CIR and circumnuclear SFR.The properties of sub-structures in the nuclear region of host galaxies may influence the star formation process, thereby affecting CIR.The galaxies IC 2560, NGC 0788, NGC 1667,NGC 3516,NGC 5427 and NGC 6814,denoted by numbers 1 to 6 respectively in the figure, possess nuclear dust spirals,which can regulate the nuclear SFR at the central region of the galaxies (Evans et al.1996; Pérez-Ramírez et al.2000;Martini et al.2003; Mu?oz Marín et al.2007).The galaxies IC 3639, NGC 2782, NGC 5135 and NGC 7582, numbered 7 to 10, with nuclear starburst activity (Boer et al.1992;González Delgado et al.2001; Mu?oz Marín et al.2007;Bianchi et al.2007) are also apparent outliers in the figure.NGC 1365 and NGC 7469 are the galaxies showing intense nuclear SFR, with star-forming regions concentrated in hot spots around the nucleus (Davies et al.2007; Ramos Almeida et al.2009), which are displayed in the figure by the numbers 11 and 12 respectively.By excluding these galaxies, we may see a negative trend in CIR and SFR.However,it is insufficient to confirm any connection between CIR and SFR,necessitating a thorough investigation with larger sample size.

    3.4.Variation Between the CIR and O IV Flux

    In Figure 2(c), we show the observed correlation between CIR and O IV flux of the host galaxy, which is taken from Diamond-Stanic et al.(2009).O IV flux is an accurate measureof intrinsic AGN luminosity (Diamond-Stanic et al.2009) and we find a positive correlation with CIR (r=0.70 with s >99.99%).O IV emission (25.9 μm) is a tracer of highly ionized gas of the order of 35–97 eV, and these types of midinfrared emission lines can be produced in the vicinity of hot stars in the central region of AGN host galaxies(Pottasch et al.2001; Smith et al.2004; Devost 2007).AGN luminosity depends upon the fuel consumed by the SMBH at the nuclear region of the galaxy, and ETGs have less fuel than LTGs(Rieke 2002).This suggests that AGN power is likely to decrease while SMBH grows in the host galaxy.However,NGC 3081,NGC 3185,NGC 3281,NGC 5273 and NGC 7743 deviated from this correlation.

    Table 2 The Table Lists the Best-fitting Parameters for the Relation x=α CIR+β and Correlation Coefficients for Various Relations

    4.Discussion and Conclusion

    We report photometric analysis of Seyfert galaxies using the recently discovered parameter CIR.The CIR shows good correlations with many structural parameters of host galaxies,especially with the mass of the SMBHs residing at the centers of galaxies (Aswathy & Ravikumar 2018, 2020).For Seyfert galaxies also, the CIR shows strong anti-correlation with the mass of SMBHs.However, the massive SMBHs hosted by ellipticals in the sample display a distinctive trend from that displayed by lenticulars and spirals,in the sense that ellipticals host more massive SMBHs than those hosted by lenticulars and spirals.The disky systems are indistinguishable in the correlation.It is possible that the more massive the central SMBH, the higher the suppression of star formation due to feedback (Harrison 2017).As a decrease in the light in the inner aperture reduces the value of CIR,we can expect the anticorrelation between CIR and mass of SMBH.

    The AGN feedback mechanism has a significant role in the evolution process of galaxies, in which the energy released by an AGN to the surrounding galactic medium halts the cooling of gas in the central region of galaxies and also removes the gas in the form of massive outflows (Morganti 2017).The AGN feedback process is considered to be a key factor of galaxy evolution and has been included in several simulations and analytical models for years(e.g.,Kauffmann&Haehnelt 2000;Di Matteo et al.2005; Schaye et al.2015; Sijacki et al.2015).This feedback may suppress star formation at the central part of the galaxy and may decrease or stall completely the growth of the SMBH (e.g., Croton et al.2006; Sijacki et al.2007), thus setting up a co-evolution scenario for the galaxy and its SMBH(Aswathy & Ravikumar 2018).Around 30% of Seyfert galaxies are reported to possess outflow incidents (Crenshaw et al.2003;Crenshaw&Kraemer 2007;Crenshaw et al.2012).The pc scale AGN-driven outflows in the massive galaxies can expel the gas from the nuclear region, which may reduce the gas accretion toward the center of the galaxy and lead to quenching of star formation at the central region (Morganti 2017).This interesting phenomenon has been observed in optical, UV and X-ray emissions, and could be traced to such outflows using ionized gas and absorption lines (e.g., Veilleux et al.2005;Bland-Hawthorn et al.2007;Tadhunter 2008;King& Pounds 2015).

    Different studies argued for the probability of AGN feedback by a thermal process in the vicinity of the SMBH (e.g., Di Matteo et al.2005;Springel et al.2005;Johansson et al.2009).Simulations of the AGN feedback mechanism suggest that the Compton heating effect can raise the temperature of the the gas at the nuclear region, about 10–35 pc, to ~109K (e.g., Gan et al.2014; Melioli & de Gouveia Dal Pino 2015).This AGN heating may also reduce star formation in the central region of the galaxy, and thus the value of CIR.

    Stellar velocity dispersion (σ) of the bulge component is strongly connected with the central SMBH (Ferrarese &Merritt 2000; Gebhardt et al.2000; Tremaine et al.2002;Gültekin et al.2009).Active galaxies also obey the σ-MBHrelation, but with significant scatter (Caglar et al.2020).It is also reported that CIR of ETGs is well correlated with the stellar velocity dispersion(Aswathy&Ravikumar 2018).In the present study,however,Seyfert galaxies show a large scatter in the CIR-σ relation, even though there is a strong CIR - MBHrelation.The uncertainties present in the measurement of stellar velocity dispersion could be high when excessively illuminated by the central AGN (Riffel et al.2013).Furthermore, stellar velocity dispersion measurements may be skewed due to the rotational effect of stellar disks (Woo et al.2015).In order to explain this further, we have plotted the variation of MBHwith σ in Figure 3.The velocity dispersion measurements for galaxies with dynamical estimation of mass of the SMBH available, shown in red, clearly display a larger scatter than those of galaxies without dynamical estimation of MBH(gray points).For the σ-MBHcorrelation in the combined sample of spirals and lenticulars, we obtained a linear correlation coefficient of r=0.65 with significance s >99.99%.At the same time, the correlation coefficient of the CIR - MBH(for spirals + lenticulars) relation is r=-0.74 with significance s >99.99%.The scatters of the correlations σ-MBHand CIR-MBHare 2.63 and 2.04 dex respectively,further establishing that the CIR is, in fact, a better tracer of the MBHthan the central velocity dispersion.

    Figure 3.Variation between stellar velocity dispersion and mass of the SMBH of sample galaxies along with the best fit adopted from Caglar et al.(2020).The symbols used to represent the galaxies are the same as those in Figure 1.

    The observed correlation between CIR and O IV flux,shown in Figure 2(c), also displays the possibility of larger uncertainties present in measurement of emission lines in galaxies associated with AGNs (e.g., Lutz et al.2003; Armus et al.2006, 2007; Diamond-Stanic et al.2009; Veilleux et al.2009).In this case also, the correlation coefficient increases to 0.76 with a significance of s=99.38% if we just consider galaxies with dynamically estimated SMBH masses, but it drops to 0.62 (s=99.74%) when these data points are excluded.Seyfert galaxies with high O IV flux emission possess enhanced nuclear star formation (Diamond-Stanic &Rieke 2012), and an increase in CIR is expected in galaxies with increased O IV emission.However, the O IV flux of the sample galaxies shows only a weak anti-correlation(r=-0.58 with s=99.95%) with the mass of SMBH shown in Figure 2(d), possibly due to the increased uncertainties involved in both the quantities.

    Generally, Seyfert galaxies can be observed and located through the UV emission coming out from the sources(Rieke 2002).Apart from age and morphological classification,the common feature of Seyfert galaxies is their intense star formation(Cid Fernandes et al.2004;Davies et al.2007;Sarzi et al.2007; Kauffmann & Heckman 2009).We explore the variation of the estimated circumnuclear SFR by the excess UV with CIR, as depicted in Figure 2(b).We notice that the galaxies harboring central structures such as pc scale nuclear dust spiral, nuclear starburst and the galaxies possessing high SFR exhibit large deviation in the observed CIR-SFR relation.The measure of nuclear SFR has been shown to increase from the central region to the outskirts of galaxies(Diamond-Stanic & Rieke 2012; Esquej et al.2014).The outflow from the central part of the galaxy due to the AGN feedback mechanism can interact with the interstellar medium(ISM)effectively(Ostriker et al.2010;Weinberger et al.2017;Yuan et al.2018).The feedback-driven outflow of gas enhances the star formation at larger radii from the core of the galaxy (Ishibashi et al.2013; Ishibashi & Fabian 2014).This outflow of gas can be responsible for enhancing the circumnuclear SFR.All these can affect measurements of both SFR and CIR, rendering a weak correlation between the two.

    We employed CIR to explore the presence of central features in Seyfert galaxies and their role in galaxy evolution.The analysis shows that CIR measured for Seyfert galaxies predicts the mass of central SMBHs even better than the estimates obtained by spectroscopic parameters like the central velocity dispersion.Being a photometric tool,this promises a cheap and fast technique to explore large galaxy samples,which has great potential in observations of new generation facilities like the James Webb Space Telescope.

    Acknowledgments

    We sincerely thank the anonymous referee for her/his comments which improved the quality of the paper significantly.V.K.T.would like to acknowledge the financial support from the Council of Scientific & Industrial Research (CSIR),Government of India.We acknowledge the use of the NASA/IPAC Extragalactic Database (NED), https://ned.ipac.caltech.edu/ operated by the Jet Propulsion Laboratory, California Institute of Technology, and the Hyperleda database, http://leda.univ-lyon1.fr/.We acknowledge the use of data publicly available at the Mikulski Archive for Space Telescopes(MAST), http://archive.stsci.edu/ observed by the NASA/ESA Hubble Space Telescope and Galaxy Evolution Explorer(GALEX)led by the California Institute of Technology http://galex.stsci.edu/.

    亚洲欧美精品综合久久99| 午夜福利18| 男人舔女人下体高潮全视频| 中文字幕熟女人妻在线| 狂野欧美白嫩少妇大欣赏| 内地一区二区视频在线| 国产午夜精品论理片| 国产精品一区二区性色av| 一区福利在线观看| 成人午夜高清在线视频| 99久国产av精品| 亚洲av中文字字幕乱码综合| 22中文网久久字幕| 天堂动漫精品| 久久国内精品自在自线图片| 一本精品99久久精品77| 国产精品亚洲一级av第二区| www日本黄色视频网| 精品久久国产蜜桃| 亚洲国产精品成人久久小说 | 亚洲欧美精品综合久久99| 亚洲av中文字字幕乱码综合| 日韩av不卡免费在线播放| 婷婷六月久久综合丁香| 国产成人a∨麻豆精品| 在线看三级毛片| 99热精品在线国产| 国产成人精品久久久久久| 国产精品av视频在线免费观看| 最近视频中文字幕2019在线8| 男人和女人高潮做爰伦理| 久久久久久久久久久丰满| 欧美绝顶高潮抽搐喷水| 少妇人妻一区二区三区视频| 日韩成人av中文字幕在线观看 | 村上凉子中文字幕在线| 国产精品精品国产色婷婷| 成人av在线播放网站| 国产乱人偷精品视频| 日韩国内少妇激情av| 亚洲激情五月婷婷啪啪| 亚洲电影在线观看av| 深夜a级毛片| 日韩强制内射视频| a级毛色黄片| 日日摸夜夜添夜夜添小说| 国产精品久久久久久久电影| 亚州av有码| 亚洲婷婷狠狠爱综合网| 级片在线观看| 波野结衣二区三区在线| 日本精品一区二区三区蜜桃| 别揉我奶头~嗯~啊~动态视频| 成人美女网站在线观看视频| ponron亚洲| 床上黄色一级片| 亚洲国产色片| 日韩在线高清观看一区二区三区| 亚洲精品在线观看二区| 久久综合国产亚洲精品| 欧美极品一区二区三区四区| 国产老妇女一区| 免费av毛片视频| 中国美女看黄片| 别揉我奶头 嗯啊视频| 免费无遮挡裸体视频| 色噜噜av男人的天堂激情| 两个人视频免费观看高清| 女人被狂操c到高潮| 欧美日韩国产亚洲二区| 99久久精品热视频| 午夜福利视频1000在线观看| 日本一本二区三区精品| 神马国产精品三级电影在线观看| 最近中文字幕高清免费大全6| 亚洲av不卡在线观看| 国产精品99久久久久久久久| 国产高清激情床上av| 欧美成人a在线观看| 日本在线视频免费播放| 不卡一级毛片| 国产一区二区三区在线臀色熟女| 精品一区二区三区视频在线| 97超级碰碰碰精品色视频在线观看| 亚洲人成网站高清观看| 日本a在线网址| 日韩一本色道免费dvd| 精品国产三级普通话版| 超碰av人人做人人爽久久| 日本一二三区视频观看| 成人鲁丝片一二三区免费| 级片在线观看| 直男gayav资源| 中文字幕久久专区| 亚洲欧美成人精品一区二区| 国产精品电影一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品1区2区在线观看.| 婷婷亚洲欧美| 亚洲第一区二区三区不卡| av天堂中文字幕网| 国产亚洲精品久久久久久毛片| 日本免费一区二区三区高清不卡| 日韩精品青青久久久久久| 日韩欧美精品v在线| 人人妻人人澡欧美一区二区| 一进一出抽搐gif免费好疼| 12—13女人毛片做爰片一| 日韩欧美 国产精品| 国产精品综合久久久久久久免费| 男人舔奶头视频| 两个人的视频大全免费| av中文乱码字幕在线| 五月伊人婷婷丁香| 久久99热这里只有精品18| 色哟哟·www| 国产精品精品国产色婷婷| 成人鲁丝片一二三区免费| 色综合色国产| 久久精品影院6| 韩国av在线不卡| 久久久久久久久久成人| 菩萨蛮人人尽说江南好唐韦庄 | 日本与韩国留学比较| 午夜亚洲福利在线播放| 亚洲天堂国产精品一区在线| 亚洲真实伦在线观看| 少妇裸体淫交视频免费看高清| 成年av动漫网址| 三级男女做爰猛烈吃奶摸视频| 少妇丰满av| 校园人妻丝袜中文字幕| 国产成人a∨麻豆精品| 三级国产精品欧美在线观看| 日韩一本色道免费dvd| 日日撸夜夜添| 欧美一区二区亚洲| 亚洲精品久久国产高清桃花| 麻豆精品久久久久久蜜桃| 一本精品99久久精品77| 亚洲人成网站高清观看| a级毛片a级免费在线| 成人特级av手机在线观看| 日日干狠狠操夜夜爽| 一区二区三区免费毛片| 在线免费十八禁| 精品一区二区三区视频在线| 极品教师在线视频| 校园春色视频在线观看| 日本一本二区三区精品| 国产亚洲精品av在线| 伦理电影大哥的女人| 精品不卡国产一区二区三区| 精华霜和精华液先用哪个| 亚洲综合色惰| 国产一区亚洲一区在线观看| 日韩欧美免费精品| 在现免费观看毛片| 中文字幕人妻熟人妻熟丝袜美| 亚洲中文字幕一区二区三区有码在线看| 久久亚洲国产成人精品v| 国产精品99久久久久久久久| av专区在线播放| 黄色配什么色好看| 精品熟女少妇av免费看| 少妇被粗大猛烈的视频| 五月玫瑰六月丁香| 久久韩国三级中文字幕| 国产人妻一区二区三区在| 欧美国产日韩亚洲一区| 午夜免费男女啪啪视频观看 | 亚洲熟妇熟女久久| 少妇猛男粗大的猛烈进出视频 | 欧美+日韩+精品| 少妇丰满av| 久久久国产成人免费| 日韩成人伦理影院| 亚洲国产欧洲综合997久久,| 国产91av在线免费观看| 两个人的视频大全免费| 一区二区三区四区激情视频 | 国产高潮美女av| 欧美性感艳星| 亚洲欧美日韩高清在线视频| 精品人妻视频免费看| 午夜老司机福利剧场| 99久久精品一区二区三区| 国产 一区精品| 亚洲va在线va天堂va国产| 真人做人爱边吃奶动态| 亚洲综合色惰| 极品教师在线视频| 欧美+亚洲+日韩+国产| 99国产精品一区二区蜜桃av| 看片在线看免费视频| 精华霜和精华液先用哪个| 亚洲av免费高清在线观看| 国产精品人妻久久久久久| avwww免费| 国产成人aa在线观看| 日韩,欧美,国产一区二区三区 | 国产蜜桃级精品一区二区三区| 欧美色视频一区免费| 日韩,欧美,国产一区二区三区 | 国产精品,欧美在线| 在线免费观看不下载黄p国产| 婷婷亚洲欧美| 超碰av人人做人人爽久久| av在线老鸭窝| 少妇丰满av| 最近的中文字幕免费完整| 看十八女毛片水多多多| 亚洲性夜色夜夜综合| 高清毛片免费看| 22中文网久久字幕| 国产精华一区二区三区| 日韩国内少妇激情av| 亚洲熟妇熟女久久| 丝袜喷水一区| 婷婷色综合大香蕉| 麻豆精品久久久久久蜜桃| 日本黄色视频三级网站网址| 欧美zozozo另类| 99热精品在线国产| 97超视频在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 成人毛片a级毛片在线播放| 亚洲七黄色美女视频| 国产色婷婷99| 免费av毛片视频| 日本黄色片子视频| 日韩欧美 国产精品| 天天躁日日操中文字幕| 欧美日韩国产亚洲二区| 丰满乱子伦码专区| 免费观看精品视频网站| 亚洲综合色惰| 亚洲美女搞黄在线观看 | 亚洲人成网站在线播| 国产精品综合久久久久久久免费| 午夜福利视频1000在线观看| av天堂中文字幕网| 69av精品久久久久久| 国产精品野战在线观看| 国产亚洲91精品色在线| 一卡2卡三卡四卡精品乱码亚洲| 又粗又爽又猛毛片免费看| 嫩草影院入口| 天天一区二区日本电影三级| or卡值多少钱| 丝袜喷水一区| 日日撸夜夜添| 国产久久久一区二区三区| 此物有八面人人有两片| 国产欧美日韩一区二区精品| 插逼视频在线观看| 欧美成人a在线观看| 日韩成人伦理影院| 国产一区二区亚洲精品在线观看| 日韩大尺度精品在线看网址| 亚洲av.av天堂| 成人鲁丝片一二三区免费| 1000部很黄的大片| 最近手机中文字幕大全| 国产老妇女一区| 日日干狠狠操夜夜爽| 久久久久久久久中文| 亚洲一级一片aⅴ在线观看| 一级av片app| 一区二区三区高清视频在线| videossex国产| 在线播放无遮挡| 99在线人妻在线中文字幕| 久久精品国产鲁丝片午夜精品| 免费看a级黄色片| 国产欧美日韩一区二区精品| 国产一级毛片七仙女欲春2| 91久久精品国产一区二区成人| 亚洲成av人片在线播放无| 丰满人妻一区二区三区视频av| 精品日产1卡2卡| 最好的美女福利视频网| 最近的中文字幕免费完整| 精品一区二区三区视频在线观看免费| 午夜福利在线观看吧| 欧美人与善性xxx| 97在线视频观看| 成人美女网站在线观看视频| 99热只有精品国产| 在线播放国产精品三级| 男女下面进入的视频免费午夜| 桃色一区二区三区在线观看| 亚洲精品亚洲一区二区| 最近的中文字幕免费完整| 精品熟女少妇av免费看| 春色校园在线视频观看| 亚洲av二区三区四区| 超碰av人人做人人爽久久| 真人做人爱边吃奶动态| 久久精品综合一区二区三区| 大又大粗又爽又黄少妇毛片口| 99久久精品热视频| 亚洲第一电影网av| 免费av毛片视频| 中文字幕免费在线视频6| 日韩精品青青久久久久久| 99在线视频只有这里精品首页| .国产精品久久| 日本免费a在线| 国产亚洲精品综合一区在线观看| 亚洲精品粉嫩美女一区| 国产av麻豆久久久久久久| 日韩中字成人| 性欧美人与动物交配| 亚洲精品日韩在线中文字幕 | 免费人成在线观看视频色| 色综合亚洲欧美另类图片| 老司机福利观看| 国产真实伦视频高清在线观看| 少妇熟女欧美另类| 日韩精品青青久久久久久| 国产人妻一区二区三区在| 国产一级毛片七仙女欲春2| 一本久久中文字幕| 人人妻人人澡人人爽人人夜夜 | 中文资源天堂在线| 国产成人福利小说| 亚洲av中文字字幕乱码综合| 欧美性猛交黑人性爽| 欧美一级a爱片免费观看看| 美女黄网站色视频| 淫妇啪啪啪对白视频| 男女做爰动态图高潮gif福利片| 免费看日本二区| 国产三级在线视频| 成人二区视频| 国产午夜精品久久久久久一区二区三区 | 观看美女的网站| 18+在线观看网站| 麻豆国产97在线/欧美| 成人美女网站在线观看视频| 国产国拍精品亚洲av在线观看| 日本一本二区三区精品| 国产欧美日韩精品亚洲av| 成人美女网站在线观看视频| 天堂√8在线中文| av在线老鸭窝| 天堂√8在线中文| 人妻丰满熟妇av一区二区三区| 高清日韩中文字幕在线| 国产综合懂色| 亚洲av成人av| 午夜视频国产福利| av在线天堂中文字幕| 午夜免费男女啪啪视频观看 | 少妇高潮的动态图| 亚洲aⅴ乱码一区二区在线播放| 久久久久国产网址| 卡戴珊不雅视频在线播放| 国产精品国产高清国产av| 成人午夜高清在线视频| 婷婷精品国产亚洲av| 欧美在线一区亚洲| 看十八女毛片水多多多| 最后的刺客免费高清国语| 欧美日韩综合久久久久久| 国模一区二区三区四区视频| 欧美三级亚洲精品| 国产成人影院久久av| 三级男女做爰猛烈吃奶摸视频| 一区二区三区免费毛片| 亚洲第一区二区三区不卡| 亚洲av免费高清在线观看| 亚洲一区二区三区色噜噜| 国产精华一区二区三区| 一区二区三区高清视频在线| 一级黄片播放器| 亚洲真实伦在线观看| 夜夜夜夜夜久久久久| 99国产极品粉嫩在线观看| 51国产日韩欧美| 日韩一本色道免费dvd| 非洲黑人性xxxx精品又粗又长| 亚洲精品在线观看二区| 老司机午夜福利在线观看视频| 亚洲欧美日韩无卡精品| 成年女人毛片免费观看观看9| 色在线成人网| 亚洲久久久久久中文字幕| 国产伦精品一区二区三区视频9| 亚洲国产精品国产精品| 国产高清视频在线观看网站| 看片在线看免费视频| a级毛片a级免费在线| 日日摸夜夜添夜夜添av毛片| 一个人免费在线观看电影| 日韩,欧美,国产一区二区三区 | 亚洲av第一区精品v没综合| 欧美绝顶高潮抽搐喷水| 亚洲高清免费不卡视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美日韩高清专用| 天天躁夜夜躁狠狠久久av| 久久人人爽人人片av| 日日啪夜夜撸| 干丝袜人妻中文字幕| 国产 一区精品| 精品久久久久久成人av| 亚洲一级一片aⅴ在线观看| 国内精品久久久久精免费| 天堂√8在线中文| 小蜜桃在线观看免费完整版高清| 国产精品女同一区二区软件| 久久久久国产网址| 国产成人影院久久av| 色哟哟哟哟哟哟| 可以在线观看的亚洲视频| 日韩av不卡免费在线播放| 国产亚洲欧美98| 日韩中字成人| 久久人妻av系列| 亚洲18禁久久av| 成人精品一区二区免费| 免费大片18禁| 国产白丝娇喘喷水9色精品| 18禁在线无遮挡免费观看视频 | 色视频www国产| eeuss影院久久| 亚洲不卡免费看| 国产精品国产三级国产av玫瑰| 青春草视频在线免费观看| 综合色av麻豆| 欧美+日韩+精品| 一个人观看的视频www高清免费观看| 女同久久另类99精品国产91| 男人和女人高潮做爰伦理| 久久精品人妻少妇| 国产单亲对白刺激| 久久这里只有精品中国| 日本一本二区三区精品| 亚洲最大成人av| 欧美激情国产日韩精品一区| 一区二区三区免费毛片| 99久久久亚洲精品蜜臀av| 美女 人体艺术 gogo| 午夜影院日韩av| 女的被弄到高潮叫床怎么办| 99热网站在线观看| 真人做人爱边吃奶动态| 岛国在线免费视频观看| 免费观看在线日韩| 日本撒尿小便嘘嘘汇集6| eeuss影院久久| 国产大屁股一区二区在线视频| 天堂动漫精品| 国产伦在线观看视频一区| 女人十人毛片免费观看3o分钟| 国产精品1区2区在线观看.| 午夜精品在线福利| 2021天堂中文幕一二区在线观| 99热这里只有精品一区| 亚洲av美国av| 看黄色毛片网站| 美女xxoo啪啪120秒动态图| 国内精品一区二区在线观看| 亚洲丝袜综合中文字幕| 黑人高潮一二区| 日韩欧美在线乱码| 噜噜噜噜噜久久久久久91| 黄色配什么色好看| 亚洲av免费高清在线观看| 日产精品乱码卡一卡2卡三| 中文字幕免费在线视频6| 黑人高潮一二区| 欧美高清成人免费视频www| 欧美zozozo另类| 久久精品91蜜桃| 少妇熟女欧美另类| 国产伦精品一区二区三区视频9| 人妻丰满熟妇av一区二区三区| 国产精品精品国产色婷婷| 一个人看的www免费观看视频| 国产精华一区二区三区| 免费看a级黄色片| 日本在线视频免费播放| 成年女人永久免费观看视频| 黄色一级大片看看| 久久久色成人| 亚洲国产精品sss在线观看| 日本三级黄在线观看| 波多野结衣高清作品| 中国美白少妇内射xxxbb| 精品久久久久久久末码| 91午夜精品亚洲一区二区三区| 精品日产1卡2卡| 日本精品一区二区三区蜜桃| 啦啦啦韩国在线观看视频| 日本免费a在线| 在线天堂最新版资源| 99热6这里只有精品| 搡女人真爽免费视频火全软件 | 亚洲一级一片aⅴ在线观看| 久久久欧美国产精品| av卡一久久| 麻豆久久精品国产亚洲av| 久久久国产成人精品二区| 久久这里只有精品中国| 精品久久久久久久人妻蜜臀av| 日本爱情动作片www.在线观看 | 韩国av在线不卡| 国产不卡一卡二| 亚洲在线自拍视频| 日韩欧美免费精品| 亚洲第一区二区三区不卡| 夜夜夜夜夜久久久久| 亚洲av.av天堂| 在线播放无遮挡| 午夜老司机福利剧场| 亚洲av中文av极速乱| 欧美另类亚洲清纯唯美| 亚洲精品粉嫩美女一区| 老熟妇乱子伦视频在线观看| 精品一区二区三区视频在线| 3wmmmm亚洲av在线观看| 亚洲丝袜综合中文字幕| 卡戴珊不雅视频在线播放| 国产精品综合久久久久久久免费| 欧美另类亚洲清纯唯美| 亚洲国产欧美人成| 免费av不卡在线播放| 午夜激情福利司机影院| 日本 av在线| 午夜视频国产福利| 国产精品久久视频播放| av天堂在线播放| 久久久久久久久久久丰满| 亚洲无线在线观看| 日本成人三级电影网站| 亚洲成a人片在线一区二区| 色综合亚洲欧美另类图片| 亚洲欧美成人精品一区二区| 亚洲va在线va天堂va国产| 国产三级在线视频| 精品久久久久久久久久免费视频| а√天堂www在线а√下载| 亚洲欧美精品自产自拍| 成人二区视频| 久久精品影院6| 国产精品国产高清国产av| 欧美xxxx黑人xx丫x性爽| 身体一侧抽搐| 日本撒尿小便嘘嘘汇集6| 免费看光身美女| 亚洲欧美精品自产自拍| 秋霞在线观看毛片| 少妇丰满av| 亚洲天堂国产精品一区在线| 国产精品人妻久久久影院| 免费人成在线观看视频色| 欧美性感艳星| 伦理电影大哥的女人| 俺也久久电影网| 国内少妇人妻偷人精品xxx网站| 97热精品久久久久久| 在线天堂最新版资源| 99久国产av精品国产电影| 国产熟女欧美一区二区| 欧美成人一区二区免费高清观看| 久久精品91蜜桃| 日韩 亚洲 欧美在线| 久久久午夜欧美精品| 夜夜夜夜夜久久久久| 在线观看一区二区三区| 精品人妻一区二区三区麻豆 | 一个人免费在线观看电影| 免费无遮挡裸体视频| 18禁裸乳无遮挡免费网站照片| 22中文网久久字幕| av黄色大香蕉| 国产精品女同一区二区软件| 国产精品一区二区性色av| 免费黄网站久久成人精品| 久久久精品94久久精品| 三级男女做爰猛烈吃奶摸视频| 美女高潮的动态| 天堂动漫精品| 亚洲经典国产精华液单| 少妇熟女欧美另类| 波多野结衣高清作品| 一个人看的www免费观看视频| 国产视频内射| АⅤ资源中文在线天堂| 亚洲av五月六月丁香网| a级毛色黄片| 久久人人爽人人爽人人片va| 老熟妇乱子伦视频在线观看| 麻豆精品久久久久久蜜桃| 十八禁网站免费在线| 黄色日韩在线| 久久精品国产99精品国产亚洲性色| 有码 亚洲区| 九九在线视频观看精品| 男人狂女人下面高潮的视频| 国国产精品蜜臀av免费| 成人特级黄色片久久久久久久| 国产精品伦人一区二区| 日本精品一区二区三区蜜桃| 精品福利观看| 97超级碰碰碰精品色视频在线观看| 国产亚洲91精品色在线| av天堂中文字幕网| 中出人妻视频一区二区| 日韩强制内射视频| 国产免费一级a男人的天堂| 亚洲美女搞黄在线观看 |