• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of Central Intensity Ratio of Seyfert Galaxies in Nearby Universe

    2023-05-29 10:28:38VinodBaheejaAswathyandRavikumar

    K.T.Vinod, C.Baheeja, S.Aswathy, and C.D.Ravikumar

    1 Department of Physics, University of Calicut, Malappuram-673635, India; vinod2085@gmail.com

    2Department of Physics, Providence Women’s College, Calicut-673009, India

    Abstract We use the recently discovered simple photometric parameter Central Intensity Ratio (CIR) determined for a sample of 57 nearby (z <0.02) Seyfert galaxies to explore the central features of galaxies and their possible connection with galaxy evolution.The sample of galaxies shows strong anti-correlation between CIR and mass of their central supermassive black holes (SMBHs).The SMBH masses of ellipticals are systematically higher for a given CIR value than those for lenticulars and spirals in the sample.However, the correlation between CIR and central velocity dispersion is weak.CIR appears less influenced by the excess flux produced by the central engine in these galaxies,when compared to spectroscopic parameters like velocity dispersion and O IV flux,and proves to be a fast and reliable tool for estimating central SMBH mass.

    Key words:Galaxy:evolution–galaxies:active–galaxies:photometry–(galaxies:)quasars:supermassive black holes – galaxies: Seyfert

    1.Introduction

    The central supermassive black hole (SMBH) residing in massive galaxies is believed to play a key role in the evolution scenario of host galaxies.The evolution mechanism of the central engine of every galaxy is connected with the star formation process in the host galaxy.It is commonly accepted that the accretion mechanism is the prime reason for the origin and growth of active galactic nuclei (AGNs) in the nuclear region of galaxies (Kawakatu et al.2006; Ellison et al.2011;Silverman et al.2011; Villforth et al.2012).

    AGNs are hosted at the centers of elliptical galaxies or bulge dominating spheroids across all redshifts (Kauffmann et al.2003; Povi? et al.2009), whereas the morphology of local Seyfert galaxies is generally spiral (Ho et al.1995; Ho 2008).Intense circumnuclear star formation plays a crucial role in the evolution and emission process of Seyfert galaxies, specifically, Sy2 galaxies (e.g., Terlevich & Melnick 1985; Cid Fernandes et al.1995; Maiolino et al.1998; Cid Fernandes et al.2001; González Delgado et al.2001).

    Seyfert galaxies are among the most studied objects in the radio quiet(RQ)category,along with quasars(Weedman 1977;Osterbrock & Martel 1993; Rashed et al.2015).The role of feedback by the central SMBH in the relationships between the mass of the SMBH and bulge properties of Seyfert galaxies is still unclear because the merger events govern the formation of bulges while Seyfert galaxies are believed to be evolving through secular evolution (Hopkins et al.2006; Kormendy &Ho 2013; Heckman & Best 2014).Recent studies revealed the existence of fast outflows of ionized gas in nearby Seyfert galaxies, but their influence on star formation is still under debate(Christensen et al.2006;Krause et al.2007;Wang et al.2012; García-Burillo et al.2014; Morganti et al.2015;Querejeta et al.2016).However, if the host galaxies possess such outflows,they could expel the gas from the central region and suppress the star formation (Alexander & Hickox 2012;García-Burillo et al.2014; Alatalo et al.2015; Hopkins et al.2016; Wylezalek & Zakamska 2016).

    The masses of central SMBHs are reported to correlate well with the stellar mass and stellar velocity dispersion of the bulges of their host galaxies (see, e.g., Magorrian et al.1998;Ferrarese & Merritt 2000; Gebhardt et al.2000; Marconi &Hunt 2003; H?ring & Rix 2004; Kormendy & Ho 2013;McConnell & Ma 2013; Savorgnan & Graham 2015).The bulges and SMBHs seem to evolve together and regulate each other (Alonso-Herrero et al.2013).The relations (between MBH, bulge mass and stellar velocity dispersion) propose a strong connection between the formation of black hole mass,emergence of AGNs and the host galaxy evolution(Ferrarese&Merritt 2000; Gültekin et al.2009) as well.

    Central light concentration is a vital parameter,which can be used as a tracer of the disk to bulge ratio,star formation activity and galaxy evolution (Abraham et al.1994; Conselice 2003).The Central Intensity Ratio (CIR), a new photometric parameter,is well correlated with the masses of central SMBHs of the spheroid of early-type galaxies (ETGs, Aswathy &Ravikumar 2018).Furthermore,CIR is an efficient photometric tool to study the central and structural properties of spiral galaxies, especially barred systems, and also gives some valid information regarding nuclear star formation and AGN formalism in host galaxies (Aswathy & Ravikumar 2020).Inthis light, we perform an optical analysis by utilizing the parameter,CIR,to study the central properties and evolution of Seyfert galaxies.

    Table 1 Table 1 Lists the Properties of Sample Galaxies

    Table 1(Continued)

    This paper is organized as follows; Section 2 describes the properties of the sample galaxies and the data reduction techniques employed in this study, and Section 3 deals with results consisting of various correlations.Discussions and conclusions are provided in Section 4.

    Throughout this paper, we have used the cosmological parameters:H0=73.0 km s-1Mpc-1;Ωmatter=0.27;Ωvacuum=0.73.

    2.The Data and Data Reduction

    Following Aswathy & Ravikumar (2018), the CIR is determined for the sample galaxies by using the aperture photometry (MAG_APER) technique, which is provided in Source-Extractor (SExtractor, Bertin & Arnouts 1996).

    where I1and I2are the intensities and m1and m2are the corresponding magnitudes of the light within the inner and outer apertures of radii R1and R2, respectively.The inner radius is chosen such that it is a few times the point spread function(PSF).The outer radius(conventionally 2R1)is chosen such that the aperture is lying fairly within the galaxy image.For the sample, we chose the inner and outer radii as 1 5 and 3″, respectively.

    Ultraviolet (UV) observations are vital in providing recent star formation activity in galaxies (e.g., Thilker et al.2005; Gil de Paz et al.2005, 2007; Koribalski & López-Sánchez 2009).For the estimation of circumnuclear star formation rate (SFR), we examined far-UV (FUV, 1350–1750 ?) data on the sample galaxies observed by the Galaxy Evolution Explorer (GALEX) mission.We considered an aperture size of 10″ at the center of the image to estimate the circumnuclear SFR following López-Sánchez (2010) using the calibration reported by Salim et al.(2007) which is provided in Table 1.

    Figure 1.Correlation between the CIR and mass of the SMBH of the sample galaxies.Filled circles, triangles and squares represent spiral, lenticular and elliptical galaxies, respectively.Estimations of masses of SMBHs using dynamical methods are signified as red data points,while gray color is used to represent those from the stellar velocity dispersion measurements of host galaxies.

    3.Results

    Scaling relations displayed by various structural and dynamical observables of galaxies can shed vital information on formation and evolution processes in galaxies.We have estimated the CIR at the optical centers of 57 Seyfert galaxies observed using HST.The sample properties, along with the estimated values of CIR, are tabulated in Table 1.We next explore various trends involving CIR.

    3.1.Variation of CIR with SMBH Mass

    The scaling relations of black hole mass are generally determined and explored utilizing the bulge properties of the host galaxies, specifically in ETGs (Kormendy & Richstone 1995; Ferrarese & Merritt 2000; McConnell & Ma 2013).Structural properties of late-type galaxies(LTGs),like the pitch angle of spiral arms, share an intriguing scaling relation with black hole mass (Davis et al.2018, 2019).

    Figure 1 shows the variation of CIR with mass of SMBH for the sample galaxies.Filled circles, triangles and squares represent spiral, lenticular and elliptical galaxies, respectively.We find a strong correlation between the CIR of the Seyfert galaxies and the mass of their central SMBH.However, the ETGs in the sample hosts systematically have high black hole mass when compared to lenticulars and spirals, for the same value of CIR considered.The Pearson’s linear correlation coefficient, r, for the correlation exhibited by spirals and lenticulars together is -0.74 with a significance, s, >99.99%(Press et al.1992)while that for elliptical galaxies is-0.94 with a significance of 99.40%.

    Two galaxies,NGC 4594 and NGC 7582,exhibit significant deviation from this correlation.NGC 4594, the Sombrero Galaxy,is reported to have an unusually large bulge mass and a very massive SMBH at the center of the galaxy.It is usually classified as a normal spiral, Sa, galaxy (de Vaucouleurs et al.1991) but it follows many scaling relations of ellipticals(Gadotti & Sánchez-Janssen 2012).NGC 7582 is reported to host a ring with active star formation within the pc scale radius(≈190 pc)surrounding the nucleus of the galaxy,along with a high stellar velocity dispersion(Riffel et al.2009).The intense nuclear starburst activity (Cid-Fernandes et al.2001; Bianchi et al.2007) can affect its CIR value.

    In Section 3.2,we notice that there is no apparent correlation between CIR and stellar velocity dispersion of host galaxies in our sample, even though the latter and mass of SMBH are reported to share a strong correlation.In order to explore this discrepancy, we also employed a color code to distinguish the method adopted to estimate the masses of SMBHs.Masses estimated using a dynamical method (e.g., reverberation mapping,stellar dynamics,maser dynamics and gas dynamics)are shown in red while mass estimations based on stellar velocity dispersion are displayed in gray in Figure 1.If we include only dynamically estimated masses, the correlation coefficient improves to -0.77 at a significance of s=99.97%,while it reduces drastically to -0.68 (s=99.98%) when these data points are excluded.

    When the moon appeared they got up, but they found no crumbs, for the thousands of birds30 that fly about the woods and fields had picked them all up

    3.2.Variation between the CIR and σ

    The variation of CIR with stellar velocity dispersion of the sample galaxies is depicted in Figure 2(a).As already mentioned, there is no significant correlation between CIR and stellar velocity dispersion (σ) of Seyfert galaxies.However, if we exclude the eight ETGs in the sample, the velocity dispersion measurements of galaxies with dynamical estimation of SMBH (red triangles and circles) exhibit larger scatter compared to their gray counterparts.Such a discrepancy is not clear in ETGs.The extreme emission from AGN activity can complicate the measurement of central velocity dispersion in these galaxies (Riffel et al.2013).

    Measurements of stellar velocity dispersion may be biased by the contribution of rotating stellar disks because of the rotational broadening of the stellar absorption lines and the velocity dispersion measurements could be noticeably increased by the rotational effect (Woo et al.2015).Due to higher velocity-to-dispersion (V/σ) ratios, the rotational effect is significantly more prominent in LTGs than in ETGs.

    Figure 2.Variations between the CIR and(a)stellar velocity dispersion adopted from HyperLEDA database,(b)circumnuclear SFR,(c)O IV flux of AGN and(d)the inter-connection between MBH and O IV flux of the sample galaxies.O IV flux values are taken from Diamond-Stanic et al.(2009).The symbols used to represent the galaxies are same as those in Figure 1.

    3.3.Variation between the CIR and SFR

    In Figure 2(b), we explore the connection between CIR and circumnuclear SFR traced by the UV luminosity (FUV) in an aperture of radius 10″at the galactic center.We find that there is no correlation between CIR and circumnuclear SFR.The properties of sub-structures in the nuclear region of host galaxies may influence the star formation process, thereby affecting CIR.The galaxies IC 2560, NGC 0788, NGC 1667,NGC 3516,NGC 5427 and NGC 6814,denoted by numbers 1 to 6 respectively in the figure, possess nuclear dust spirals,which can regulate the nuclear SFR at the central region of the galaxies (Evans et al.1996; Pérez-Ramírez et al.2000;Martini et al.2003; Mu?oz Marín et al.2007).The galaxies IC 3639, NGC 2782, NGC 5135 and NGC 7582, numbered 7 to 10, with nuclear starburst activity (Boer et al.1992;González Delgado et al.2001; Mu?oz Marín et al.2007;Bianchi et al.2007) are also apparent outliers in the figure.NGC 1365 and NGC 7469 are the galaxies showing intense nuclear SFR, with star-forming regions concentrated in hot spots around the nucleus (Davies et al.2007; Ramos Almeida et al.2009), which are displayed in the figure by the numbers 11 and 12 respectively.By excluding these galaxies, we may see a negative trend in CIR and SFR.However,it is insufficient to confirm any connection between CIR and SFR,necessitating a thorough investigation with larger sample size.

    3.4.Variation Between the CIR and O IV Flux

    In Figure 2(c), we show the observed correlation between CIR and O IV flux of the host galaxy, which is taken from Diamond-Stanic et al.(2009).O IV flux is an accurate measureof intrinsic AGN luminosity (Diamond-Stanic et al.2009) and we find a positive correlation with CIR (r=0.70 with s >99.99%).O IV emission (25.9 μm) is a tracer of highly ionized gas of the order of 35–97 eV, and these types of midinfrared emission lines can be produced in the vicinity of hot stars in the central region of AGN host galaxies(Pottasch et al.2001; Smith et al.2004; Devost 2007).AGN luminosity depends upon the fuel consumed by the SMBH at the nuclear region of the galaxy, and ETGs have less fuel than LTGs(Rieke 2002).This suggests that AGN power is likely to decrease while SMBH grows in the host galaxy.However,NGC 3081,NGC 3185,NGC 3281,NGC 5273 and NGC 7743 deviated from this correlation.

    Table 2 The Table Lists the Best-fitting Parameters for the Relation x=α CIR+β and Correlation Coefficients for Various Relations

    4.Discussion and Conclusion

    We report photometric analysis of Seyfert galaxies using the recently discovered parameter CIR.The CIR shows good correlations with many structural parameters of host galaxies,especially with the mass of the SMBHs residing at the centers of galaxies (Aswathy & Ravikumar 2018, 2020).For Seyfert galaxies also, the CIR shows strong anti-correlation with the mass of SMBHs.However, the massive SMBHs hosted by ellipticals in the sample display a distinctive trend from that displayed by lenticulars and spirals,in the sense that ellipticals host more massive SMBHs than those hosted by lenticulars and spirals.The disky systems are indistinguishable in the correlation.It is possible that the more massive the central SMBH, the higher the suppression of star formation due to feedback (Harrison 2017).As a decrease in the light in the inner aperture reduces the value of CIR,we can expect the anticorrelation between CIR and mass of SMBH.

    The AGN feedback mechanism has a significant role in the evolution process of galaxies, in which the energy released by an AGN to the surrounding galactic medium halts the cooling of gas in the central region of galaxies and also removes the gas in the form of massive outflows (Morganti 2017).The AGN feedback process is considered to be a key factor of galaxy evolution and has been included in several simulations and analytical models for years(e.g.,Kauffmann&Haehnelt 2000;Di Matteo et al.2005; Schaye et al.2015; Sijacki et al.2015).This feedback may suppress star formation at the central part of the galaxy and may decrease or stall completely the growth of the SMBH (e.g., Croton et al.2006; Sijacki et al.2007), thus setting up a co-evolution scenario for the galaxy and its SMBH(Aswathy & Ravikumar 2018).Around 30% of Seyfert galaxies are reported to possess outflow incidents (Crenshaw et al.2003;Crenshaw&Kraemer 2007;Crenshaw et al.2012).The pc scale AGN-driven outflows in the massive galaxies can expel the gas from the nuclear region, which may reduce the gas accretion toward the center of the galaxy and lead to quenching of star formation at the central region (Morganti 2017).This interesting phenomenon has been observed in optical, UV and X-ray emissions, and could be traced to such outflows using ionized gas and absorption lines (e.g., Veilleux et al.2005;Bland-Hawthorn et al.2007;Tadhunter 2008;King& Pounds 2015).

    Different studies argued for the probability of AGN feedback by a thermal process in the vicinity of the SMBH (e.g., Di Matteo et al.2005;Springel et al.2005;Johansson et al.2009).Simulations of the AGN feedback mechanism suggest that the Compton heating effect can raise the temperature of the the gas at the nuclear region, about 10–35 pc, to ~109K (e.g., Gan et al.2014; Melioli & de Gouveia Dal Pino 2015).This AGN heating may also reduce star formation in the central region of the galaxy, and thus the value of CIR.

    Stellar velocity dispersion (σ) of the bulge component is strongly connected with the central SMBH (Ferrarese &Merritt 2000; Gebhardt et al.2000; Tremaine et al.2002;Gültekin et al.2009).Active galaxies also obey the σ-MBHrelation, but with significant scatter (Caglar et al.2020).It is also reported that CIR of ETGs is well correlated with the stellar velocity dispersion(Aswathy&Ravikumar 2018).In the present study,however,Seyfert galaxies show a large scatter in the CIR-σ relation, even though there is a strong CIR - MBHrelation.The uncertainties present in the measurement of stellar velocity dispersion could be high when excessively illuminated by the central AGN (Riffel et al.2013).Furthermore, stellar velocity dispersion measurements may be skewed due to the rotational effect of stellar disks (Woo et al.2015).In order to explain this further, we have plotted the variation of MBHwith σ in Figure 3.The velocity dispersion measurements for galaxies with dynamical estimation of mass of the SMBH available, shown in red, clearly display a larger scatter than those of galaxies without dynamical estimation of MBH(gray points).For the σ-MBHcorrelation in the combined sample of spirals and lenticulars, we obtained a linear correlation coefficient of r=0.65 with significance s >99.99%.At the same time, the correlation coefficient of the CIR - MBH(for spirals + lenticulars) relation is r=-0.74 with significance s >99.99%.The scatters of the correlations σ-MBHand CIR-MBHare 2.63 and 2.04 dex respectively,further establishing that the CIR is, in fact, a better tracer of the MBHthan the central velocity dispersion.

    Figure 3.Variation between stellar velocity dispersion and mass of the SMBH of sample galaxies along with the best fit adopted from Caglar et al.(2020).The symbols used to represent the galaxies are the same as those in Figure 1.

    The observed correlation between CIR and O IV flux,shown in Figure 2(c), also displays the possibility of larger uncertainties present in measurement of emission lines in galaxies associated with AGNs (e.g., Lutz et al.2003; Armus et al.2006, 2007; Diamond-Stanic et al.2009; Veilleux et al.2009).In this case also, the correlation coefficient increases to 0.76 with a significance of s=99.38% if we just consider galaxies with dynamically estimated SMBH masses, but it drops to 0.62 (s=99.74%) when these data points are excluded.Seyfert galaxies with high O IV flux emission possess enhanced nuclear star formation (Diamond-Stanic &Rieke 2012), and an increase in CIR is expected in galaxies with increased O IV emission.However, the O IV flux of the sample galaxies shows only a weak anti-correlation(r=-0.58 with s=99.95%) with the mass of SMBH shown in Figure 2(d), possibly due to the increased uncertainties involved in both the quantities.

    Generally, Seyfert galaxies can be observed and located through the UV emission coming out from the sources(Rieke 2002).Apart from age and morphological classification,the common feature of Seyfert galaxies is their intense star formation(Cid Fernandes et al.2004;Davies et al.2007;Sarzi et al.2007; Kauffmann & Heckman 2009).We explore the variation of the estimated circumnuclear SFR by the excess UV with CIR, as depicted in Figure 2(b).We notice that the galaxies harboring central structures such as pc scale nuclear dust spiral, nuclear starburst and the galaxies possessing high SFR exhibit large deviation in the observed CIR-SFR relation.The measure of nuclear SFR has been shown to increase from the central region to the outskirts of galaxies(Diamond-Stanic & Rieke 2012; Esquej et al.2014).The outflow from the central part of the galaxy due to the AGN feedback mechanism can interact with the interstellar medium(ISM)effectively(Ostriker et al.2010;Weinberger et al.2017;Yuan et al.2018).The feedback-driven outflow of gas enhances the star formation at larger radii from the core of the galaxy (Ishibashi et al.2013; Ishibashi & Fabian 2014).This outflow of gas can be responsible for enhancing the circumnuclear SFR.All these can affect measurements of both SFR and CIR, rendering a weak correlation between the two.

    We employed CIR to explore the presence of central features in Seyfert galaxies and their role in galaxy evolution.The analysis shows that CIR measured for Seyfert galaxies predicts the mass of central SMBHs even better than the estimates obtained by spectroscopic parameters like the central velocity dispersion.Being a photometric tool,this promises a cheap and fast technique to explore large galaxy samples,which has great potential in observations of new generation facilities like the James Webb Space Telescope.

    Acknowledgments

    We sincerely thank the anonymous referee for her/his comments which improved the quality of the paper significantly.V.K.T.would like to acknowledge the financial support from the Council of Scientific & Industrial Research (CSIR),Government of India.We acknowledge the use of the NASA/IPAC Extragalactic Database (NED), https://ned.ipac.caltech.edu/ operated by the Jet Propulsion Laboratory, California Institute of Technology, and the Hyperleda database, http://leda.univ-lyon1.fr/.We acknowledge the use of data publicly available at the Mikulski Archive for Space Telescopes(MAST), http://archive.stsci.edu/ observed by the NASA/ESA Hubble Space Telescope and Galaxy Evolution Explorer(GALEX)led by the California Institute of Technology http://galex.stsci.edu/.

    日韩欧美国产在线观看| 欧美日本亚洲视频在线播放| 久久精品夜色国产| 丰满乱子伦码专区| 蜜臀久久99精品久久宅男| 欧美人与善性xxx| 又爽又黄无遮挡网站| 一个人免费在线观看电影| 最好的美女福利视频网| 久久久久久久久久久免费av| 亚洲在线自拍视频| 日韩高清综合在线| 国产一区二区三区在线臀色熟女| 国内揄拍国产精品人妻在线| 在线国产一区二区在线| 国产亚洲欧美98| 国产精品人妻久久久影院| 成人特级黄色片久久久久久久| 老师上课跳d突然被开到最大视频| 高清毛片免费观看视频网站| 99久久精品热视频| 日韩国内少妇激情av| 国产美女午夜福利| 国产精品日韩av在线免费观看| 亚洲精品乱码久久久久久按摩| 午夜免费男女啪啪视频观看| 国产亚洲欧美98| 亚洲高清免费不卡视频| 亚州av有码| 日本免费一区二区三区高清不卡| 午夜视频国产福利| 午夜精品国产一区二区电影 | 中文字幕人妻熟人妻熟丝袜美| 亚洲av熟女| 国产av不卡久久| 国产成年人精品一区二区| 日产精品乱码卡一卡2卡三| 国产成人freesex在线| 欧美最黄视频在线播放免费| 蜜桃亚洲精品一区二区三区| 亚洲最大成人手机在线| 国产高清有码在线观看视频| 精品久久久久久久久av| 3wmmmm亚洲av在线观看| 国产精品综合久久久久久久免费| 婷婷亚洲欧美| 在线国产一区二区在线| 亚洲精品乱码久久久v下载方式| 一本一本综合久久| 卡戴珊不雅视频在线播放| 久久久午夜欧美精品| 亚洲国产精品合色在线| av专区在线播放| 成人美女网站在线观看视频| 蜜桃亚洲精品一区二区三区| 韩国av在线不卡| 久久午夜亚洲精品久久| 精品免费久久久久久久清纯| 国产蜜桃级精品一区二区三区| 国产亚洲5aaaaa淫片| 午夜福利高清视频| h日本视频在线播放| 久久久a久久爽久久v久久| 青春草国产在线视频 | 国产亚洲精品久久久com| 国产精品爽爽va在线观看网站| 热99在线观看视频| 身体一侧抽搐| 少妇高潮的动态图| 国产在线男女| 国产成人a区在线观看| 免费看av在线观看网站| 午夜精品在线福利| а√天堂www在线а√下载| 国产亚洲91精品色在线| 国产不卡一卡二| 亚洲电影在线观看av| 伊人久久精品亚洲午夜| 久久这里有精品视频免费| 国产av一区在线观看免费| 久久久久性生活片| 亚洲最大成人手机在线| 69人妻影院| 国产精品日韩av在线免费观看| 小说图片视频综合网站| 欧美色欧美亚洲另类二区| 99久久无色码亚洲精品果冻| 黄片wwwwww| 啦啦啦韩国在线观看视频| 国产高清有码在线观看视频| 国产精品久久久久久亚洲av鲁大| 级片在线观看| 狂野欧美激情性xxxx在线观看| 网址你懂的国产日韩在线| 免费观看的影片在线观看| 91av网一区二区| 国产午夜精品一二区理论片| 六月丁香七月| 国产精品福利在线免费观看| 日韩一区二区视频免费看| 毛片一级片免费看久久久久| 欧美一区二区精品小视频在线| 免费黄网站久久成人精品| 九色成人免费人妻av| 老熟妇乱子伦视频在线观看| 能在线免费观看的黄片| 听说在线观看完整版免费高清| 99热只有精品国产| 国产高清激情床上av| av国产免费在线观看| 精品人妻偷拍中文字幕| 伦理电影大哥的女人| 看片在线看免费视频| 亚洲天堂国产精品一区在线| 最近2019中文字幕mv第一页| 一夜夜www| 亚洲综合色惰| 亚洲成人中文字幕在线播放| 亚洲精品自拍成人| 国产精品综合久久久久久久免费| 国产一区二区三区av在线 | 国产精品三级大全| www.色视频.com| 国产私拍福利视频在线观看| 国产一区二区三区av在线 | 日日干狠狠操夜夜爽| 九九热线精品视视频播放| 国产高清激情床上av| 久久久久久九九精品二区国产| 国产成人午夜福利电影在线观看| 日本在线视频免费播放| 老女人水多毛片| 成人亚洲精品av一区二区| 桃色一区二区三区在线观看| 日韩 亚洲 欧美在线| 亚洲欧美清纯卡通| 亚洲国产精品成人综合色| 91久久精品国产一区二区三区| 国产精品三级大全| 又粗又硬又长又爽又黄的视频 | 欧美性感艳星| 成人国产麻豆网| 国产午夜精品久久久久久一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产精品合色在线| 国产伦在线观看视频一区| 免费av观看视频| 亚洲三级黄色毛片| 成人美女网站在线观看视频| 精品人妻一区二区三区麻豆| 亚洲精品乱码久久久v下载方式| 热99re8久久精品国产| 一进一出抽搐动态| 精品人妻熟女av久视频| 久久久久网色| 久久午夜亚洲精品久久| 欧美xxxx黑人xx丫x性爽| 能在线免费看毛片的网站| 毛片一级片免费看久久久久| 亚洲内射少妇av| 久久亚洲国产成人精品v| 国产精品人妻久久久影院| 夜夜夜夜夜久久久久| 国产精品野战在线观看| 欧美不卡视频在线免费观看| 亚州av有码| 国产精品福利在线免费观看| 国产在视频线在精品| 久久久久久大精品| 在线观看免费视频日本深夜| 国产在线精品亚洲第一网站| 在线观看66精品国产| 日本三级黄在线观看| 久久人人爽人人片av| 成人av在线播放网站| 国产精品久久久久久精品电影小说 | 人人妻人人澡欧美一区二区| 天堂中文最新版在线下载 | 给我免费播放毛片高清在线观看| 18禁在线无遮挡免费观看视频| 日韩成人av中文字幕在线观看| 成人午夜高清在线视频| 嫩草影院新地址| АⅤ资源中文在线天堂| 国产av不卡久久| 国产黄a三级三级三级人| 国产精品日韩av在线免费观看| 久久久精品欧美日韩精品| 欧美性感艳星| 卡戴珊不雅视频在线播放| 欧美在线一区亚洲| 亚洲高清免费不卡视频| 国产淫片久久久久久久久| 在线免费十八禁| 晚上一个人看的免费电影| 国内精品久久久久精免费| 观看免费一级毛片| 美女被艹到高潮喷水动态| 国产在线男女| 黄色配什么色好看| 人体艺术视频欧美日本| 国内精品美女久久久久久| 99国产极品粉嫩在线观看| 亚洲成人精品中文字幕电影| 男女下面进入的视频免费午夜| 热99在线观看视频| 深夜精品福利| a级毛片a级免费在线| 国产黄色小视频在线观看| 18禁在线无遮挡免费观看视频| 亚洲欧美中文字幕日韩二区| 美女高潮的动态| 久久精品国产亚洲av天美| 国产 一区 欧美 日韩| 成人欧美大片| 特级一级黄色大片| 免费av不卡在线播放| 成人毛片a级毛片在线播放| 边亲边吃奶的免费视频| 亚洲成人精品中文字幕电影| 婷婷六月久久综合丁香| 国产精品国产三级国产av玫瑰| 亚洲av成人av| 91久久精品国产一区二区三区| 免费观看人在逋| 卡戴珊不雅视频在线播放| 午夜精品在线福利| 秋霞在线观看毛片| 国产精品蜜桃在线观看 | 久久久久久久久中文| 亚洲精华国产精华液的使用体验 | 久久人人爽人人爽人人片va| 国产成人福利小说| 校园人妻丝袜中文字幕| 亚洲高清免费不卡视频| 亚洲va在线va天堂va国产| 国产日本99.免费观看| 熟女人妻精品中文字幕| 久久精品夜色国产| 久久久国产成人精品二区| 欧美另类亚洲清纯唯美| 国产又黄又爽又无遮挡在线| 少妇的逼水好多| 国产毛片a区久久久久| 麻豆久久精品国产亚洲av| 内射极品少妇av片p| 婷婷精品国产亚洲av| 一进一出抽搐gif免费好疼| 欧美区成人在线视频| 日韩国内少妇激情av| 精品少妇黑人巨大在线播放 | 亚洲人成网站在线观看播放| 99热精品在线国产| 国产亚洲精品av在线| av天堂中文字幕网| 大型黄色视频在线免费观看| 黄片wwwwww| 最近视频中文字幕2019在线8| 美女内射精品一级片tv| 国产成人aa在线观看| 日本在线视频免费播放| 亚洲性久久影院| 精品一区二区三区人妻视频| 日韩精品有码人妻一区| 九九热线精品视视频播放| 18禁在线无遮挡免费观看视频| 日本撒尿小便嘘嘘汇集6| 又爽又黄a免费视频| 久久久久久久久久成人| 天堂中文最新版在线下载 | 美女被艹到高潮喷水动态| 欧美激情久久久久久爽电影| 国产成年人精品一区二区| 黄色视频,在线免费观看| 午夜精品在线福利| 内地一区二区视频在线| 大又大粗又爽又黄少妇毛片口| www.av在线官网国产| 亚洲激情五月婷婷啪啪| 亚洲自偷自拍三级| 欧美成人a在线观看| 非洲黑人性xxxx精品又粗又长| 乱码一卡2卡4卡精品| 日韩,欧美,国产一区二区三区 | 国内精品美女久久久久久| 日韩中字成人| 久久久精品欧美日韩精品| 亚洲欧美日韩高清专用| 国产精品久久电影中文字幕| 麻豆一二三区av精品| 国产 一区精品| 精品免费久久久久久久清纯| 日韩亚洲欧美综合| 国产v大片淫在线免费观看| 国产综合懂色| 看免费成人av毛片| 久久欧美精品欧美久久欧美| 99热只有精品国产| 夜夜爽天天搞| 啦啦啦啦在线视频资源| 久久99热6这里只有精品| 精品久久久噜噜| 亚洲色图av天堂| 免费看a级黄色片| 精品久久国产蜜桃| 最后的刺客免费高清国语| 亚洲av不卡在线观看| 国产成人一区二区在线| 天天躁夜夜躁狠狠久久av| 日日撸夜夜添| 青青草视频在线视频观看| 性色avwww在线观看| 欧美成人免费av一区二区三区| 成人午夜精彩视频在线观看| 久久精品91蜜桃| 男女做爰动态图高潮gif福利片| 青春草亚洲视频在线观看| 给我免费播放毛片高清在线观看| 国产高清三级在线| 免费看光身美女| 国产极品天堂在线| 亚洲国产欧洲综合997久久,| 日日干狠狠操夜夜爽| 久久久久性生活片| 国产伦精品一区二区三区四那| 熟女电影av网| 日韩制服骚丝袜av| 欧美激情在线99| 欧美3d第一页| 国产亚洲精品av在线| 国产精品久久久久久亚洲av鲁大| 精品午夜福利在线看| 97热精品久久久久久| 九九爱精品视频在线观看| 久久久久久久久久成人| 99国产极品粉嫩在线观看| 精品久久国产蜜桃| 亚洲四区av| 精品人妻一区二区三区麻豆| 伦精品一区二区三区| 亚洲精品自拍成人| 一级毛片电影观看 | 国内精品美女久久久久久| 五月伊人婷婷丁香| 亚洲无线在线观看| 精品欧美国产一区二区三| 啦啦啦啦在线视频资源| 18+在线观看网站| 日本黄大片高清| 久久精品久久久久久噜噜老黄 | 国产精品综合久久久久久久免费| 亚洲一级一片aⅴ在线观看| 一边亲一边摸免费视频| 69人妻影院| 国产视频内射| 成人一区二区视频在线观看| 精品一区二区三区人妻视频| 我的女老师完整版在线观看| av在线播放精品| 一卡2卡三卡四卡精品乱码亚洲| 国产免费男女视频| 91aial.com中文字幕在线观看| 免费观看人在逋| 久久精品国产99精品国产亚洲性色| 尾随美女入室| 日韩欧美精品v在线| 天美传媒精品一区二区| 啦啦啦啦在线视频资源| 国产精品不卡视频一区二区| 2022亚洲国产成人精品| av在线天堂中文字幕| 免费在线观看成人毛片| 午夜精品一区二区三区免费看| 色哟哟哟哟哟哟| 长腿黑丝高跟| 午夜激情欧美在线| 亚洲成av人片在线播放无| 国产三级在线视频| 欧美性感艳星| 国产精品久久久久久久久免| 亚洲真实伦在线观看| 国产高清激情床上av| 欧美激情在线99| 国内久久婷婷六月综合欲色啪| 亚洲最大成人中文| 一进一出抽搐gif免费好疼| 国产女主播在线喷水免费视频网站 | 亚洲精品色激情综合| 在线观看免费视频日本深夜| av在线观看视频网站免费| 国产高清视频在线观看网站| 亚洲欧美日韩高清专用| 国产亚洲av片在线观看秒播厂 | 欧美日本亚洲视频在线播放| 日本爱情动作片www.在线观看| 亚洲精品456在线播放app| 伦理电影大哥的女人| 丰满的人妻完整版| 一本久久中文字幕| 欧美最黄视频在线播放免费| 亚洲精品自拍成人| 青青草视频在线视频观看| 女人被狂操c到高潮| 国产女主播在线喷水免费视频网站 | 国产精品日韩av在线免费观看| 99热6这里只有精品| 一个人看视频在线观看www免费| 男女下面进入的视频免费午夜| 69av精品久久久久久| 国产精品永久免费网站| av.在线天堂| 精品久久国产蜜桃| 国产视频内射| 婷婷亚洲欧美| 亚洲自偷自拍三级| 99热6这里只有精品| 岛国毛片在线播放| 成人国产麻豆网| 国内精品宾馆在线| 亚洲人成网站在线观看播放| 免费看a级黄色片| 国产黄片视频在线免费观看| 精品人妻一区二区三区麻豆| 日韩欧美 国产精品| 色综合站精品国产| 干丝袜人妻中文字幕| 韩国av在线不卡| 99九九线精品视频在线观看视频| 桃色一区二区三区在线观看| 成年版毛片免费区| 亚州av有码| 99热6这里只有精品| 一个人看视频在线观看www免费| 精品久久久久久久久亚洲| 欧美xxxx黑人xx丫x性爽| 99热这里只有是精品50| 男女啪啪激烈高潮av片| 嫩草影院新地址| 天堂影院成人在线观看| 12—13女人毛片做爰片一| 久久综合国产亚洲精品| 日本撒尿小便嘘嘘汇集6| 亚洲最大成人中文| 亚洲一级一片aⅴ在线观看| 久久午夜亚洲精品久久| 在线国产一区二区在线| 哪个播放器可以免费观看大片| 成人午夜高清在线视频| 一本久久中文字幕| 看黄色毛片网站| 亚洲国产高清在线一区二区三| 黄片wwwwww| 日本成人三级电影网站| 日韩三级伦理在线观看| 亚洲人与动物交配视频| 免费看光身美女| 亚洲精品色激情综合| 午夜激情欧美在线| 看十八女毛片水多多多| 亚洲国产欧洲综合997久久,| 非洲黑人性xxxx精品又粗又长| 欧美激情国产日韩精品一区| 男女做爰动态图高潮gif福利片| 国产真实乱freesex| 久久精品国产亚洲av涩爱 | 国产美女午夜福利| 不卡视频在线观看欧美| 免费电影在线观看免费观看| 三级毛片av免费| 人人妻人人澡人人爽人人夜夜 | 一本久久中文字幕| 久久久久免费精品人妻一区二区| 久久精品国产亚洲av香蕉五月| 熟女人妻精品中文字幕| 国产探花极品一区二区| 久久久久久久久久黄片| 久久精品国产99精品国产亚洲性色| 国产精品一区二区在线观看99 | 国模一区二区三区四区视频| 亚洲av成人精品一区久久| 精品久久久久久久久亚洲| 色播亚洲综合网| 亚洲高清免费不卡视频| 亚洲人成网站高清观看| 国产精品久久久久久亚洲av鲁大| 少妇猛男粗大的猛烈进出视频 | 禁无遮挡网站| 国产精品人妻久久久久久| 亚洲综合色惰| 久久精品国产亚洲网站| 亚洲在久久综合| 国产精品国产三级国产av玫瑰| 国产美女午夜福利| 国产精品乱码一区二三区的特点| 美女黄网站色视频| 99热全是精品| 国产极品精品免费视频能看的| 欧美性感艳星| 亚洲在线观看片| 亚洲自拍偷在线| 亚洲四区av| 九草在线视频观看| 色综合站精品国产| 免费黄网站久久成人精品| 色哟哟哟哟哟哟| 少妇猛男粗大的猛烈进出视频 | 亚洲三级黄色毛片| 欧美bdsm另类| 久久久国产成人免费| 国产毛片a区久久久久| 精品久久久久久久久av| 一卡2卡三卡四卡精品乱码亚洲| 久久热精品热| 欧美zozozo另类| 精品国内亚洲2022精品成人| 黄片wwwwww| 成人av在线播放网站| 亚洲,欧美,日韩| 国产成年人精品一区二区| 亚洲av电影不卡..在线观看| 欧美精品一区二区大全| 在线观看午夜福利视频| 日日摸夜夜添夜夜添av毛片| 国产伦精品一区二区三区视频9| 中文字幕精品亚洲无线码一区| 亚洲国产高清在线一区二区三| 国产高清有码在线观看视频| 欧美一级a爱片免费观看看| 日韩精品有码人妻一区| 国产麻豆成人av免费视频| 国语自产精品视频在线第100页| 精品久久久久久久久av| 九九爱精品视频在线观看| 人人妻人人澡欧美一区二区| 国产精华一区二区三区| 久久久久国产网址| 亚洲国产欧美人成| 一本精品99久久精品77| 国产极品天堂在线| 春色校园在线视频观看| 国内精品一区二区在线观看| 国产成人福利小说| 国产大屁股一区二区在线视频| 亚洲真实伦在线观看| 国产精品久久久久久精品电影小说 | 精品国内亚洲2022精品成人| 成人三级黄色视频| 久久久久网色| 黄色日韩在线| а√天堂www在线а√下载| 免费人成在线观看视频色| 婷婷六月久久综合丁香| 亚洲成a人片在线一区二区| 熟女电影av网| 两个人视频免费观看高清| 麻豆一二三区av精品| 久久这里只有精品中国| 一级黄片播放器| 男的添女的下面高潮视频| av卡一久久| 日日摸夜夜添夜夜添av毛片| 日韩三级伦理在线观看| 中文字幕制服av| 亚洲欧美精品专区久久| 国产人妻一区二区三区在| .国产精品久久| 一边摸一边抽搐一进一小说| 伦理电影大哥的女人| 免费看美女性在线毛片视频| 亚洲丝袜综合中文字幕| 一边亲一边摸免费视频| 国产在线精品亚洲第一网站| 亚洲av.av天堂| 欧美另类亚洲清纯唯美| 欧美日韩精品成人综合77777| 午夜激情欧美在线| 国内精品美女久久久久久| 欧美xxxx黑人xx丫x性爽| 伦理电影大哥的女人| 国产国拍精品亚洲av在线观看| 青春草国产在线视频 | 国产免费男女视频| 一区福利在线观看| 禁无遮挡网站| 欧美+日韩+精品| 亚洲综合色惰| 青春草国产在线视频 | 麻豆成人av视频| 色综合亚洲欧美另类图片| 乱人视频在线观看| 嘟嘟电影网在线观看| 99视频精品全部免费 在线| 国产视频首页在线观看| 女人被狂操c到高潮| 插逼视频在线观看| 成人漫画全彩无遮挡| 亚洲不卡免费看| 午夜福利在线观看免费完整高清在 | 哪个播放器可以免费观看大片| 好男人视频免费观看在线| 一级毛片aaaaaa免费看小| 少妇被粗大猛烈的视频| 禁无遮挡网站| 欧美+日韩+精品| 97超视频在线观看视频| 人妻系列 视频| 免费观看在线日韩| 男女视频在线观看网站免费| 国产精品1区2区在线观看.| 免费人成视频x8x8入口观看| 内射极品少妇av片p| 欧美日韩乱码在线| 亚洲欧美日韩东京热| 岛国在线免费视频观看| 免费看光身美女|