• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observation of Small-amplitude Electromagnetic Cyclotron Waves in the Solar Wind

    2023-05-29 10:13:04HaiFengYangGuoQingZhaoHengQiangFengGilbertPiQiangLiuLiangXiangQiuHuanLiandDanYangRen

    Hai-Feng Yang, Guo-Qing Zhao , Heng-Qiang Feng, Gilbert Pi, Qiang Liu, Liang Xiang, Qiu-Huan Li, and Dan-Yang Ren

    1 Institute of Space Physics, Luoyang Normal University, Luoyang 471934, China; zgqisp@163.com

    2 Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang 471934, China

    3 Faculty of Mathematics and Physics, Charles University, Prague 121 16, Czech Republic

    Abstract Our previous studies on low-frequency electromagnetic cyclotron waves (ECWs) with amplitudes larger than 0.1 nT in the solar wind revealed that the left-handed(LH)polarized ECWs are the dominant waves,and these waves preferentially occur in plasma conditions of high proton speed (Vp), high proton temperature (Tp), low proton density(Np).In the present study,using magnetic field and plasma data from the Wind mission between 2005 and 2015, we perform a survey of small-amplitude ECWs with amplitudes smaller than 0.1 nT.It is revealed for the first time that the small-amplitude right-handed (RH) polarized ECWs tend to frequently occur in plasmas characterized by low Vp, low Tp, low Np, although the small-amplitude LH ECWs still preferentially occur in plasma conditions similar to the LH ECWs with amplitudes larger than 0.1 nT.Further investigation shows that the occurrences of small-amplitude RH ECWs and long-lasting radial interplanetary magnetic field (lrIMF) share the similar preferential plasma conditions of low Tp and low Np.During lrIMF events, in particular, the occurrence rates of RH and LH ECWs are comparable,with the occurrence rate of small-amplitude RH ECWs slightly larger than that of small-amplitude LH ECWs.The generation mechanism of the small-amplitude ECWs is discussed.

    Key words: (Sun:) solar wind – magnetic fields – waves

    1.Introduction

    The nonthermal ions in the solar wind may serve as freeenergy sources to excite kinetic waves (Hollweg 1975;Schwartz 1980; Tu & Marsch 1995; Marsch et al.2004;Marsch 2006; Cranmer 2014; He et al.2015; Hellinger &Trávní?ek 2016;Klein et al.2018;Wilson et al.2018).Among these waves, low-frequency electromagnetic cyclotron waves(ECWs) near the proton cyclotron frequency are of interest in recent years.According to observations (Jian et al.2009,2010,2014;Boardsen et al.2015;Gary et al.2016;Zhao et al.2017b, 2018, 2019a, 2019b; Pi et al.2022), ECWs are characterized by a typical frequency of 0.1–0.5 Hz around 1 au and are transverse waves propagating mainly in the direction parallel or antiparallel to ambient magnetic field (B).The waves can be left-handed(LH)or right-handed(RH)polarized with respect to B in the spacecraft frame.Most of the observations show that the waves are usually dominated by LH polarization,and the occurrence rate of LH ECWs is more than twice of the occurrence rate of RH ECWs (Zhao et al.2017b;Yang et al.2022).LH ECWs tend to occur in the regions of high proton speed (Vp), high proton temperature (Tp), low proton density (Np) and alpha-proton differential flow (Vd)pointing anti-sunward,where Vd=Vα?Vpand Vαand Vpare velocities of alpha particles and protons, respectively.

    To clarify the generation mechanisms of ECWs, plasma instabilities driven by temperature anisotropies and/or differential flows between ion populations are proposed (Gary et al.1993; Li & Habbal 2000; Lu et al.2006; Verscharen et al.2013;Omidi et al.2014).It is believed that ion cyclotron waves(LH ECWs in the plasma frame) are produced by the proton cyclotron instability excited by temperature anisotropies with perpendicular temperature higher than parallel temperature,and magnetosonic waves (RH ECWs in the plasma frame) are produced by the firehose instability excited by the converse temperature anisotropy (Jian et al.2010; Podesta &Gary 2011a, 2011b; Xiang et al.2020, 2021).The ion cyclotron waves or magnetosonic waves can also be excited at the presence of large beam-core differential flows(Abraham-Shrauner et al.1979;Gary et al.1993;Daughton&Gary 1998;Daughton et al.1999; Goldstein et al.2000; Xiang et al.2018a, 2018b), or large alpha-proton differential flow (Wicks et al.2016;Zhao et al.2017b,2019a,2019b,2020;Yang et al.2022).For combined effects of temperature anisotropies and differential flows, previous research tends to suggest that the main driver of instabilities is temperature anisotropies, but differential flows provide additional free energy and amplify the wave growth in the solar wind(Jian et al.2016;Wicks et al.2016; Zhao et al.2017b, 2019a, 2019b).

    Despite recent observational and theoretical works, some questions about the occurrence of ECWs remain open.First,previous research mostly focused on ECWs with amplitudes larger than a certain threshold (such as 0.1 nT in Zhao et al.2017a, 2017b, 2018, 2019a, 2019b; Yang et al.2022), and a detailed study on small-amplitude ECWs is lacking.Second,the preferential plasma conditions for the occurrence of RH ECWs are ambiguous, at least not as clear as those for LH ECWs.In this paper, we pay much attention to the occurrence of small-amplitude ECWs, which may be helpful for a deeper understanding of the occurrence of ECWs.

    The solar wind carrying a frozen-in magnetic field streams outward from the Sun and permeates the interplanetary space,creating the interplanetary magnetic field(IMF).The IMF usually has a spiral structure and the direction is expected to be around 45°away from the Sun–Earth line near the Earth according to Parker’s model(Parker 1958).However,some exceptions have been found,such as long-lasting radial IMF (lrIMF) events observed by Ulysses(Jones et al.1998;Gosling&Skoug 2002;Murphy et al.2002), ISEE-3 (Neugebauer et al.1997), OMNI (Pi et al.2014),ACE (Orlove et al.2013) and Wind (Pi et al.2022).These observations show that the solar wind during lrIMF events is characterized by low Np, low Tpand decreasing Vp(Riley &Gosling 2007;Pi et al.2014).The bulk speed difference between the beginning and ending of lrIMF is usually considered to be the main factor creating lrIMF (Gosling & Skoug 2002; Schwadron 2002;Riley&Gosling 2007;Orlove et al.2013).It is found that the lrIMF events play an important role in activities in Sun–Earth space,such as space weather,the location and shape of the magnetopause, bow shock effects, and formation of the dayside magnetopause and its boundary layers (Pi & Něme?ek 2018; Pi et al.2022).However, minimal attention has been given to the effect of the lrIMF events on the occurrence of ECWs (Pi et al.2022).In this paper,we also investigate the occurrence of ECWs during the lrIMF events in detail, which may reveal the characteristics of the occurrence of ECWs during the specific IMF.

    2.Data and Analysis Methods

    In this study, observations were made between 2005 and 2015 using data from the Wind mission,which had a halo orbit around the L1 Lagrange point during this time.Specifically,the magnetic field data are from the Magnetic Field Investigation(MFI) instrument on board the Wind mission sampled at a cadence of 0.092 s (Lepping et al.1995).The plasma data are from the Solar Wind Experiment (SWE) instrument (Ogilvie et al.1995) and are produced via a nonlinear-least-squares bi-Maxwellian fitting of the ion spectrum measured by the Faraday cup with a cadence of 92 s (Kasper et al.2006).In addition, we discarded all data with Vd/Vpless than 1% and with the angle between Vdand B (or ?B) greater than 20° to exclude the observations of Vdwith a large uncertainty(Kasper et al.2006; Alterman et al.2018).

    An automatic wave detection procedure (Zhao et al.2017b, 2018) is employed to conduct a study of ECWs based on the magnetic field data.We briefly describe the main steps as follows.First, reduced magnetic helicity (Matthaeus &Goldstein 1982; Matthaeus et al.1982; Gary & Winske 1992;He et al.2011) and transverse power spectrum for a magnetic field interval are calculated.Second, the magnetic helicity spectrum and the transverse power spectrum are examined in the frequency range from 0.05 to 1 Hz.The presence of an ECW event is identified if the magnetic helicity has an absolute value greater than 0.7 in some frequency band with a minimum bandwidth of 0.05 Hz and the transverse wave power is three times larger than the background power in the same frequency band.Finally, unlike previous studies (Zhao et al.2017a, 2017b, 2018, 2019a, 2019b; Yang et al.2022), we took advantage of all ECWs including small-amplitude waves in this study.

    Magnetic field data have also been used to identify lrIMF events.The criteria for lrIMF intervals are the same as that adopted by Pi et al.(Pi et al.2014, 2022).The ratio of the Bxmagnetic field component and its magnitude B should be larger than 0.9 for four or more hours,but a short break(less than 15 minutes)is allowed.Based on wind observations between 2005 and 2015,319 lrIMF events were found,accounting for 2.55%of the total time.It should be noted that if the criteria(value of|Bx|/B and the breaking time) are slightly changed, we will have different numbers and intervals of lrIMF events, but this does not change the main conclusions of this study.

    3.Statistical Results

    Using the plasma and magnetic field data from the Wind mission, we investigate the occurrence of ECWs at different kinds of wave amplitudes and IMFs.Observations of smallamplitude ECWs are presented in Section 3.1.An investigation of the occurrence of ECWs, with particular attention to smallamplitude RH ECWs, is presented in Section 3.2.The solar wind characteristics and the occurrence rates of ECWs during lrIMF events are given in Section 3.3.Note that the wave polarization is described in the spacecraft frame throughout the paper, except when we point out the plasma frame.

    3.1.Observation of Small-amplitude ECWs

    Figure 1.Illustration of the identification of small-amplitude ECWs.The transverse components of the raw magnetic field(a)and the filtered magnetic field(c)in the field-aligned coordinate system on 2006 November 9.(b)The magnetic helicity spectrum σm(upper panel)and the transverse power spectrum(lower panel).The red lines in(b)mark the frequency band with σm greater than 0.7 and the dashed line in the lower panel of (b)represents the power law fitting for the transverse power spectrum.(d) Hodogram of filtered transverse components with a time interval of 20 s.The plus and minus signs indicate the beginning and end of the time series,respectively.

    Unlike previous work,this study focuses on small-amplitude ECWs with amplitudes smaller than 0.1 nT.Figure 1 shows an example of the identification of small-amplitude ECWs.First,the raw magnetic fields in geocentric solar ecliptic (GSE)coordinates are changed into field-aligned coordinates (Gao et al.2014; Zhao et al.2017a), and the transverse components are given in Figure 1(a).Second, the raw magnetic fields in field-aligned coordinate are transformed from the time domain to the frequency domain by the fast Fourier transform, and the magnetic helicity spectrum and the transverse power spectrum are obtained in Figure 1(b).We highlight the frequency band with σmgreater than 0.7 in red and plot the power law fitting for the transverse power spectrum with dashed line.The strong positive magnetic helicity and enhanced transverse power spectrum indicate the appearance of an RH ECW.Finally, the waveforms after bandpass filtering are displayed in Figures 1(c), and the wave amplitude is determined to be 0.06 nT.In addition, Figure 1(d) shows the hodogram of the filtered transverse components with a time interval of 20 s,where the plus and minus signs mark the beginning and the end of the time series, respectively.It reveals that the wave is RH polarized in the spacecraft frame, consistent with a positive value of the magnetic helicity shown in Figure 1(b).

    Based on the wave identification procedure described above,we obtain the numbers of LH and RH ECWs and the percentage of RH ECW against wave amplitude in Figure 2.According to Figure 2(a), 51.5% of RH ECWs and 39.2% of LH ECWs have amplitudes smaller than 0.1 nT, which were discarded in the previous studies (Zhao et al.2017a, 2017b, 2018, 2019a, 2019b; Yang et al.2022).Figure 2(b) shows that the percentage of RH ECWs is nearly constant around 27%at amplitudes larger than 0.1 nT,which is consistent with previous observations that LH ECWs are the dominant waves (Zhao et al.2017b; Yang et al.2022).Furthermore, the percentage of RH ECWs increases rapidly as the amplitude decreases and RH ECWs become the dominant waves at amplitudes smaller than 0.04 nT.

    Figure 2.(a) The numbers of LH (black square line) and RH (red circle line)ECWs.(b) The percentage of RH ECWs against wave amplitude.

    Figure 3.Occurrence rates of LH(left panel)and RH(right panel)ECWs with respect to Vp(a),(b),Tp(c),(d)and Np(e),(f).The black square,red circle and blue triangle lines are for ECWs with all amplitudes, large amplitudes (>0.1 nT) and small amplitudes (<0.1 nT), respectively.

    3.2.Dependence of Occurrence of Small-amplitude ECWs on Plasma Parameters

    In order to study the occurrence of ECWs including the small-amplitude waves, we present the occurrence rates of LH and RH ECWs with all amplitudes, large-amplitude (>0.1 nT)and small-amplitude(<0.1 nT)in Figure 3.The occurrence rate is defined as the ratio of the ECW number and the total sample number in a certain parameter bin.The occurrence rates are calculated with respect to Vp,Tpand Np.Examining LH ECWs in the left panels of Figure 3,the occurrence rates of large-and small-amplitude waves have almost the same trend of change,and the preferential plasma conditions for the occurrence of LH ECWs include high Vp,high Tpand low Np,which is consistent with the conclusions of the previous papers(Zhao et al.2017b;Yang et al.2022).In particular,on inspection of the RH ECWs in the right panels of Figure 3, the occurrence rates of smallamplitude waves show clear dependence on the three plasma parameters, while the dependence is absent or negligible for large-amplitude waves, which is in contrast to the case of LH ECWs.Specifically, we identify the preferential plasma conditions for the occurrence of small-amplitude RH ECWs including low Vp, low Tpand low Npfor the first time.

    Figure 4.An example of a lrIMF event observed by Wind on 2013 May 28–29.From top to bottom: (a) |Bx|/B, (b) magnitude and three components of B in GSE coordinates (red for Bx, blue for By, yellow for Bz), (c) Vp, (d) Tp, (e) Np.The two vertical dashed lines denote the start and end times of the lrIMF event.The red dashed line in Figure 4(c) represents a linear fitting of Vp during the lrIMF event.

    3.3.Occurrence of Small-amplitude ECWs during lrIMF Events

    The study of wave activities during lrIMF events may be helpful for our understanding of the occurrence of smallamplitude ECWs.Figure 4 shows an example of a lrIMF event with a duration of up to 19 hr.The two vertical dashed lines indicate the start and end times of the lrIMF event.Figure 4(a)displays the value of |Bx|/B, and Figure 4(b) presents the magnitude and three components of B in GSE coordinates.During the period between 15:03 on May 28 and 10:12 on May 29,the values of B and Bxare nearly equal with the ratio|Bx|/B above 0.9, indicating the occurrence of a lrIMF event.Before or after the period, the values are highly variable.Figure 4(c)displays Vpand its linear fitting.The Vpis found to decrease from 680 to 560 km s?1at a rate of ?6.3 km s?1h?1during the lrIMF event.Figures 4(d) and (e) show that the values of Tpand Npchange around their medians of 1.4×105K and 0.57 cm?3during this event.

    To obtain the characteristics of the solar wind during lrIMF events, the variations of the yearly medians of solar wind parameters Vp, Tp, and Npduring all intervals, radial IMF (rIMF) events and lrIMF events are displayed in Figure 5.One may find that lrIMF events tend to occur in regions of low Tpand low Np.We also give the yearly medians of solar wind parameters during rIMF events without duration restriction to distinguish the effects of long-lasting and radial.It is shown that rIMF events tend to occur at low Np,and that low Tpmay be the key factor for the long-term persistence of the rIMF events.In addition,Figure 5(a) shows that the medians of Vpat the three conditions almost coincide,though it is usually believed that most of lrIMF events tend to occur at decreasing Vpas shown in Figure 4(c) and previous studies (Neugebauer et al.1997;Pi et al.2014).

    The occurrences of small-amplitude RH ECWs and lrIMF events share the same preferential plasma conditions of low Tpand low Np.Therefore,an increase in the occurrence rate of RH ECWs during lrIMF events may be expected when smallamplitude waves are included.Table 1 lists the occurrence rates of ECWs and the percentages of RH ECWs at different kinds of IMFs and amplitudes.Some conclusions about small-amplitude ECWs can be drawn from Table 1.During all intervals, the occurrence rate of LH ECWs is larger than that of RH ECWs.When the IMF is constrained to be radial(i.e.,rIMF or lrIMF),the occurrence rates of both LH and RH ECWs increase.During rIMF events, the occurrence rates of both LH and RH ECWs more than quadruple, and thus the percentage of RH ECWs is almost unchanged.During lrIMF events,the increase of the occurrence rate of RH ECWs is significantly obvious than that of LH ECWs,resulting in a slightly larger occurrence rate of RH ECWs than that of LH ECWs(Pi et al.2022).This is different from previous observations that LH ECWs are the dominant waves (Zhao et al.2017b; Yang et al.2022).Furthermore, the percentage of RH ECWs with large amplitudes is smaller than that with small amplitudes for the three kinds of IMFs.

    Figure 5.Yearly medians of Vp (a), Tp (b) and Np (c) during all intervals (black square line), radial IMF (rIMF) events (red circle line) and lrIMF events (blue triangle line).

    Table 1 Occurrence Rates and Percentages of ECWs at Different Kinds of IMFs and Amplitudes

    We also examine the dependence of the probability density distributions(PDDs)of the ambient plasma and the occurrence rates of ECWs on the Vddirection, as shown in Figure 6.The PDD is calculated as the ratio of the number of observations in each particular bin and the total number of observations.The angle between Vdand R(the radial vector of the Sun)is defined as θVdR, and an angle θVdRless than 90° means that Vdis pointing anti-sunward while an angle θVdRgreater than 90°denotes the sunward direction.Figure 6(a) displays the PDDs of the ambient plasma against θVdRduring all intervals, rIMF events and lrIMF events,respectively.It is shown that the PDD has the maximums when θVdRis around 60° and 120° during all intervals.When the IMF is constrained to be radial (i.e.,rIMF or lrIMF), the PDD has the maximums when θVdRis around 15° and 165° where Vdis roughly parallel or antiparallel to R.In addition, the PPD with sunward Vdis significantly smaller than that with anti-sunward Vdduring rIMF events, while the PPD with sunward Vdis only slightly smaller than that with anti-sunward Vdduring lrIMF events.Figures 6(b)–(d) display the percentages of RH ECWs and the occurrence rates of ECWs with respect to θVdR.It is shown that RH (LH) ECWs are the dominant waves at sunward (antisunward) Vd.In addition, Figures 6(b)–(d) also show that the dependences of percentages and occurrence rates of RH ECWs on θVdRare more obvious for small-amplitude waves than for large-amplitude waves.

    4.Discussion and Summary

    Figure 6.(a)Probability density distributions(PDDs)of the ambient plasma with respect to θVdR,where θVdR is the angle between Vd and R(the radial vector of the Sun).The black square, red circle and blue triangle lines are for all intervals, rIMF events and lrIMF events, respectively.Percentages of RH ECWs (b), and occurrence rates of LH (c) and RH (d) ECWs with respect to θVdR.The black square, red circle and blue triangle lines are for ECWs with all amplitudes, large amplitudes (>0.1 nT) and small amplitudes (<0.1 nT), respectively.The dashed line in Figure 6(b) indicates a value of 50%.

    The dependence of the occurrence of ECWs on θVdRrevealed by Figures 6(b)–(d) may be explained by the linear Vlasov–Maxwell kinetic theory (Podesta & Gary 2011a),which indicates that LH (RH) ECWs in the plasma frame are preferentially generated by electromagnetic ion cyclotron instability (parallel firehose instability) with a maximum growth rate occurring at k·Vd>0 (k·Vd<0), where k is the wavevector.This theory also means that LH ECWs in the spacecraft frame are the dominant waves when Vdis antisunward,while RH ECWs are the dominant waves when Vdis sunward, where the polarization reversal for ECWs with sunward k has been considered due to a large Doppler shift from the fast motion of the solar wind(Podesta&Gary 2011a;Yang et al.2022).Then, we try to use the conclusions of Figure 6 to understand the changes in the occurrence rates of ECWs with all amplitudes in Table 1.When the IMF is constrained to be radial as shown in Figure 6(a),the increase in the PPD with Vdroughly parallel or anti-parallel to R may result in large occurrence rate of ECWs during rIMF or lrIMF events in Table 1.During rIMF events, the PDDs of the ambient plasma with anti-sunward Vdare significantly larger than those with sunward Vd, most likely resulting in a larger occurrence rate of LH ECWs than RH ECWs.During lrIMF events, the PDDs of the ambient plasma with the sunward and anti-sunward Vdare similar, which may be the reason for the similar occurrence rates of LH and RH ECWs as shown in Table 1.

    Two findings about the occurrence of ECWs with small amplitudes are worth noting.First,the percentage of RH ECWs increases as the amplitude decreases during all intervals as shown in Figure 2.Second, the occurrence rate of smallamplitude RH ECWs is slightly larger than that of smallamplitude LH ECWs during lrIMF events as shown in Table 1.These may be interpreted in the context of the temperatureanisotropy-driven instabilities with the effect of alpha particles.According to the theoretical study by Podesta&Gary(2011a),a small value of Vd/VAand a weak temperature anisotropy correspond to a small growth rate for both the electromagnetic ion cyclotron instability and the parallel firehose instability,possibly resulting in waves with small amplitudes.Figure 7 displays the PDDs of (θVdR, T⊥/T‖) and (θVdR, Vd/VA) for all intervals and lrIMF events.A value of T⊥/T‖close to 1 implies weak temperature anisotropy.Figure 7 shows that the ambient plasma with sunward Vd, where RH ECWs dominate, has weaker temperature anisotropy and smaller value of Vd/VAcompared with that with anti-sunward Vd, where LH ECWs dominate.Then, RH ECWs may have smaller growth rate of instabilities and thus smaller amplitudes than LH ECWs, and the proportion of RH ECWs is larger when wave amplitude is smaller.

    Figure 7.PDDs of(θVdR,T⊥/T‖)(upper panels)and(θVdR,Vd/VA)(lower panels)for ambient plasma.The left and right panels are for all intervals and lrIMF events,respectively.

    Note that in the above study we use the absolute amplitude of 0.1 nT as the criterion to distinguish small-amplitude from large-amplitude ECWs.We also carry out statistical analysis adopting relative amplitude criterion of 0.02 to classify ECWs,where the relative amplitude is defined as the absolute amplitude normalized by the ambient magnetic field.The statistical results(not shown)qualitatively reproduce the trends of occurrence rate of ECWs using the absolute amplitude criterion (Figure 3).The occurrence rate and percentage of small-amplitude RH ECWs during lrIMF events are 3.21%and 54.2% respectively, indicating a slightly larger occurrence rate of small-amplitude RH ECWs than that of LH ECWs,which is also similar to the result using the absolute amplitude criterion(Table 1).Further studies on the PDDs of the relative and absolute amplitudes show that the relative amplitude is roughly proportional to the absolute amplitude (Figure 8) and there is no evident dependence of the absolute amplitude on the ambient magnetic field, which could result in the similar statistical results for the relative and absolute amplitude criteria.

    Figure 8.PDDs of (Relative Amplitude, Absolute Amplitude) for all the ECWs.

    In summary, we investigated the occurrences of ECWs with different amplitudes using the data from the Wind mission.It was found that small-amplitude LH ECWs preferentially occur in plasma conditions similar to large-amplitude cases.However, the preferential plasma conditions for the occurrence of small-amplitude RH ECWs are identified as low Vp, low Tp,low Np, which are absent or negligible for large-amplitude RH ECWs.In addition, the occurrences of small-amplitude RH ECWs and lrIMF events share the similar preferential plasma conditions of low Tpand low Np.When the IMF is constrained to lrIMF, the occurrence rates increase for both LH and RH ECWs, while the increase for RH ECWs is more obvious than that for LH ECWs,resulting in a slightly larger occurrence rate for RH ECWs than that for LH ECWs with small amplitudes.The generation mechanism of the small-amplitude ECWs could be the temperature-anisotropy-driven instabilities with the effect of alpha particles.

    Acknowledgments

    This research was supported by NSFC under grant Nos.42174202, 41874204, 41974197, and 12103018.Research by G.-Q.Z.was supported partly by the Excellent Young Scientists Fund in Henan Province under grant No.222300420061.The authors acknowledge the Wind mission for the data,which can be obtained via the Coordinated Data Analysis Web (http://cdaweb.gsfc.nasa.gov/cdaweb/istp_public/).

    ORCID iDs

    Guo-Qing Zhao https://orcid.org/0000-0002-1831-1451

    国产一区在线观看成人免费| 日本成人三级电影网站| 欧美黄色淫秽网站| 性色av乱码一区二区三区2| 一边摸一边做爽爽视频免费| 国产熟女午夜一区二区三区| 一区福利在线观看| 国产亚洲av高清不卡| 亚洲人成网站高清观看| 亚洲精品美女久久av网站| 婷婷精品国产亚洲av| 91大片在线观看| 国产精品九九99| 亚洲中文字幕日韩| 性欧美人与动物交配| 国产精品一区二区三区四区久久 | 美女国产高潮福利片在线看| av福利片在线| www.999成人在线观看| 亚洲av成人不卡在线观看播放网| 人人妻人人看人人澡| 久久午夜亚洲精品久久| 91麻豆精品激情在线观看国产| 美女国产高潮福利片在线看| 精品国产乱子伦一区二区三区| 人成视频在线观看免费观看| 精品久久久久久,| 日韩国内少妇激情av| 制服人妻中文乱码| 国产成人精品久久二区二区91| 悠悠久久av| 欧美日韩亚洲国产一区二区在线观看| x7x7x7水蜜桃| 久久久国产精品麻豆| 亚洲国产欧美日韩在线播放| 中文字幕精品免费在线观看视频| 法律面前人人平等表现在哪些方面| 国产一区二区三区在线臀色熟女| 午夜两性在线视频| 亚洲专区中文字幕在线| av天堂在线播放| 999久久久国产精品视频| 悠悠久久av| 亚洲国产欧美日韩在线播放| 黄色 视频免费看| 午夜福利18| 亚洲美女黄片视频| 亚洲自拍偷在线| 欧美+亚洲+日韩+国产| 国产精品一区二区精品视频观看| 日本熟妇午夜| 一区二区三区国产精品乱码| 淫妇啪啪啪对白视频| xxx96com| 日日摸夜夜添夜夜添小说| 99国产精品99久久久久| 曰老女人黄片| 亚洲五月色婷婷综合| 亚洲中文字幕一区二区三区有码在线看 | 国产片内射在线| 久久精品国产99精品国产亚洲性色| 国内精品久久久久久久电影| 一级作爱视频免费观看| 制服诱惑二区| 啪啪无遮挡十八禁网站| 免费观看人在逋| 变态另类丝袜制服| 中文字幕人妻丝袜一区二区| 午夜福利在线在线| 久久国产精品影院| 激情在线观看视频在线高清| 美女国产高潮福利片在线看| 男女那种视频在线观看| 可以在线观看的亚洲视频| 后天国语完整版免费观看| 天堂动漫精品| 国产男靠女视频免费网站| 男女午夜视频在线观看| 99国产极品粉嫩在线观看| 亚洲 国产 在线| 自线自在国产av| 亚洲 欧美 日韩 在线 免费| 熟妇人妻久久中文字幕3abv| 在线观看舔阴道视频| 99国产精品一区二区三区| 看免费av毛片| 日韩欧美国产在线观看| 国产单亲对白刺激| x7x7x7水蜜桃| 欧美日韩福利视频一区二区| 亚洲国产欧美一区二区综合| 青草久久国产| 国产国语露脸激情在线看| 日韩高清综合在线| 午夜福利在线观看吧| 久久性视频一级片| 高清毛片免费观看视频网站| 久久久精品欧美日韩精品| 亚洲性夜色夜夜综合| 亚洲av日韩精品久久久久久密| 亚洲激情在线av| 国产精品九九99| 琪琪午夜伦伦电影理论片6080| 国产欧美日韩一区二区三| 天天躁狠狠躁夜夜躁狠狠躁| 日韩精品免费视频一区二区三区| 免费av毛片视频| 99re在线观看精品视频| 村上凉子中文字幕在线| av免费在线观看网站| 女人爽到高潮嗷嗷叫在线视频| av片东京热男人的天堂| 一进一出抽搐动态| 色av中文字幕| 日本撒尿小便嘘嘘汇集6| 久久久久国内视频| 久久久久九九精品影院| 免费在线观看亚洲国产| 欧美乱妇无乱码| 在线观看免费午夜福利视频| 人人妻人人澡人人看| 中文字幕人妻熟女乱码| 在线观看免费日韩欧美大片| 精品久久久久久久末码| 视频在线观看一区二区三区| 欧美日韩福利视频一区二区| 亚洲成av人片免费观看| 十八禁人妻一区二区| tocl精华| 可以免费在线观看a视频的电影网站| 中文字幕最新亚洲高清| 亚洲 欧美一区二区三区| 午夜免费鲁丝| 一本综合久久免费| 亚洲午夜精品一区,二区,三区| 亚洲精品av麻豆狂野| 一级毛片精品| 真人做人爱边吃奶动态| 久久久久免费精品人妻一区二区 | 变态另类成人亚洲欧美熟女| 女同久久另类99精品国产91| 国产亚洲av高清不卡| 老司机深夜福利视频在线观看| 亚洲av片天天在线观看| 好看av亚洲va欧美ⅴa在| 中文字幕精品免费在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 1024视频免费在线观看| 国产精品爽爽va在线观看网站 | 亚洲精品中文字幕一二三四区| 亚洲五月天丁香| 午夜免费激情av| 久久香蕉激情| 欧美乱妇无乱码| 大香蕉久久成人网| 久久精品国产亚洲av香蕉五月| 久久中文看片网| 深夜精品福利| 亚洲第一青青草原| 丝袜美腿诱惑在线| 大型av网站在线播放| 人成视频在线观看免费观看| 俺也久久电影网| 午夜精品在线福利| 欧美成人午夜精品| 国产黄片美女视频| 亚洲专区国产一区二区| 亚洲av成人不卡在线观看播放网| 国产又色又爽无遮挡免费看| 少妇粗大呻吟视频| 亚洲真实伦在线观看| 久久国产精品男人的天堂亚洲| 国产又爽黄色视频| 变态另类丝袜制服| 51午夜福利影视在线观看| 亚洲性夜色夜夜综合| 亚洲aⅴ乱码一区二区在线播放 | 亚洲性夜色夜夜综合| 性色av乱码一区二区三区2| 18美女黄网站色大片免费观看| 国产精华一区二区三区| 国产单亲对白刺激| 精品日产1卡2卡| 丰满人妻熟妇乱又伦精品不卡| 欧美最黄视频在线播放免费| 熟妇人妻久久中文字幕3abv| 亚洲一区二区三区不卡视频| 亚洲av五月六月丁香网| 韩国精品一区二区三区| 日韩免费av在线播放| 国产在线观看jvid| 亚洲国产欧洲综合997久久, | 国产久久久一区二区三区| 最近最新中文字幕大全电影3 | 在线天堂中文资源库| 久久天堂一区二区三区四区| 免费高清视频大片| 欧美日韩亚洲综合一区二区三区_| 国产精品九九99| 日韩三级视频一区二区三区| 免费观看人在逋| 国产精华一区二区三区| 国产日本99.免费观看| 美女扒开内裤让男人捅视频| 亚洲精品av麻豆狂野| 搞女人的毛片| 777久久人妻少妇嫩草av网站| 国产亚洲av高清不卡| 午夜福利在线在线| 99re在线观看精品视频| 动漫黄色视频在线观看| 亚洲美女黄片视频| 日韩免费av在线播放| 好男人电影高清在线观看| 亚洲国产精品999在线| 88av欧美| 国产精品九九99| 午夜亚洲福利在线播放| 成人手机av| 国产久久久一区二区三区| 欧美精品亚洲一区二区| 日韩精品免费视频一区二区三区| 两个人视频免费观看高清| 欧美日韩福利视频一区二区| 国产激情久久老熟女| www日本在线高清视频| 美女午夜性视频免费| 一夜夜www| 大香蕉久久成人网| 国产成人啪精品午夜网站| 亚洲人成网站高清观看| 国产成人精品久久二区二区免费| 又黄又粗又硬又大视频| 国产精品1区2区在线观看.| 精品国产亚洲在线| 精品人妻1区二区| 国产高清激情床上av| 国产一区二区在线av高清观看| av在线天堂中文字幕| 国产成人精品无人区| 一区二区三区精品91| 一进一出抽搐动态| 色av中文字幕| 亚洲欧美日韩高清在线视频| 国产伦在线观看视频一区| 精品不卡国产一区二区三区| 男人舔女人的私密视频| www日本黄色视频网| 欧美黑人欧美精品刺激| 国内毛片毛片毛片毛片毛片| 18禁裸乳无遮挡免费网站照片 | 国产aⅴ精品一区二区三区波| 在线国产一区二区在线| 亚洲欧美精品综合一区二区三区| www日本黄色视频网| 免费看美女性在线毛片视频| 久9热在线精品视频| 精品午夜福利视频在线观看一区| 男男h啪啪无遮挡| 黑人巨大精品欧美一区二区mp4| 91成人精品电影| 国产伦人伦偷精品视频| 老司机午夜福利在线观看视频| 国产伦在线观看视频一区| 此物有八面人人有两片| 久久久久久大精品| 国产日本99.免费观看| av电影中文网址| 国产三级在线视频| 变态另类丝袜制服| 真人一进一出gif抽搐免费| 国产精品 欧美亚洲| 日本熟妇午夜| 精华霜和精华液先用哪个| 波多野结衣高清作品| 黄色视频,在线免费观看| 欧美色视频一区免费| 精品久久久久久成人av| 国产熟女xx| 97碰自拍视频| 国内毛片毛片毛片毛片毛片| 欧美日韩一级在线毛片| 国产成人av激情在线播放| 99国产精品一区二区三区| 在线视频色国产色| 欧美黑人欧美精品刺激| 麻豆成人午夜福利视频| 一本大道久久a久久精品| 婷婷六月久久综合丁香| 中国美女看黄片| 黑人欧美特级aaaaaa片| 精品国产超薄肉色丝袜足j| 一a级毛片在线观看| 俺也久久电影网| 免费观看精品视频网站| 日本五十路高清| 日韩欧美免费精品| 欧美中文日本在线观看视频| 看黄色毛片网站| 嫩草影视91久久| 啦啦啦 在线观看视频| 午夜精品在线福利| 夜夜躁狠狠躁天天躁| 精品少妇一区二区三区视频日本电影| 日韩欧美三级三区| 精品久久久久久久末码| 在线看三级毛片| 亚洲av中文字字幕乱码综合 | 国产av不卡久久| 禁无遮挡网站| 午夜久久久久精精品| 女性被躁到高潮视频| 国内揄拍国产精品人妻在线 | 成人精品一区二区免费| 伊人久久大香线蕉亚洲五| 日本精品一区二区三区蜜桃| 久久中文字幕人妻熟女| 99精品久久久久人妻精品| 久久人妻av系列| 国产乱人伦免费视频| 国产主播在线观看一区二区| 一夜夜www| 欧美黄色淫秽网站| 91九色精品人成在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲精品美女久久久久99蜜臀| 久久午夜亚洲精品久久| 国产精品一区二区免费欧美| 亚洲电影在线观看av| 99热只有精品国产| 大香蕉久久成人网| 欧美久久黑人一区二区| 国产视频一区二区在线看| 国产私拍福利视频在线观看| www.999成人在线观看| 亚洲精华国产精华精| 国产成人av教育| 怎么达到女性高潮| 国产精品国产高清国产av| 午夜福利在线在线| 少妇被粗大的猛进出69影院| 成人午夜高清在线视频 | 日韩国内少妇激情av| 老司机靠b影院| 亚洲精品久久成人aⅴ小说| 久久久国产精品麻豆| 黄片大片在线免费观看| 性欧美人与动物交配| 亚洲av中文字字幕乱码综合 | 琪琪午夜伦伦电影理论片6080| 一边摸一边抽搐一进一小说| 99久久精品国产亚洲精品| 淫妇啪啪啪对白视频| www日本在线高清视频| 久久久久亚洲av毛片大全| 在线永久观看黄色视频| 精品免费久久久久久久清纯| 一级作爱视频免费观看| 午夜久久久久精精品| 熟妇人妻久久中文字幕3abv| 好男人电影高清在线观看| 丰满的人妻完整版| 天天添夜夜摸| 在线观看免费日韩欧美大片| 国产区一区二久久| 国产激情偷乱视频一区二区| 在线观看免费视频日本深夜| 亚洲国产看品久久| 国产一区二区三区在线臀色熟女| 欧美色视频一区免费| 伦理电影免费视频| 免费在线观看视频国产中文字幕亚洲| 不卡一级毛片| 日韩欧美一区二区三区在线观看| 欧美激情高清一区二区三区| 欧美日韩福利视频一区二区| 伦理电影免费视频| 国产免费男女视频| 黄网站色视频无遮挡免费观看| 国产精品久久久av美女十八| 琪琪午夜伦伦电影理论片6080| 男人的好看免费观看在线视频 | 亚洲免费av在线视频| 精品一区二区三区av网在线观看| 身体一侧抽搐| 亚洲第一青青草原| 中国美女看黄片| 欧美中文综合在线视频| 在线观看舔阴道视频| 日韩精品青青久久久久久| 亚洲第一青青草原| 日韩大码丰满熟妇| 欧洲精品卡2卡3卡4卡5卡区| 99国产精品一区二区三区| 久久久久亚洲av毛片大全| 精品久久久久久久毛片微露脸| 91国产中文字幕| 成人欧美大片| 夜夜看夜夜爽夜夜摸| 国产黄a三级三级三级人| 午夜福利在线观看吧| 亚洲欧洲精品一区二区精品久久久| 在线十欧美十亚洲十日本专区| 美女免费视频网站| 禁无遮挡网站| 中文资源天堂在线| 亚洲一区二区三区色噜噜| 日本免费一区二区三区高清不卡| 男女午夜视频在线观看| 欧美午夜高清在线| 亚洲欧美一区二区三区黑人| 欧美一级毛片孕妇| 日本熟妇午夜| 日韩三级视频一区二区三区| 桃色一区二区三区在线观看| 在线观看舔阴道视频| 女人高潮潮喷娇喘18禁视频| 黄频高清免费视频| 日韩欧美在线二视频| 黄色成人免费大全| 男女床上黄色一级片免费看| 麻豆成人午夜福利视频| 亚洲专区字幕在线| 国产主播在线观看一区二区| 好男人在线观看高清免费视频 | 香蕉av资源在线| 大香蕉久久成人网| 亚洲人成网站高清观看| 亚洲 国产 在线| 丝袜美腿诱惑在线| 久久久精品国产亚洲av高清涩受| 真人做人爱边吃奶动态| 在线视频色国产色| 欧美成人一区二区免费高清观看 | 久久天堂一区二区三区四区| 欧美人与性动交α欧美精品济南到| 亚洲欧美精品综合一区二区三区| 亚洲狠狠婷婷综合久久图片| 国产99久久九九免费精品| 国产又色又爽无遮挡免费看| 中文字幕人妻熟女乱码| 亚洲专区字幕在线| 久久人人精品亚洲av| 亚洲一码二码三码区别大吗| 亚洲国产中文字幕在线视频| 亚洲一区二区三区色噜噜| 国产一区二区三区在线臀色熟女| 成人三级做爰电影| 国产一级毛片七仙女欲春2 | 成人18禁高潮啪啪吃奶动态图| 少妇粗大呻吟视频| 搡老妇女老女人老熟妇| 久久人妻av系列| av天堂在线播放| 免费搜索国产男女视频| 在线国产一区二区在线| 国产亚洲精品第一综合不卡| 国产成人影院久久av| 在线观看舔阴道视频| 岛国视频午夜一区免费看| 日韩一卡2卡3卡4卡2021年| 黄色成人免费大全| 亚洲精品国产精品久久久不卡| 免费看日本二区| 一二三四在线观看免费中文在| 成人免费观看视频高清| 国产v大片淫在线免费观看| 久久婷婷成人综合色麻豆| 成人午夜高清在线视频 | 亚洲国产看品久久| 真人一进一出gif抽搐免费| 少妇熟女aⅴ在线视频| 老汉色av国产亚洲站长工具| 亚洲精品国产一区二区精华液| 波多野结衣高清无吗| 成人手机av| 亚洲自偷自拍图片 自拍| 亚洲男人天堂网一区| 国产精品 欧美亚洲| 日韩成人在线观看一区二区三区| 黄片大片在线免费观看| 无限看片的www在线观看| 日本精品一区二区三区蜜桃| 亚洲av电影不卡..在线观看| 18禁观看日本| 久久久久国内视频| 国产伦在线观看视频一区| 久久久久久久久久黄片| 国产单亲对白刺激| 国产一级毛片七仙女欲春2 | 国产又黄又爽又无遮挡在线| 国产精品影院久久| 久久天躁狠狠躁夜夜2o2o| 国产熟女xx| 欧美黑人欧美精品刺激| 成人三级做爰电影| 男人舔女人的私密视频| 青草久久国产| 成年版毛片免费区| 一个人免费在线观看的高清视频| 熟女少妇亚洲综合色aaa.| 国产高清视频在线播放一区| 国产精品久久久久久人妻精品电影| 国产99久久九九免费精品| 国产在线观看jvid| 成年人黄色毛片网站| 女性被躁到高潮视频| 国产精品爽爽va在线观看网站 | 一区二区三区国产精品乱码| 欧美黑人精品巨大| 欧美黄色淫秽网站| 老司机靠b影院| 日韩高清综合在线| 日本熟妇午夜| 国产精品精品国产色婷婷| 黄片播放在线免费| 一区二区日韩欧美中文字幕| 欧美丝袜亚洲另类 | 精品福利观看| 美女高潮到喷水免费观看| 久久午夜综合久久蜜桃| 国产精品久久久久久亚洲av鲁大| 一级片免费观看大全| 亚洲中文日韩欧美视频| 色综合亚洲欧美另类图片| 亚洲人成伊人成综合网2020| 又紧又爽又黄一区二区| 99国产综合亚洲精品| 一区二区三区国产精品乱码| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲精品久久成人aⅴ小说| xxxwww97欧美| 日韩中文字幕欧美一区二区| 黄片大片在线免费观看| 国产视频一区二区在线看| 久久久久国内视频| 亚洲熟女毛片儿| 欧美黑人巨大hd| 两性午夜刺激爽爽歪歪视频在线观看 | 国产av一区在线观看免费| 久久久久亚洲av毛片大全| 真人一进一出gif抽搐免费| 岛国在线观看网站| 一个人免费在线观看的高清视频| 亚洲天堂国产精品一区在线| 日韩成人在线观看一区二区三区| 久久久精品国产亚洲av高清涩受| 久久国产精品影院| 国产伦人伦偷精品视频| 精品高清国产在线一区| 他把我摸到了高潮在线观看| 性欧美人与动物交配| 亚洲专区中文字幕在线| 又大又爽又粗| 激情在线观看视频在线高清| 国产一区二区三区在线臀色熟女| 91老司机精品| 欧美黄色片欧美黄色片| 校园春色视频在线观看| 国产三级在线视频| 日本撒尿小便嘘嘘汇集6| 精品国产亚洲在线| 老鸭窝网址在线观看| 又黄又爽又免费观看的视频| 国产精品爽爽va在线观看网站 | www日本在线高清视频| or卡值多少钱| 真人做人爱边吃奶动态| 亚洲av美国av| www.精华液| 精品国产一区二区三区四区第35| 老司机午夜十八禁免费视频| 欧美午夜高清在线| 99久久综合精品五月天人人| 神马国产精品三级电影在线观看 | 亚洲精华国产精华精| 婷婷亚洲欧美| 一夜夜www| 好看av亚洲va欧美ⅴa在| 淫秽高清视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 久久99热这里只有精品18| svipshipincom国产片| 99re在线观看精品视频| 成人国语在线视频| 国产精品久久久av美女十八| 亚洲人成伊人成综合网2020| 国产精品综合久久久久久久免费| 中文字幕人妻熟女乱码| 国产99白浆流出| 十八禁人妻一区二区| 亚洲三区欧美一区| 这个男人来自地球电影免费观看| 精品福利观看| 亚洲精华国产精华精| 白带黄色成豆腐渣| 亚洲av熟女| 日韩精品中文字幕看吧| 亚洲七黄色美女视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产黄片美女视频| 精品久久久久久久末码| 老司机在亚洲福利影院| 亚洲国产精品成人综合色| 777久久人妻少妇嫩草av网站| av视频在线观看入口| 欧美精品啪啪一区二区三区| 男女视频在线观看网站免费 | av电影中文网址| 黑丝袜美女国产一区| 亚洲国产日韩欧美精品在线观看 | 国产精品二区激情视频| 国产在线精品亚洲第一网站| 亚洲av成人av| 精品国内亚洲2022精品成人|