• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Auto-Generation Method of Child Basic Block Structure

    2023-05-18 14:31:02WUShengRAOJueJIANGXuewei江學(xué)為ZHONGAnhua鐘安華ZHANGShangyong張尚勇

    WU Sheng(伍 圣), RAO Jue(饒 崛)*, JIANG Xuewei(江學(xué)為), ZHONG Anhua(鐘安華), ZHANG Shangyong(張尚勇)

    1 School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China

    2 School of Fashion, Wuhan Textile University, Wuhan 430073, China

    Abstract:In order to realize the auto-generation of clothing paper pattern making and reduce the reliance on the experience of clothing pattern makers, by simulating the experience of the clothing pattern maker through back propagation (BP) neural network, 400 children’s body measurements are collected and drawn into the clothing paper pattern, and the children’s body measurements and the pattern sizes generated through the children’s clothing structure design rules are imported into MATLAB neural network toolbox and a neural network model is established to automatically become the predicted pattern size. Then the parametric mathematical model of children’s clothing paper pattern is established and the children’s body measurements is imported into Auto-CAD parametric function to generate children’s clothing paper pattern automatically. The experimental interface and the virtual try-on interface are demonstrated and their effects are evaluated. The results show that the production rate of clothing paper patterns is improved by the auto-generation method, which is of positive significance to the intelligent production of clothing enterprises.

    Key words:paper pattern; back propagation (BP) neural network; Auto-CAD parameterization; auto-generation; virtual fitting

    Introduction

    With the improvement of people’s living standards and the acceleration of the pace of life, personalized mass customization of clothing will become the future development trend of the clothing industry. The traditional way of clothing production requires high experience of clothing pattern makers, and clothing enterprises spend a lot of manpower and financial resources to train clothing pattern makers. Auto-CAD parametric mathematical model of clothing paper patterns can realize automatic paper pattern generation without the operator learning programming language, which provides an effective way to realize large-scale personalized production of clothing. People generate pattern size by building a back propagation (BP) neural network model and automatically generate garment paper patterns using Auto-CAD parametric functions to automate the production of children’s garment paper patterns.

    Compared with traditional manual measurements or 3D body scans, a back-propagation artificial neural network (BP-ANN) based model for body dimensions prediction can predict body dimensions related to pattern making more accurately and efficiently[1]. Maetal.[2]proposed an empirical quantification method and combined it with BP neural network construction to establish a self-learning model for constructing garment pattern designs. A clothing recommendation system was constructed by the convolutional neural network, and the Euclidean distance was used to correct the simulated scoring, which reduced the error between the simulated and real scoring and thus improved the accuracy of the recommendations[3]. The parametric function of Auto-CAD is applied to the automatic generation of clothing paper patterns, with arcs fitting the clothing structure curves, and thus a parametric clothing paper pattern model is created. It provides an effective way for the automatic generation of clothing personalization[4]. Based on the parametric function of Auto-CAD, Lou[5]fitted the waistline with a single circular arc and the hem with a double circular arc to automatically generate A-shaped skirt paper samples, providing theoretical and technical support for personalized mass customization of garment enterprises. It can be concluded that the BP neural network model can be used to predict the size of children’s clothing paper patterns, and the establishment of the BP neural network model to produce children’s clothing paper patterns can improve the production efficiency of apparel enterprises.

    Children’s body measurements change rapidly. There have been some studies on BP neural networks applied to clothing structure, but there are few studies on BP neural networks applied to children’s clothing structure. In this paper, we take the Donghua child basic block 2020 edition[6]as an example and establish the neural network model of Donghua child basic block 2020 edition by collecting the body measurements of boys’ standard body type, and MATLAB neural network toolbox[7]is applied to the clothing pattern-making technology to realize the automatic generation of the pattern size. The BP neural network model was established by MATLAB neural network toolbox, and the automatic generation of children’s clothing paper patterns was realized by using Auto-CAD parameterization, which provides a technical reference for the automatic production of clothing paper samples in clothing enterprises.

    1 Theory and Methodology

    1.1 Theory of BP neural network

    BP neural network is a feedback-free forward network in which the neurons are arranged in layers[8]. The neural network does not need to pre-set the functional relationship between input and output parameters, and the output parameters are finally predicted by continuously adjusting the weight coefficients through error BP.

    1.2 Method of building BP neural network model for children’s clothing

    1.2.1Determinationofthenumberofneurons

    A BP neural network consists of one input layer, one or more hidden layers, and one output layer. The number of hidden layers and the number of hidden layer network nodes have a great impact on the network training and learning performance of the neural network. Too few nodes in the hidden layer will lead to insufficient learning ability. Too many nodes in the hidden layer will lead to overfitting of the network. Therefore, it is very important to determine the number of nodes in the hidden layer. In this paper, the formula[9]for determining the number of nodes in the hidden layer network is

    (1)

    whereyrepresents the number of network nodes in the hidden layer,nrepresents the number of network nodes in the input layer,mrepresents the number of network nodes in the output layer, andais a constant between 1 and 10. In neural networks, one hidden layer is usually given priority, and when one hidden layer is not able to perform the network operation, the number of layers of the neural network is considered to increase appropriately. In this paper, we use a neural network containing one hidden layer.

    1.2.2Normalizationofdata

    Generally, the output function of neurons is the most sensitive in the range of 0-1. To improve the performance of neural networks, the data are normalized. The normalization formula[10]is expressed as

    (2)

    whereyidenotes the value mapped to the interval [0, 1],xidenotes the original value,xminis the minimum value of the attribute, andxmaxis the maximum value of the attribute.

    1.2.3Experimentalprocedure

    The experiment was conducted by collecting body measurements from 400 children aged 3-6 years old, using 320 samples as training samples, 40 samples as validation samples, and 40 samples as test samples. MATLAB has a good programming environment, an easy-to-use high-level language, a powerful data processing capability, good user interfaces, and rich application toolboxes. In this paper, MATLAB is used to implement the prediction of children’s clothing pattern sizes. The neural network is then trained and simulated by calling the neural network toolbox of MATLAB.

    This article draws children’s clothing paper patterns according to the pattern-making rules of the Donghua child basic block 2020 edition. We take the collected standard children’s body measurements as input parameters, draw children’s clothing paper patterns by the standard children’s body measurements, and use their pattern sizes as output parameters to invoke the MATLAB neural network toolbox to build a BP neural network model. The body measurements were then imported into Auto-CAD, and the child basic block structure was automatically generated by the parametric drawing function of Auto-CAD. The article analyzed the data of BP neural network prediction results, and the prediction results were used to draw the child basic block structure with apparel pattern making software ET and imported into virtual fitting software for virtual fitting to evaluate its effect. The experimental flow is shown in Fig. 1.

    Fig. 1 Experimental procedure

    Because the height, chest circumference, and hip circumference of children’s body measurements have the largest correlation factor with the child basic block pattern size, the input parameters are height, chest circumference, and hip circumference. Combined with the rules of child basic block structure design, the output parameters are back length, hip length, back neck drop, back neck width, shoulder width minuses back width, back armhole dart, back width, back bust circumference, back hip circumference, cloth shoulder ease, front neck width, front neck drop, armhole deep, distance between breasts, front bust circumference, breast width, front hip circumference, bust dart, and front piece surplus value. In this paper, we establish a parametric mathematical model to constrain the child basic block structure line parametrically. The constrained parts are shown in Fig.2, and the parameterized constraint names of each part are shown in Table 1.

    Fig. 2 Donghua child basic block 2020 edition

    Table 1 Parameterized constraint names of each part

    2 Results and Discussion

    2.1 Data analysis

    In this paper, the number of neurons in the hidden layer of the neural network model used is 13 according to the formula for determining the number of neurons in the hidden layer neural network. Three input parameters are used as input layer neurons and 19 output parameters are used as output layer neurons. The structure of the BP neural network model is 3×13×19 type.

    The MATLAB Neural Network Toolbox trains the input data and output data. The activation function used by the neural network is the Log-Sigmoid function[11], which is a nonlinear transformation function. The neural network uses a nonlinear least squares algorithm, the Levenberg-Marquardt method, to minimize the error of the neural network. The training function is set as the “trainlm” function with a maximum number of iterative steps of 1 000.

    Figure 3 is the image of fitting degrees obtained from MATLAB software, whereRrepresents the correlation between the target and output values. The closer theR-value is to 1, the greater the correlation between the target and output values is, and the closer theR-value is to 0, the smaller the correlation between the target and output values is. TheR-values of the training set, validation set, test set, and overall set in Fig. 3 are all 1. It can be concluded that the predicted and output values of the BP neural network model are correlated very well, indicating that the BP neural network fits well and can predict the child basic block pattern size.

    Figure 4 shows the iterative training process of the neural network. Gradient denotes the gradient in training, and the training ends when the gradient reaches the expected value. When the number of iterative learning (epoch) is 1 000, the gradient is 2.341×10-5. The training network is controlled by theMuparameter to avoid stopping the training due to oversized parameters. When the epoch is 1 000,Muis 1×10-8. The “val fail” indicates the generalization ability, and the validation check is always 0 during the training process, which means that there is no situation that the error does not decrease but increases during the training process. If the error does not decrease but increases for 6 consecutive times, the training will be terminated to prevent the over-fitting situation. The red marks in Fig. 4(c) show that the validation check is 1 when the number of training steps is 700, and the validation check is 0 when the number of training steps is 1 000. This means that the error of the neural network is decreasing during the training process.

    Fig. 3 Image about fitting degrees obtained from MATLAB software

    Fig. 4 Iterative training performance chart: (a) gradient change chart; (b) Mu initial value; (c) generalization ability check

    By comparing the neural network prediction results with the actual sample results, it can be concluded from Table 2 that the prediction results basically match the actual output results. The predicted parameters of back length, hip length, back neck drop, back neck width, shoulder width minuses back width, back armhole dart, back width, back bust circumference, back hip circumference, cloth shoulder ease, front neck width, front neck drop, armhole deep, distance between breasts, front bust circumference, breast width, front hip circumference, bust dart, front piece surplus value have the maximum errors no more than 0.01 cm which basically has no effect on the child basic block pattern size of the experimental results. The experimental results prove that the BP neural network prediction model fits well, and the BP neural network model for predicting the child basic block pattern size can simulate the clothing paper pattern designer experience.

    Table 2 Comparison of predicted and actual sample results

    2.2 Auto-CAD parametric drawing clothing structure

    In this paper, we selected a child body measurements and established the parametric constraints of child basic block paper pattern. The child basic block constraint data are shown in Table 3. We imported the children’s body measurements into the parametric function module of Auto-CAD, and established the parametric mathematical model of the child basic block paper pattern through the parametric function of Auto-CAD.

    Taking size 160/77 as an example, we use the geometric and labelling constraints of the parameterization function of Auto-CAD to adjust the structure of the child basic blocks. Child basic block paper pattern can be fitted with single arc and double arc to the back collar arc, front collar arc, and armhole arc. The back piece collar arc is constrained by the straight line and the single circular arc curve. The arc of the back body sleeve hole is constrained by the single circular arc and triple circular arc constraint methods. The front piece collar is constrained by double circular arc constraint method. The upper half of the front sleeve hole curve is constrained by a double circular arc, and the lower half is also constrained by a double circular arc.

    Table 3 Child basic block constraint data for example 160/77

    2.3 Analysis of children’s clothing structure

    An experimental sample was randomly selected, and the actual measured clothing paper pattern size and the predicted clothing paper pattern size generated by the BP neural network were plotted and compared by the clothing pattern making software ET. As shown in Fig. 5, the structure diagrams drawn according to the actual and predicted parameters are basically identical, and the maximum error of the pattern size is not more than 0.01 cm. After the two charts are overlapped, the lines basically overlap, which meets the expected effect. It is shown that the BP neural network prediction model can predict the child basic block pattern size.

    Fig. 5 Structural analysis diagram: (a) actual sample; (b) predicted sample; (c) overlapping

    2.4 Virtual fitting

    The child basic block structure drawn by ET was imported into the clothing virtual fitting software CLO3D[11], and the display effect was obtained as shown in Fig.6. The blue dots represent the contact points between the clothing and the virtual mannequin. From the front image, it can be seen that the blue dots are evenly distributed, mainly on the chest and shoulders, with a small number of stress points on the protruding part of the abdomen. From the side image, it can be seen that the stress points on the shoulders and hips of the dress are evenly distributed. From the back image, it can be seen that the stress points are evenly distributed on the back and shoulders, with a small number of stress points on the protruding part of the hips. The clothing made from the predicted data and made by the actual pattern maker were analyzed by quantitative comparison. The actual pattern maker made clothing with 192 pressure points on the front chest and shoulders, 39 pressure points on the front abdomen, 192 pressure points on the back and back shoulders, and 18 pressure points on the back hips. Compared with the clothing made by the actual pattern maker, the pressure points in the front chest and front shoulders of the clothing produced by using the predicted data decreased by 14, the pressure points in the front abdomen increased by 8, the pressure points in the back and back shoulders decreased by 5, and no change in the number of pressure points in the back hips, and the pressure points in the front waist increased by 4. This does not affect the comfort and fit of the clothing, and the difference in the number of pressure points is essentially the same as the desired effect of wearing the clothing. This indicates that the children’s clothing made by the established BP neural network prediction model is very close to the results of the clothing made by the actual pattern maker. In summary, the pressure points of children’s clothing were evenly distributed and there were no useless pressure points. The differences between the predicted data and the actual data are not significant, and the clothing made with the predicted data can meet the comfort and aesthetic requirements of children’s clothing, indicating that the established BP neural network model can predict the pattern size of children’s clothing.

    Fig. 6 Virtual fitting effect display: (a) actual sample; (b) predicted sample

    3 Conclusions

    The child basic block structure generated in this paper is well-fitting and ideal for wearing. The experience of the clothing paper pattern designer was simulated by BP neural network, and the automatic generation of clothing structure was realized by the parameterization of Auto-CAD. The accuracy of the BP neural network prediction results was analyzed through experimental data, and the clothing fit and aesthetics were demonstrated in the virtual fitting interface, which provided a theoretical basis for mass personalization of clothing.

    Automated production of clothing will become the development trend of future clothing enterprises, and the combination of computer and clothing production will create greater benefits for clothing enterprises. In this paper, only children’s clothes are studied. Further research is needed on the method of generating skirts and pants for children. The established BP neural network model of children’s clothing realizes the automatic generation of children’s clothing pattern size, which gets rid of the reliance on the experience of clothing pattern makers, and the parameterization function of Auto-CAD realizes the automatic generation of children’s clothing structure, which will save a lot of time for the clothing enterprises.

    三级国产精品片| 日韩欧美 国产精品| 欧美变态另类bdsm刘玥| 男人添女人高潮全过程视频| 国产亚洲av片在线观看秒播厂| 黄色视频在线播放观看不卡| 久久久色成人| 久久人人爽av亚洲精品天堂 | 精品午夜福利在线看| 精品国产乱码久久久久久小说| 午夜日本视频在线| 看十八女毛片水多多多| 欧美极品一区二区三区四区| 免费观看无遮挡的男女| 人人妻人人添人人爽欧美一区卜 | 亚洲av.av天堂| 深夜a级毛片| 少妇人妻一区二区三区视频| 美女脱内裤让男人舔精品视频| 国产精品国产av在线观看| 91精品一卡2卡3卡4卡| 国产v大片淫在线免费观看| 久久97久久精品| 欧美少妇被猛烈插入视频| 成人国产麻豆网| 日本与韩国留学比较| 日韩在线高清观看一区二区三区| av国产精品久久久久影院| 2018国产大陆天天弄谢| 国产精品一区www在线观看| 国产成人91sexporn| 久久久午夜欧美精品| h日本视频在线播放| 精品亚洲成国产av| 青春草国产在线视频| 一区二区三区乱码不卡18| 成人影院久久| 色吧在线观看| 搡女人真爽免费视频火全软件| kizo精华| 欧美丝袜亚洲另类| 五月天丁香电影| 国产精品女同一区二区软件| 国产 一区精品| 久久久久久久久久人人人人人人| 成人二区视频| 国产亚洲精品久久久com| 精品久久国产蜜桃| 国产一区二区在线观看日韩| 亚洲欧美一区二区三区黑人 | 一区二区三区精品91| h日本视频在线播放| 人妻 亚洲 视频| 纯流量卡能插随身wifi吗| 国产精品久久久久久精品电影小说 | 啦啦啦在线观看免费高清www| 成年美女黄网站色视频大全免费 | av免费在线看不卡| 一本—道久久a久久精品蜜桃钙片| 99热国产这里只有精品6| 亚洲电影在线观看av| 日韩一区二区视频免费看| 亚洲不卡免费看| 亚洲精品一区蜜桃| 成人美女网站在线观看视频| 秋霞伦理黄片| 尤物成人国产欧美一区二区三区| 亚洲成人一二三区av| 欧美成人午夜免费资源| 国产成人精品一,二区| 国产伦精品一区二区三区四那| 久久久a久久爽久久v久久| 久久精品久久久久久久性| 卡戴珊不雅视频在线播放| 一级毛片 在线播放| 亚洲欧美成人综合另类久久久| 又大又黄又爽视频免费| 国产精品国产三级国产av玫瑰| 国产男人的电影天堂91| 欧美精品一区二区免费开放| 久久99蜜桃精品久久| 国产精品成人在线| 黑丝袜美女国产一区| 性高湖久久久久久久久免费观看| 亚洲精品国产av蜜桃| 国产久久久一区二区三区| 老女人水多毛片| 嫩草影院新地址| 男女免费视频国产| 亚洲久久久国产精品| 亚洲成人av在线免费| 男女边摸边吃奶| 精品一区二区免费观看| 欧美另类一区| 久久韩国三级中文字幕| 亚洲怡红院男人天堂| 深夜a级毛片| 国产黄色免费在线视频| 国产免费福利视频在线观看| 老司机影院毛片| 成人高潮视频无遮挡免费网站| 日本欧美视频一区| 久久精品国产亚洲av天美| 久久久久性生活片| 国产精品蜜桃在线观看| 麻豆精品久久久久久蜜桃| 性色avwww在线观看| 免费观看性生交大片5| 97在线视频观看| 97超视频在线观看视频| 欧美日韩精品成人综合77777| 两个人的视频大全免费| av福利片在线观看| 免费大片黄手机在线观看| 高清黄色对白视频在线免费看 | 男人爽女人下面视频在线观看| 亚洲国产精品一区三区| 大陆偷拍与自拍| 内射极品少妇av片p| 久久毛片免费看一区二区三区| 尤物成人国产欧美一区二区三区| 秋霞在线观看毛片| 久久久色成人| 欧美成人一区二区免费高清观看| 在现免费观看毛片| 91精品国产九色| 欧美97在线视频| 亚洲,欧美,日韩| 大陆偷拍与自拍| 国产精品一区二区三区四区免费观看| 国产淫语在线视频| 伊人久久国产一区二区| 国产爽快片一区二区三区| 又黄又爽又刺激的免费视频.| 免费少妇av软件| 国产一区二区三区综合在线观看 | 纯流量卡能插随身wifi吗| 99久久人妻综合| 国产伦精品一区二区三区四那| 99re6热这里在线精品视频| 国产免费福利视频在线观看| 亚洲精品自拍成人| 亚洲精品aⅴ在线观看| 岛国毛片在线播放| 熟女av电影| 精品酒店卫生间| 国产午夜精品久久久久久一区二区三区| 2022亚洲国产成人精品| 亚洲国产av新网站| 日本wwww免费看| 中国三级夫妇交换| 亚洲,一卡二卡三卡| 人妻系列 视频| 性色av一级| 国产91av在线免费观看| 在线观看免费视频网站a站| 国产白丝娇喘喷水9色精品| 国内少妇人妻偷人精品xxx网站| 亚洲精品乱码久久久久久按摩| 久久久久久久久久人人人人人人| 在线观看免费视频网站a站| 国产伦在线观看视频一区| 亚洲av欧美aⅴ国产| 精品一区二区免费观看| 91久久精品国产一区二区三区| 久久综合国产亚洲精品| 爱豆传媒免费全集在线观看| 亚洲欧美成人综合另类久久久| 深夜a级毛片| 又大又黄又爽视频免费| 亚洲综合色惰| 自拍欧美九色日韩亚洲蝌蚪91 | 男女边摸边吃奶| 街头女战士在线观看网站| 日产精品乱码卡一卡2卡三| 黄片无遮挡物在线观看| 久久精品久久久久久噜噜老黄| 三级国产精品欧美在线观看| 岛国毛片在线播放| 三级经典国产精品| 亚洲国产日韩一区二区| 国产又色又爽无遮挡免| 99久久精品一区二区三区| 日本黄色片子视频| 免费看av在线观看网站| 亚洲国产成人一精品久久久| 欧美高清性xxxxhd video| 国产日韩欧美亚洲二区| 在线观看人妻少妇| 久久婷婷青草| 小蜜桃在线观看免费完整版高清| 国产精品麻豆人妻色哟哟久久| 欧美人与善性xxx| 边亲边吃奶的免费视频| 一级片'在线观看视频| 亚洲精品国产色婷婷电影| 亚洲av福利一区| 一级二级三级毛片免费看| 一区二区三区免费毛片| 久久精品国产亚洲av天美| 少妇的逼水好多| 国产免费一级a男人的天堂| 美女国产视频在线观看| 欧美国产精品一级二级三级 | 亚洲av男天堂| 国精品久久久久久国模美| 在线免费观看不下载黄p国产| 新久久久久国产一级毛片| 国产男女超爽视频在线观看| 国产精品一及| 男女边吃奶边做爰视频| 啦啦啦中文免费视频观看日本| 免费不卡的大黄色大毛片视频在线观看| 国产日韩欧美亚洲二区| 国产 一区 欧美 日韩| 亚洲最大成人中文| 国产精品成人在线| 一级片'在线观看视频| 欧美少妇被猛烈插入视频| 亚洲精品日本国产第一区| 日日啪夜夜爽| 国产伦在线观看视频一区| 亚洲国产高清在线一区二区三| 日产精品乱码卡一卡2卡三| 又粗又硬又长又爽又黄的视频| 啦啦啦中文免费视频观看日本| 亚洲欧美日韩另类电影网站 | 99久久精品一区二区三区| 欧美老熟妇乱子伦牲交| 国产一区二区三区综合在线观看 | 99re6热这里在线精品视频| 国产成人精品久久久久久| 国产欧美另类精品又又久久亚洲欧美| 国产精品爽爽va在线观看网站| 国产精品三级大全| 少妇的逼好多水| 国产av国产精品国产| 在线免费十八禁| 99热这里只有精品一区| av视频免费观看在线观看| 黄色配什么色好看| 国产高潮美女av| 亚洲美女视频黄频| 久久综合国产亚洲精品| 日本一二三区视频观看| 国产在线一区二区三区精| 亚洲最大成人中文| 亚洲欧美精品自产自拍| 只有这里有精品99| 久久久成人免费电影| 男女国产视频网站| 六月丁香七月| 秋霞在线观看毛片| 97在线人人人人妻| 国产午夜精品一二区理论片| 成人亚洲精品一区在线观看 | 日日啪夜夜撸| 亚洲伊人久久精品综合| 中国国产av一级| 18禁裸乳无遮挡免费网站照片| 少妇人妻精品综合一区二区| 男女无遮挡免费网站观看| 天堂中文最新版在线下载| 精品国产三级普通话版| 五月玫瑰六月丁香| 国产黄片视频在线免费观看| 亚洲国产色片| 日日啪夜夜爽| 人体艺术视频欧美日本| 色婷婷av一区二区三区视频| 99久久综合免费| 熟妇人妻不卡中文字幕| 亚洲精品一二三| 亚洲成人av在线免费| 日韩制服骚丝袜av| 久久影院123| 韩国高清视频一区二区三区| 日日摸夜夜添夜夜添av毛片| 欧美区成人在线视频| 亚洲精品日韩av片在线观看| 国产一区亚洲一区在线观看| 国产精品一区二区在线不卡| 国产精品久久久久久精品电影小说 | 久久久a久久爽久久v久久| 寂寞人妻少妇视频99o| 男女边吃奶边做爰视频| 我要看黄色一级片免费的| 精品亚洲成a人片在线观看 | 综合色丁香网| 久久精品久久久久久久性| av在线老鸭窝| 成人免费观看视频高清| 久久精品久久久久久噜噜老黄| 午夜福利视频精品| 精品亚洲成国产av| 中文字幕av成人在线电影| 久久影院123| 一级av片app| 男人添女人高潮全过程视频| 内射极品少妇av片p| 久久久亚洲精品成人影院| 国产男女内射视频| 欧美3d第一页| 五月开心婷婷网| 日韩大片免费观看网站| a 毛片基地| 色5月婷婷丁香| 天堂中文最新版在线下载| 国产精品秋霞免费鲁丝片| 日本av手机在线免费观看| 免费黄色在线免费观看| 联通29元200g的流量卡| 插逼视频在线观看| 成人国产麻豆网| 久久97久久精品| 美女视频免费永久观看网站| 亚洲欧美成人精品一区二区| 身体一侧抽搐| 我的女老师完整版在线观看| 亚洲综合精品二区| 日本欧美视频一区| 国产高潮美女av| 搡女人真爽免费视频火全软件| 九九久久精品国产亚洲av麻豆| 国产亚洲91精品色在线| 亚洲成人手机| 超碰97精品在线观看| 亚洲人成网站在线观看播放| 三级国产精品欧美在线观看| av一本久久久久| av卡一久久| 中文字幕制服av| 亚洲久久久国产精品| freevideosex欧美| 夫妻午夜视频| 国产淫片久久久久久久久| 蜜桃久久精品国产亚洲av| 黄色一级大片看看| 精华霜和精华液先用哪个| 激情 狠狠 欧美| 亚洲精品第二区| 久久女婷五月综合色啪小说| 亚洲伊人久久精品综合| 国产老妇伦熟女老妇高清| 午夜视频国产福利| 精品人妻偷拍中文字幕| 又粗又硬又长又爽又黄的视频| 91精品伊人久久大香线蕉| 久久久久久久久久久丰满| 人体艺术视频欧美日本| 菩萨蛮人人尽说江南好唐韦庄| 日本爱情动作片www.在线观看| 午夜精品国产一区二区电影| 精品国产一区二区三区久久久樱花 | 22中文网久久字幕| 午夜激情久久久久久久| 黄色视频在线播放观看不卡| 人妻一区二区av| 久久久久久伊人网av| 久久久久网色| 人妻一区二区av| 亚洲国产精品专区欧美| 精品人妻熟女av久视频| a级一级毛片免费在线观看| 夜夜看夜夜爽夜夜摸| 精品午夜福利在线看| 毛片一级片免费看久久久久| 极品教师在线视频| 国产男女超爽视频在线观看| 18禁在线播放成人免费| 久久久a久久爽久久v久久| 亚洲激情五月婷婷啪啪| av在线播放精品| 国产成人精品一,二区| 中文天堂在线官网| 男女国产视频网站| 18禁动态无遮挡网站| 天堂中文最新版在线下载| 国产精品免费大片| 亚洲国产精品成人久久小说| 日韩成人伦理影院| 少妇人妻久久综合中文| 水蜜桃什么品种好| 国产精品.久久久| 中文精品一卡2卡3卡4更新| 久热久热在线精品观看| 亚洲电影在线观看av| 在线观看三级黄色| 国产精品熟女久久久久浪| 欧美一级a爱片免费观看看| 国产黄色免费在线视频| 亚洲色图综合在线观看| videos熟女内射| 男人舔奶头视频| 超碰av人人做人人爽久久| 国产一级毛片在线| 波野结衣二区三区在线| 99久久精品热视频| av不卡在线播放| 午夜视频国产福利| 国产 一区精品| 国产免费一区二区三区四区乱码| 国产精品蜜桃在线观看| 黑丝袜美女国产一区| 一级片'在线观看视频| 狂野欧美白嫩少妇大欣赏| 人妻一区二区av| 菩萨蛮人人尽说江南好唐韦庄| 欧美xxxx性猛交bbbb| 老司机影院毛片| 成人影院久久| 特大巨黑吊av在线直播| 国产白丝娇喘喷水9色精品| 亚洲美女黄色视频免费看| 久久 成人 亚洲| 老女人水多毛片| 久久久久久九九精品二区国产| 有码 亚洲区| 国产精品一二三区在线看| 亚洲国产精品999| 久久精品久久久久久噜噜老黄| 久久国产亚洲av麻豆专区| 中文字幕人妻熟人妻熟丝袜美| 亚洲人成网站高清观看| 插逼视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 久久午夜福利片| 久久精品国产a三级三级三级| 不卡视频在线观看欧美| 日韩不卡一区二区三区视频在线| 成人特级av手机在线观看| 麻豆精品久久久久久蜜桃| 久久鲁丝午夜福利片| 国产伦精品一区二区三区视频9| 国产精品精品国产色婷婷| 欧美极品一区二区三区四区| 国产爱豆传媒在线观看| videossex国产| 国产毛片在线视频| av又黄又爽大尺度在线免费看| 国产无遮挡羞羞视频在线观看| 插逼视频在线观看| 黄色怎么调成土黄色| 直男gayav资源| 91午夜精品亚洲一区二区三区| 激情五月婷婷亚洲| av在线老鸭窝| 精品国产乱码久久久久久小说| 亚洲国产色片| 免费av不卡在线播放| 色视频在线一区二区三区| 国产伦精品一区二区三区四那| 国产一区二区在线观看日韩| av卡一久久| h视频一区二区三区| 国产精品成人在线| 嫩草影院新地址| 亚洲av在线观看美女高潮| 成人高潮视频无遮挡免费网站| 久久久久久久久大av| 成年免费大片在线观看| 亚洲美女搞黄在线观看| 久久国产精品大桥未久av | 久久久久久久久大av| 男人狂女人下面高潮的视频| 欧美精品人与动牲交sv欧美| 国语对白做爰xxxⅹ性视频网站| av专区在线播放| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久av不卡| 国产淫语在线视频| 日韩伦理黄色片| 在线免费十八禁| 欧美日韩综合久久久久久| 超碰av人人做人人爽久久| 精品视频人人做人人爽| 少妇人妻久久综合中文| 2021少妇久久久久久久久久久| 免费少妇av软件| 深夜a级毛片| 在线免费十八禁| 天堂中文最新版在线下载| 91精品国产国语对白视频| 亚洲精品一二三| 日韩三级伦理在线观看| 久久国内精品自在自线图片| 丝袜脚勾引网站| 日韩欧美 国产精品| 插阴视频在线观看视频| 国产探花极品一区二区| 久久99热这里只频精品6学生| 美女中出高潮动态图| 国产国拍精品亚洲av在线观看| av在线app专区| 精品国产三级普通话版| 极品教师在线视频| 亚洲欧美日韩无卡精品| 蜜桃亚洲精品一区二区三区| 国产黄色免费在线视频| 97精品久久久久久久久久精品| 看十八女毛片水多多多| 国精品久久久久久国模美| 成人高潮视频无遮挡免费网站| 在线观看国产h片| 91狼人影院| 日本av手机在线免费观看| 99re6热这里在线精品视频| 久久青草综合色| 日韩国内少妇激情av| 校园人妻丝袜中文字幕| 国产精品人妻久久久久久| 欧美另类一区| 亚洲av中文字字幕乱码综合| 亚洲av福利一区| 欧美97在线视频| 亚洲精品色激情综合| 老师上课跳d突然被开到最大视频| 日本色播在线视频| 人妻少妇偷人精品九色| 精品国产露脸久久av麻豆| 久久韩国三级中文字幕| 欧美激情国产日韩精品一区| 国产精品免费大片| 精品亚洲成a人片在线观看 | 成人18禁高潮啪啪吃奶动态图 | 人体艺术视频欧美日本| 天美传媒精品一区二区| 午夜免费观看性视频| 色吧在线观看| 高清毛片免费看| 又大又黄又爽视频免费| av线在线观看网站| 亚洲伊人久久精品综合| 国产乱人偷精品视频| 亚洲伊人久久精品综合| av在线app专区| 我的女老师完整版在线观看| 高清在线视频一区二区三区| 国产成人91sexporn| 亚洲av在线观看美女高潮| 亚洲怡红院男人天堂| av在线app专区| 日本vs欧美在线观看视频 | 嘟嘟电影网在线观看| 中文欧美无线码| 免费看日本二区| 黄片wwwwww| 亚洲av在线观看美女高潮| 一区二区av电影网| 极品少妇高潮喷水抽搐| av国产免费在线观看| 亚洲精品456在线播放app| 亚洲精品,欧美精品| 美女高潮的动态| 日本与韩国留学比较| 国产中年淑女户外野战色| 22中文网久久字幕| 亚洲欧美中文字幕日韩二区| 国产永久视频网站| 亚洲精品成人av观看孕妇| 亚洲精品久久久久久婷婷小说| 亚洲国产精品成人久久小说| 边亲边吃奶的免费视频| 国产精品一区www在线观看| 亚洲激情五月婷婷啪啪| 在线免费观看不下载黄p国产| 亚洲精品aⅴ在线观看| 在现免费观看毛片| 22中文网久久字幕| 亚洲欧美一区二区三区国产| 交换朋友夫妻互换小说| 日韩 亚洲 欧美在线| 汤姆久久久久久久影院中文字幕| 国产美女午夜福利| 亚洲av中文av极速乱| 欧美成人精品欧美一级黄| 亚洲欧美成人综合另类久久久| 中文字幕亚洲精品专区| 色婷婷av一区二区三区视频| 黄色欧美视频在线观看| 免费av中文字幕在线| 亚洲精品一二三| 嫩草影院新地址| 免费大片黄手机在线观看| 男男h啪啪无遮挡| 亚洲欧美精品自产自拍| 下体分泌物呈黄色| 永久免费av网站大全| 久久久色成人| 欧美三级亚洲精品| 婷婷色综合www| 99视频精品全部免费 在线| 日本一二三区视频观看| 亚洲欧美一区二区三区黑人 | 国产黄频视频在线观看| 欧美丝袜亚洲另类| 国产精品国产三级专区第一集| 在线 av 中文字幕| 国产爱豆传媒在线观看| 久久精品夜色国产| 黄片无遮挡物在线观看| 国产91av在线免费观看| 九九久久精品国产亚洲av麻豆| 18禁动态无遮挡网站| 搡女人真爽免费视频火全软件| 特大巨黑吊av在线直播| 日韩中字成人| 高清在线视频一区二区三区| 大码成人一级视频| 秋霞伦理黄片| 国产精品欧美亚洲77777| 精品少妇黑人巨大在线播放| 毛片一级片免费看久久久久| 欧美三级亚洲精品| 免费黄色在线免费观看|