• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact Graph Pattern Matching: Applications, Progress and Prospects

    2023-05-18 14:37:34SUNGuohao孫國豪YUShuiFANGXiuLUJinhu陸金虎
    關(guān)鍵詞:陸金

    SUN Guohao(孫國豪), YU Shui(余 水), FANG Xiu(方 秀), LU Jinhu(陸金虎)

    School of Computer Science and Technology, Donghua University, Shanghai 201620, China

    Abstract:Graph pattern matching (GPM) can be used to mine the key information in graphs. Exact GPM is one of the most commonly used methods among all the GPM-related methods, which aims to exactly find all subgraphs for a given query graph in a data graph. The exact GPM has been widely used in biological data analyses, social network analyses and other fields. In this paper, the applications of the exact GPM were first introduced, and the research progress of the exact GPM was summarized. Then, the related algorithms were introduced in detail, and the experiments on the state-of-the-art exact GPM algorithms were conducted to compare their performance. Based on the experimental results, the applicable scenarios of the algorithms were pointed out. New research opportunities in this area were proposed.

    Key words:graph pattern matching (GPM); exact matching; subgraph isomorphism; graph embedding; subgraph matching

    Introduction

    In recent years, information and Internet technology have been developed rapidly, which leads to the era of big data. In this era, some common networks such as social networks[1-2], biological information networks[3-4]and communication networks[5-6]have produced massive amounts of heterogeneous data from multiple sources. With the increasing scale of data, the relationship among different data becomes more and more complex. The graph structure is very suitable to describe the internal correlation among multi-source heterogeneous data, which has been widely used in the fields of computer vision and pattern recognition[7-9].

    Most networks can be modeled as graphs. How to analyze and mine the key information in a graph has become a research hotspot. Graph pattern matching (GPM) is a key technique for mining information in graphs, which aims to find out all isomorphic subgraphs of a given query graph in a data graph. GPM is also called subgraph isomorphism, which has been widely used in protein interaction network analyses[10-11], social network analyses[12-13], chemical compound searches[14], network intrusion detection[15-16], resource description framework (RDF) query processing[17-18], recommendation systems[19-20]and so on.

    The GPM problem belongs to non-deterministic polynomial hard (NP-hard) problems[21-22], which makes it computationally expensive to find matching results, especially in large-scale graphs. In order to solve this problem, many efficient methods have been proposed both in static and dynamic graphs. Because of the difficulty of GPM in dynamic graphs, the research on dynamic graphs is still in its infancy[23]. The static GPM is focused on in this paper.

    Based on the accuracy of the query results, the static GPM can be grouped into two categories: exact GPM and approximate GPM. The exact GPM requires that not only in labels and semantics but also in the structure, the vertices in a query graph and a data graph should be strictly matched. The approximate GPM relaxes the constraints of labels and semantics, which allows a label to match its subset labels and allows some errors in the matching results. In most practical applications, the matching results are often required to be accurate, which makes the exact GPM more widely used than the approximate GPM. Therefore, the exact GPM is focused on in this paper.

    At present, many methods have been proposed in the field of the exact GPM. The most classic algorithm is Ullmann algorithm[24]. The Ullmann algorithm is a backtracking algorithm, which finds matching results by adding partial results. Based on the backtracking framework of the Ullmann algorithm, many efficient algorithms have been proposed to accelerate the exact GPM. The representative algorithms are VF2[25], GraphQL[26], GADDI[27], SPath[28], Turboiso[29], core-forest-leaf (CFL)[30], DPiso[31], compact embedding cluster index (CECI)[32]and RI[33].

    In this paper, the applications and the research progress of the exact GPM are first summarized, and the related algorithms are introduced in detail. Then, the experiments on the latest exact GPM algorithms are conducted to compare their performance. Finally, the future research opportunities in this field are discussed.

    1 Preliminaries

    This paper focuses on the undirected vertex-labeled graphg=(V,E,W,L), whereV,EandWrepresent the vertex set, the edge set and the label set ofg, respectively;Lis a label function that maps a vertexuto a label. The notations frequently used in this paper are shown in Table 1.

    Table 1 Notations frequently used in this paper

    Definition1Subgraph isomorphism: given a query graphQ=(VQ,EQ) and a data graphG=(VG,EG), a subgraph isomorphism is an injective functionffromVQtoVGsuch that ?u∈VQ,L(u)=L(f(u)); ?e(u,u′)∈EQ,e(f(u),f(u′))∈EG.

    Definition2Label and degree filtering (LDF) constraint: given the query vertexu∈VQ, it can be matched to the data vertexv∈VGif the following conditions are satisfied:L(u)=L(v);d(u)≤d(v).

    GivenQandG, the exact GPM aims to find in the data graph all the subgraphs that are the isomorphism of the query graph.

    2 Exact GPM

    2.1 Common framework

    Leeetal.[34]proposed a common framework for some representative exact GPM algorithms. Sunetal.[35]supplemented this framework to make it suitable for more algorithms. The common framework is shown in Fig.1, which takesQandGas input and outputs all matching results fromQtoG.

    Fig.1 Algorithm of common framework

    2.2 Representative algorithms

    The exact GPM algorithms can generally be divided into three steps. The exact GPM algorithms will use some pruning strategies or filtering methods to filter the candidate vertices in step 1. Step 1 is also called the filtering method of the exact GPM algorithms. The exact GPM algorithms will use some methods to generate a matching order in step 2. Step 2 is also called the ordering method of the exact GPM algorithms. The exact GPM algorithms will enumerate the matching results based on the filtered vertices and the generated matching order in step 3. Step 3 is also called the enumeration method of the exact GPM algorithms. This paper will introduce the representative exact GPM algorithms in detail according to the three steps.

    2.2.1CFLalgorithm

    Fig.2 Example of data and query graphs: (a) data graph G; (b) query graph Q

    Fig.3 Example of filtering method of CFL: (a) BFS tree of query graph Q; (b) CPI structure of query graph Q

    Step2The ordering method of the CFL algorithm uses a path-based strategy for generating the matching order. Specifically, this method first selects three vertices from the core structure with a higher degree and a lower frequency of labels in the data graph label set and chooses the vertex with the smallest candidate vertices as the first vertex in the matching order. Then, this method constructs a weight array to count the embeddings of all paths from the root to leaves in the BFS tree of the query graph in the CPI structure. LetC(p) represent the embeddings of the pathp, andNTE(p) represent the number of edges connected with the vertices in the pathpin the query graph. This method selects the pathp*with the minimum value ofC(p)/|NTE(p)|, and adds the vertices in the pathp*to the matching order. It removes the pathp*. Setu+as the last vertex of the common prefix of the pathpand the matching order sequence.pu+is the suffix ofpstarting fromu+. This method selects the pathp*with the minimum value ofC(pu+)/|C(u+)|, and adds the vertices that in the pathp*but not in the current matching order into the matching order. Then, this method removes the pathp*until all paths are processed and a matching order is generated.

    Step3The enumeration method of the CFL algorithm matches each query vertex to its candidates with the matching order based on the backtracking method, which is the same as the Ullmann algorithm.

    The efficiency of the CFL algorithm is much higher than that of the previous algorithms such as Turboiso, GraphQL and SPath.

    2.2.2DPisoalgorithm

    The CPI structure of the CFL algorithm is generated according to the BFS tree of the query graph. However, the BFS tree cannot contain all the edges in the query graph, and the non-tree edges (e.g., the edges not in the BFS tree) have a strong pruning ability.

    Step1The filtering method of the DPisoalgorithm reconstructs the query graph into a directed acyclic graph (DAG) and designs a auxiliary data structure called the candidate space (CS) structure. The CS structure can replace the data graph for the matching query process. Figure 4(a) shows the DAG of the query graphQin Fig.2(b), and Fig.4(b) shows its CS structure.

    Fig.4 Example of filtering method of DPiso: (a) DAG of query graph Q; (b) CS structure of query graph Q

    The filtering method of the DPisoalgorithm applies the same method as the CFL algorithm to generate candidate vertex sets according to the CS structure. This method also needs to satisfy LDF and NLF constraints. For anyv∈C(u), letpt(u) represent the prefix tree ofu, which consists of the path starting fromuto all leaf vertices. If the prefix treept(u) can be homomorphic mapped to the prefix treept(v) (i.e., all the vertices inpt(u) can be matched to the vertices inpt(v) and allow duplicate matching of vertices), thenvcan be kept inC(u).

    Step2The ordering method of the DPisoalgorithm separates all the vertices of which degree is one in the query graphQ, and the remaining vertices are recorded asQ′. The ordering method of the DPisoalgorithm matches the vertices inQ′. This method selects the vertex with the smallest number ofω(u), andω(u) is an estimate of the path embeddings. Foru∈V(Q′), this method constructs the tree-like path ofu. A tree-like path starting fromuindicates that the vertices have only one parent vertex apart from the first vertex. Let the embeddings of the tree-like path ofuin the CS structure be denoted asω(u), and for eachu∈V(Q′), this method constructs the weight array according toω(u), where the vertex with the least weight is selected as the next matching vertex. Moreover, an optimization method called failing set pruning strategy is also proposed by the DPisoalgorithm, which applies the relevant information to exclude some useless vertices in the search tree of the partial matching.

    An example of the failing set pruning strategy is shown in Fig.5. Figure 5(c) shows the process of the failing set pruning strategy ofQinG. The vertices in the tree represent a partial matching resultM.(ui,vj) means thatuican be matched tovj, and !(ui,vj) means thatuicannot be matched tovj. When matchingu3tou10after matchingu4tov11, it will fail in the end. The reason is that there is no isomorphic subgraph in the data graph that can be matched to the query graph. Therefore, the failing set pruning strategy removes all the sibling vertices (M3,2,M3,3, …,M3,10) of the search vertexM3,1. In other words, there is no need to matchu4to other vertices.

    Fig.5 Example of failing set pruning strategy: (a) query graph Q; (b) data graph G; (c) search tree of Q in G

    Step3The enumeration method of the DPisoalgorithm enumerates the matching result with the matching order, which is the same as the Ullmann algorithm.

    The DPisoalgorithm is much more efficient than the CFL algorithm.

    2.2.3CECIalgorithm

    Step2The ordering method of the CECI algorithm first selects a vertex with a larger degree and a smaller number of initial candidates as the first vertex in the matching order. Then, it conducts the breadth-first search from this vertex, and the order of the width-first search is taken as the matching order.

    Step3The enumeration method of the CECI algorithm enumerates the matching result with the matching order, which is the same as the Ullmann algorithm.

    The CECI algorithm is more efficient in the parallel processing field.

    2.2.4RIalgorithm

    The core idea of the RI algorithm is to find an efficient matching order as a good matching order is very important to speed up the matching process.

    Step1The filtering method of the RI algorithm filters the candidate vertices based on two pruning rules of the Ullmann algorithm.

    (1) One to one mapping relationship. For example, the subgraph matching procedure ofQinGwith matching orderφ={u1,u2,u3} is shown in Fig.6. In Fig.6(c),u1is adjacent tou2, andv1is not adjacent tov5. Ifu1is matched tov1, then there is no need to matchu2tov5.

    Fig.6 Example of subgraph matching procedure: (a) query graph Q; (b) data graph G; (c) search tree of Q in G

    (2) The consistency of adjacent relations of vertices. For example, a query vertex can only match one data vertex.

    Step2The ordering method of the RI algorithm applies a score function to calculate the score of a vertex according to the topological structure information of the query graph. Specifically, this method first selects a vertex with the largest degree in the query graph as the first vertex in the matching order. LetV1represent the set of neighbors ofu∈V(Q) that are in the current matching orderφ,V1={u′∈φ|e(u,u′)∈E(Q)}. LetV2that is not inφrepresent the set of common neighbors betweenuand the vertices inφ,V2={u′'∈φ|?u″∈V(Q)-φ,e(u′,u″)∈E(Q)∧e(u,u″)∈E(Q)}. LetV3represent the set of neighbors ofuthat are not inφand not adjacent to any vertices inφ,V3={u′∈N(u)-φ|?u″∈φ,e(u′,u″)?E(Q)}.

    This method iteratively selects the vertex with the largest |V1| as the next vertex. If |V1| is the same, the vertex with the largest |V2| is selected. If |V1| and |V2| are the same, the vertex with the largest |V3| is selected. If all three are the same, the vertex is selected at random.

    Step3The enumeration method of the RI algorithm enumerates the matching result to the matching order, which is the same as the Ullmann algorithm.

    Compared with the latest algorithms, the matching order of the RI algorithm is very efficient. The RI algorithm is only suitable for small queries because it does not use any data graph information.

    3 Experiments

    In this section, the latest exact GPM algorithms for experiments are compared, which are CFL, DPiso, CECI and RI algorithms.

    3.1 Experiment environment

    The experiments are conducted on a Linux machine with the Ubuntu 20.04.1 64 bit distribution operating system. The processor model is AMD ryzen 5 4600H 3.00 GHz and the memory is 8 G. All the algorithms are programmed in C++.

    3.2 Datasets and query graph

    Yeast, Human Protein Reference Database (HPRD), WordNet and Youtube datasets are selected in this experiments, which are commonly used in the previous work. The details of these datasets are shown in Table 2, wheredmaxrepresents the maximum degree of vertices,Wmaxrepresents the maximum frequency of labels, andddenotes the average degree of vertices. |V|, |E| and |W| represent the number of the vertices, the number of the edges and the number of the labels, respectively. The query graphs are generated for each datasetGby randomly extracting subgraphs fromG, and each query graph can be guaranteed to have at least one matching result in this way. For each dataset, five query sets are generated according to the number of vertices. The number of vertices are used to measure the scale of the query graph.

    Table 2 Properties of datasets

    3.3 Experimental results and analysis

    The size of the query graph is measured by the number of vertices. For example, a query graph size of four means that it contains four vertices. For Yeast and HPRD datasets, the query graphs are varied with sizes of 4, 8, 16, 24 and 32. For WordNet dataset, the query graphs are varied with sizes of 4, 8, 12 and 16, because WordNet dataset contains a large number of the same labels, which makes it very challenging.

    3.3.1Efficiency

    Figure 7 shows the average elapsed time of the exact GPM algorithms by varying the query graph size.

    Fig.7 Average elapsed time of algorithms by varying query graph size: (a) Yeast dataset; (b) HPRD dataset; (c) WordNet dataset; (d) Youtube dataset

    On Yeast dataset, the overall performance of the CECI algorithm is the best. The overall efficiency of the DPisoalgorithm is very close to that of the CECI algorithm. The RI algorithm has the worst efficiency. On HPRD dataset, the overall performance of the CFL algorithm is the best. On WordNet dataset, when the query graph size is 16, the overall performance of the RI algorithm is the best, and the CFL algorithm is the worst among all the algorithms. On Youtube dataset, the performance of the CFL algorithm is the worst and the RI algorithm is the best when the query graph size is 16.

    On Yeast dataset, when the query graph is dense, the DPisoalgorithm and the CECI algorithm conduct one more refinement on the candidate vertex set than the CFL algorithm, and the DPisoalgorithm and the CECI algorithm are better than the CFL algorithm. Moreover, the DPisoalgorithm and the CECI algorithm both apply the set intersection-based method for further filters, which speeds up the matching process. The RI algorithm is faster than the CFL algorithm, the DPisoalgorithm and the CECI algorithm when the query graph size is four, because the purpose of the RI algorithm is to find the best matching order to speed up the matching process and there are no efficient pruning rules or reasonable auxiliary data structures. The performance of the RI algorithm is relatively good when the dataset is sparse. Experiments on HPRD dataset show that all queries can be completed in 10 ms on average, so it is relatively easy to query on HPRD dataset. The DPisoalgorithm conducts one more refinement on the candidate vertex set than the CFL algorithm, so it is slower than the CFL algorithm in this dataset. The extra refinement process does not achieve good efficiency because it is easy to query on this dataset, which increases the time cost. In addition, the failing set pruning strategy of the DPisoalgorithm is effective on large queries. On WordNet and Youtube datasets, the overall performance of the DPisoalgorithm and that of the CECI algorithm are similar, and both of them are superior to the CFL algorithm. It is because the WordNet dataset contains a large number of duplicate labels and the average degree is only 3.1, which makes the dataset sparse. The overall performance of the RI algorithm is better than that of other three algorithms in the sparse graphs. In summary, the performance of the DPisoalgorithm and the CECI algorithm is better than that of the CFL algorithm and the RI algorithm. The matching performance of the CECI algorithm and that of the DPisoalgorithm is close.

    In addition, the experimental results also demonstrate that the characteristics of both pattern graphs and data graphs will influence the efficiency of the algorithms. On WordNet dataset, the RI algorithm is better than other three algorithms in the sparse graphs. For the dense pattern graph, the DPisoalgorithm and the CECI algorithm can achieve better efficiency because they conduct one more refinement on the candidate vertex set. Therefore, based on the results, when facing a new pattern graph and a new data graph, we can first analyze the characteristics of both the pattern graph and the data graph, and then select the suitable algorithm in order to achieve the best efficiency when performing the exact GPM progress.

    3.3.2Memorycost

    Figure 8 shows the average memory cost of the exact matching algorithms by varying the query graph size. The memory cost of the RI algorithm is the largest among all algorithms on Yeast, HPRD and Youtube datasets.

    The RI algorithm does not build any auxiliary structures to help filter vertices, and its filtering method is inefficient compared to other algorithms. Therefore, it consumes too much memory.

    In summary, the RI algorithm consumes more memory than other algorithms on Yeast, HPRD and Youtube datasets, and the overall memory cost of CFL, DPisoand CECI algorithms is similar. On WordNet dataset, the average memory cost of the CECI algorithm is significantly less than that of the CFL algorithm and the DPisoalgorithm.

    Fig.8 Average memory cost of algorithms by varying query graph size: (a) Yeast dataset; (b) HPRD dataset; (c) WordNet dataset; (d) Youtube dataset

    4 Conclusions

    In this paper, the applications of the GPM technique were introduced. Then, the typical GPM algorithms were presented in detail and the performance of these algorithms was compared. The efficiency in the different data graphs and query graphs of algorithms was shown, which could help us to select appropriate algorithms in different scenarios to achieve high query efficiency.

    In the future, we can conduct the exact GPM in a distributed environment to improve the performance,i.e., divide the large-scale data graph into multiple parts, process each part in parallel in different computer memories, and finally summarize the processing results of all machines into a complete result. It is also a good future research direction for the development of distributed GPM algorithms because they can handle highly dynamic data graphs. In order to reduce the size of the data graph, it is also an interesting future work to develop a general graph compression technique that maintains the matching properties of subgraphs in a distributed environment. Since most of the current exact GPMs are for the static graphs, the data graph is constantly updated in actual scenarios. Therefore, it is important to design efficient dynamic graph matching algorithms. Moreover, some of the latest documents have begun to optimize GPM from the computer hardware level to speed up the matching speed, such as using field programmable gate array to accelerate the subgraph matching process on a single computer, and using single instruction multiple data instructions to enhance pruning capabilities. Therefore, optimizing GPM from the hardware level will be an interesting job.

    猜你喜歡
    陸金
    黃陵祭
    軒轅頌
    12.16億美元陸金所下半年啟動IPO
    CHIP新電腦(2016年3期)2016-03-10 13:19:09
    陸金龍理事長一行拜訪比德文控股集團(tuán)董事長李國欣
    新能源科技(2015年5期)2015-04-23 06:25:39
    給每家銀行做個“陸金所”
    亚洲七黄色美女视频| 嫩草影院新地址| 最好的美女福利视频网| 99视频精品全部免费 在线| av在线亚洲专区| 搡老熟女国产l中国老女人| 麻豆一二三区av精品| 国产aⅴ精品一区二区三区波| 免费看av在线观看网站| 麻豆av噜噜一区二区三区| 非洲黑人性xxxx精品又粗又长| 一本久久中文字幕| 69av精品久久久久久| 日韩成人av中文字幕在线观看 | 亚洲成a人片在线一区二区| 好男人在线观看高清免费视频| 亚洲国产精品成人综合色| 最近中文字幕高清免费大全6| 久久精品国产亚洲av涩爱 | 国内精品宾馆在线| 毛片一级片免费看久久久久| 69av精品久久久久久| 97热精品久久久久久| 日韩高清综合在线| 性色avwww在线观看| 中国美女看黄片| 国产亚洲av嫩草精品影院| 日本一二三区视频观看| 日本欧美国产在线视频| 久久午夜亚洲精品久久| 亚洲va在线va天堂va国产| 中国美女看黄片| 男插女下体视频免费在线播放| 99久久精品国产国产毛片| 午夜福利视频1000在线观看| 国产成人影院久久av| 国产亚洲av嫩草精品影院| av女优亚洲男人天堂| 在线免费十八禁| 在线免费观看不下载黄p国产| 日本黄色片子视频| 国产精品久久久久久久久免| 国产91av在线免费观看| 桃色一区二区三区在线观看| 人妻少妇偷人精品九色| 乱系列少妇在线播放| 又爽又黄无遮挡网站| 日本黄色片子视频| 成熟少妇高潮喷水视频| 国产91av在线免费观看| 男人狂女人下面高潮的视频| 欧美成人免费av一区二区三区| 99热这里只有精品一区| 校园春色视频在线观看| 老司机午夜福利在线观看视频| 国产精品久久久久久久久免| 久久精品国产亚洲av天美| 天堂影院成人在线观看| 国产91av在线免费观看| 日本一本二区三区精品| 精品久久久噜噜| 久久久久久久久中文| av在线亚洲专区| 在线观看免费视频日本深夜| 一级黄色大片毛片| 午夜福利在线观看免费完整高清在 | 长腿黑丝高跟| 久久久精品欧美日韩精品| 校园人妻丝袜中文字幕| 两个人视频免费观看高清| 国产成人a∨麻豆精品| 国产亚洲av嫩草精品影院| 在线免费十八禁| 久久99热6这里只有精品| 最近的中文字幕免费完整| 99热全是精品| 老司机午夜福利在线观看视频| 国产aⅴ精品一区二区三区波| 麻豆一二三区av精品| 日韩精品中文字幕看吧| 全区人妻精品视频| av.在线天堂| 老熟妇仑乱视频hdxx| 欧美日韩在线观看h| 久久这里只有精品中国| 香蕉av资源在线| av免费在线看不卡| 91久久精品国产一区二区三区| a级毛片a级免费在线| 国产高清有码在线观看视频| 卡戴珊不雅视频在线播放| 午夜爱爱视频在线播放| 久久国内精品自在自线图片| 亚洲欧美中文字幕日韩二区| 一进一出抽搐动态| 国产v大片淫在线免费观看| 亚洲在线自拍视频| 天堂av国产一区二区熟女人妻| 亚洲成av人片在线播放无| 国产白丝娇喘喷水9色精品| 寂寞人妻少妇视频99o| 免费看a级黄色片| 国产成人91sexporn| 精品久久国产蜜桃| 最近中文字幕高清免费大全6| 久久午夜福利片| 麻豆成人午夜福利视频| 欧美3d第一页| 国产综合懂色| 真人做人爱边吃奶动态| 国产精品乱码一区二三区的特点| 成人特级黄色片久久久久久久| 2021天堂中文幕一二区在线观| 国产精品久久久久久精品电影| 丰满乱子伦码专区| 两个人视频免费观看高清| 插阴视频在线观看视频| 别揉我奶头~嗯~啊~动态视频| 禁无遮挡网站| 亚洲国产色片| 久久久久久国产a免费观看| 精品免费久久久久久久清纯| 久久九九热精品免费| 一级黄片播放器| 老女人水多毛片| 欧美高清成人免费视频www| 少妇高潮的动态图| 国产亚洲精品久久久久久毛片| 午夜福利在线在线| 国产精品久久久久久精品电影| 九九热线精品视视频播放| 最近中文字幕高清免费大全6| 精品人妻熟女av久视频| 老司机午夜福利在线观看视频| 成人综合一区亚洲| 国产精品99久久久久久久久| 中文亚洲av片在线观看爽| av中文乱码字幕在线| 黑人高潮一二区| 黄色视频,在线免费观看| 欧美在线一区亚洲| 一本一本综合久久| 老司机午夜福利在线观看视频| 一本精品99久久精品77| 国产免费男女视频| 身体一侧抽搐| 3wmmmm亚洲av在线观看| 国产黄a三级三级三级人| 免费搜索国产男女视频| 在线免费观看不下载黄p国产| 又爽又黄a免费视频| 特级一级黄色大片| 日本-黄色视频高清免费观看| 无遮挡黄片免费观看| 久久99热这里只有精品18| 国产一区二区三区在线臀色熟女| 日韩高清综合在线| 日本撒尿小便嘘嘘汇集6| 老师上课跳d突然被开到最大视频| av在线亚洲专区| 色哟哟哟哟哟哟| 国产 一区精品| 国产精品一区二区三区四区久久| 亚洲精品国产成人久久av| 久久久久国内视频| 日本黄色片子视频| 人妻丰满熟妇av一区二区三区| 久久久久久久久久成人| 天天躁夜夜躁狠狠久久av| 免费电影在线观看免费观看| 69人妻影院| 床上黄色一级片| 97超视频在线观看视频| 全区人妻精品视频| 亚洲国产欧美人成| 久久久久久久午夜电影| 99在线视频只有这里精品首页| 免费观看在线日韩| 精品少妇黑人巨大在线播放 | 亚洲av成人av| 国产高清有码在线观看视频| 51国产日韩欧美| 真实男女啪啪啪动态图| 久久久久国产网址| 亚洲av中文av极速乱| 97超视频在线观看视频| 欧美在线一区亚洲| 韩国av在线不卡| 老女人水多毛片| 午夜日韩欧美国产| 亚洲电影在线观看av| 国内揄拍国产精品人妻在线| 一级毛片电影观看 | 日本一二三区视频观看| 久久久久性生活片| 国产又黄又爽又无遮挡在线| 欧美日韩国产亚洲二区| 欧美日韩一区二区视频在线观看视频在线 | 精品国内亚洲2022精品成人| 欧美激情久久久久久爽电影| ponron亚洲| 久久中文看片网| av在线播放精品| 非洲黑人性xxxx精品又粗又长| 亚洲精品乱码久久久v下载方式| 久久亚洲国产成人精品v| 麻豆久久精品国产亚洲av| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲人与动物交配视频| 欧洲精品卡2卡3卡4卡5卡区| 青春草视频在线免费观看| 伊人久久精品亚洲午夜| 人妻夜夜爽99麻豆av| 亚洲av免费在线观看| 久久韩国三级中文字幕| 亚洲一区高清亚洲精品| 国产精品一区二区免费欧美| 日日摸夜夜添夜夜添av毛片| 亚洲一区二区三区色噜噜| 男女下面进入的视频免费午夜| 俄罗斯特黄特色一大片| 久久久精品94久久精品| 亚洲最大成人av| 精品人妻熟女av久视频| 亚洲欧美日韩高清在线视频| 人人妻人人澡人人爽人人夜夜 | 不卡一级毛片| 色综合亚洲欧美另类图片| 成人午夜高清在线视频| 色视频www国产| 成人欧美大片| 亚洲国产高清在线一区二区三| 美女免费视频网站| 国国产精品蜜臀av免费| 春色校园在线视频观看| 国产大屁股一区二区在线视频| 久久久久国产网址| 自拍偷自拍亚洲精品老妇| 久久久久久大精品| 久99久视频精品免费| 国内精品久久久久精免费| 人人妻人人澡人人爽人人夜夜 | 国产精品亚洲一级av第二区| 久久精品国产亚洲av香蕉五月| 一区二区三区四区激情视频 | 美女高潮的动态| 美女被艹到高潮喷水动态| 成人特级黄色片久久久久久久| 久久精品国产清高在天天线| 一个人观看的视频www高清免费观看| 久久精品国产99精品国产亚洲性色| 成人精品一区二区免费| 老熟妇仑乱视频hdxx| 天堂√8在线中文| 久久午夜亚洲精品久久| 国产精品永久免费网站| 亚洲欧美日韩东京热| 嫩草影视91久久| 国产欧美日韩精品亚洲av| 日本一二三区视频观看| 亚洲av电影不卡..在线观看| 免费看光身美女| 日本与韩国留学比较| 超碰av人人做人人爽久久| 国产日本99.免费观看| 亚洲人成网站在线观看播放| 国产午夜福利久久久久久| 国产精品免费一区二区三区在线| 91久久精品国产一区二区成人| 91精品国产九色| 久久鲁丝午夜福利片| 国产午夜精品久久久久久一区二区三区 | 日韩欧美精品v在线| 亚洲最大成人av| 热99re8久久精品国产| 成人欧美大片| 国产高清不卡午夜福利| 国产精品av视频在线免费观看| 男女视频在线观看网站免费| 老司机午夜福利在线观看视频| 国内精品一区二区在线观看| avwww免费| videossex国产| 亚洲第一电影网av| 精品熟女少妇av免费看| 日韩三级伦理在线观看| 国产亚洲精品久久久com| 国产成人a区在线观看| 国内精品美女久久久久久| 国产成年人精品一区二区| 国产亚洲av嫩草精品影院| 国产色婷婷99| 国产爱豆传媒在线观看| a级毛片免费高清观看在线播放| 美女 人体艺术 gogo| av在线亚洲专区| 18禁黄网站禁片免费观看直播| av视频在线观看入口| 亚洲图色成人| 亚洲成人av在线免费| 国产一区亚洲一区在线观看| av女优亚洲男人天堂| 国产精品人妻久久久久久| 日本与韩国留学比较| 成人午夜高清在线视频| 级片在线观看| 99久久久亚洲精品蜜臀av| 中文字幕熟女人妻在线| 成人二区视频| 亚洲av二区三区四区| 久久精品人妻少妇| 精品乱码久久久久久99久播| 18禁在线无遮挡免费观看视频 | 国产伦精品一区二区三区视频9| 91久久精品国产一区二区成人| 日韩欧美国产在线观看| 免费观看在线日韩| 精品久久久久久久久av| 最近的中文字幕免费完整| 中文资源天堂在线| 精品人妻视频免费看| 一个人观看的视频www高清免费观看| 天堂影院成人在线观看| 午夜福利在线观看免费完整高清在 | 在线天堂最新版资源| 国产欧美日韩精品亚洲av| 欧美色欧美亚洲另类二区| 人妻制服诱惑在线中文字幕| 国产成人91sexporn| 久久久色成人| 18+在线观看网站| 亚洲欧美日韩无卡精品| av卡一久久| 亚洲人成网站高清观看| 久久久久久九九精品二区国产| 丰满乱子伦码专区| 色视频www国产| 中文资源天堂在线| 亚洲国产精品sss在线观看| 日韩av在线大香蕉| 日本一本二区三区精品| 午夜福利高清视频| 俄罗斯特黄特色一大片| 一卡2卡三卡四卡精品乱码亚洲| 久久精品91蜜桃| 亚洲国产欧美人成| a级毛色黄片| 亚洲av中文字字幕乱码综合| 少妇人妻一区二区三区视频| 国产精品久久久久久av不卡| 国产精品一区二区免费欧美| 日韩人妻高清精品专区| а√天堂www在线а√下载| 亚洲国产精品国产精品| 国产极品精品免费视频能看的| 亚洲精品粉嫩美女一区| 韩国av在线不卡| 99久久九九国产精品国产免费| 美女黄网站色视频| 少妇熟女欧美另类| 一个人看的www免费观看视频| 波多野结衣高清作品| 国产69精品久久久久777片| 久久鲁丝午夜福利片| 色综合亚洲欧美另类图片| 久久久色成人| 亚洲欧美成人精品一区二区| 亚洲欧美成人综合另类久久久 | 国产视频一区二区在线看| 成年女人永久免费观看视频| 欧美中文日本在线观看视频| 小说图片视频综合网站| 亚洲综合色惰| 久久九九热精品免费| 亚洲精华国产精华液的使用体验 | 男女做爰动态图高潮gif福利片| 国产欧美日韩一区二区精品| 尾随美女入室| 日韩制服骚丝袜av| 国产精品一区www在线观看| 国产亚洲精品综合一区在线观看| 欧美bdsm另类| 国产亚洲av嫩草精品影院| 淫妇啪啪啪对白视频| 男人舔奶头视频| 亚洲精品影视一区二区三区av| 中文字幕久久专区| 自拍偷自拍亚洲精品老妇| 少妇猛男粗大的猛烈进出视频 | 精品一区二区三区人妻视频| 有码 亚洲区| 国产成人影院久久av| 国产高清三级在线| 国产成人精品久久久久久| 亚洲av一区综合| 别揉我奶头 嗯啊视频| 国产女主播在线喷水免费视频网站 | 一进一出抽搐gif免费好疼| 少妇裸体淫交视频免费看高清| 精品人妻一区二区三区麻豆 | 露出奶头的视频| 亚洲图色成人| 此物有八面人人有两片| 欧美zozozo另类| 国产探花在线观看一区二区| 国产午夜精品久久久久久一区二区三区 | 欧美成人a在线观看| 99精品在免费线老司机午夜| 精品久久久久久久久亚洲| 国产精品嫩草影院av在线观看| 亚洲欧美日韩东京热| 亚洲18禁久久av| 蜜桃亚洲精品一区二区三区| 日本黄大片高清| 日本a在线网址| 欧美最黄视频在线播放免费| 97人妻精品一区二区三区麻豆| 日本欧美国产在线视频| 亚洲欧美日韩东京热| 国产亚洲91精品色在线| 如何舔出高潮| 三级国产精品欧美在线观看| 午夜亚洲福利在线播放| 亚洲在线自拍视频| 亚洲精品日韩av片在线观看| 一本久久中文字幕| 看黄色毛片网站| 亚洲欧美成人综合另类久久久 | 国产三级在线视频| 成人无遮挡网站| 久久久久免费精品人妻一区二区| 我的女老师完整版在线观看| a级毛色黄片| 日本-黄色视频高清免费观看| 日韩欧美免费精品| 国产综合懂色| 色噜噜av男人的天堂激情| 国产人妻一区二区三区在| av福利片在线观看| 久久综合国产亚洲精品| 乱码一卡2卡4卡精品| 国产免费一级a男人的天堂| 亚洲综合色惰| 看免费成人av毛片| 丰满乱子伦码专区| 久久精品国产鲁丝片午夜精品| 蜜臀久久99精品久久宅男| 给我免费播放毛片高清在线观看| 国产成人一区二区在线| 国产高清视频在线观看网站| 国产精品久久电影中文字幕| av在线观看视频网站免费| 在现免费观看毛片| 亚洲专区国产一区二区| 欧美性猛交╳xxx乱大交人| 国产又黄又爽又无遮挡在线| 少妇被粗大猛烈的视频| 韩国av在线不卡| 12—13女人毛片做爰片一| 99九九线精品视频在线观看视频| 久久久精品大字幕| 国内揄拍国产精品人妻在线| 99热这里只有是精品在线观看| 免费观看在线日韩| 亚洲aⅴ乱码一区二区在线播放| 91在线观看av| 99在线人妻在线中文字幕| 老师上课跳d突然被开到最大视频| 97人妻精品一区二区三区麻豆| 精品无人区乱码1区二区| 日本-黄色视频高清免费观看| 色播亚洲综合网| 日韩国内少妇激情av| 一级毛片电影观看 | 国产精品一区二区性色av| 亚洲aⅴ乱码一区二区在线播放| 亚洲无线观看免费| АⅤ资源中文在线天堂| 亚洲国产精品久久男人天堂| 日韩欧美精品v在线| 午夜激情欧美在线| 国产精品一区二区性色av| 毛片一级片免费看久久久久| 国产亚洲精品av在线| 精品午夜福利在线看| 级片在线观看| 欧美日韩精品成人综合77777| 麻豆乱淫一区二区| 国产精品一区二区性色av| 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品合色在线| 偷拍熟女少妇极品色| 人人妻人人看人人澡| 欧美性猛交黑人性爽| 中文字幕久久专区| 精品一区二区免费观看| 成年女人毛片免费观看观看9| 男女啪啪激烈高潮av片| 午夜精品在线福利| 国产精品亚洲一级av第二区| 久久韩国三级中文字幕| 亚洲最大成人中文| 观看美女的网站| 亚洲性久久影院| 中文字幕熟女人妻在线| 免费一级毛片在线播放高清视频| 国产精品一及| 亚洲av不卡在线观看| 人人妻人人澡欧美一区二区| 人妻少妇偷人精品九色| 欧美日韩一区二区视频在线观看视频在线 | 成人漫画全彩无遮挡| 一级毛片aaaaaa免费看小| 亚洲成人中文字幕在线播放| av女优亚洲男人天堂| 久久精品91蜜桃| 国产成人影院久久av| 三级男女做爰猛烈吃奶摸视频| 少妇猛男粗大的猛烈进出视频 | 午夜精品在线福利| .国产精品久久| 卡戴珊不雅视频在线播放| 日本熟妇午夜| 露出奶头的视频| 国产亚洲精品av在线| 淫秽高清视频在线观看| 波多野结衣巨乳人妻| 九色成人免费人妻av| 精品久久久噜噜| 五月玫瑰六月丁香| av黄色大香蕉| 久久99热这里只有精品18| 精品久久久久久成人av| 3wmmmm亚洲av在线观看| 精品日产1卡2卡| 国内揄拍国产精品人妻在线| 校园春色视频在线观看| 欧美日韩精品成人综合77777| 91精品国产九色| 欧美日韩精品成人综合77777| 亚洲一区高清亚洲精品| 精品人妻视频免费看| 欧美3d第一页| 国产午夜精品久久久久久一区二区三区 | 俺也久久电影网| .国产精品久久| 一区二区三区免费毛片| 一级黄色大片毛片| 性色avwww在线观看| 成人亚洲欧美一区二区av| 午夜福利在线观看吧| 女同久久另类99精品国产91| 久久久久国内视频| 高清午夜精品一区二区三区 | 日韩强制内射视频| 欧美极品一区二区三区四区| 国产午夜精品久久久久久一区二区三区 | 51国产日韩欧美| 男女啪啪激烈高潮av片| 三级毛片av免费| av天堂在线播放| 又爽又黄无遮挡网站| 久久国产乱子免费精品| 晚上一个人看的免费电影| 成人三级黄色视频| 亚洲精品456在线播放app| 美女大奶头视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人精品中文字幕电影| 性欧美人与动物交配| 亚洲成人中文字幕在线播放| 成人亚洲精品av一区二区| 国产伦精品一区二区三区视频9| 中文字幕免费在线视频6| 国产高清激情床上av| 日韩欧美国产在线观看| 亚洲自偷自拍三级| 国产欧美日韩精品一区二区| 国产国拍精品亚洲av在线观看| 真人做人爱边吃奶动态| 色哟哟·www| 91狼人影院| 69人妻影院| 免费av不卡在线播放| 午夜福利在线观看吧| 免费观看在线日韩| 男人的好看免费观看在线视频| 我的老师免费观看完整版| 美女 人体艺术 gogo| 亚洲真实伦在线观看| 中出人妻视频一区二区| 午夜a级毛片| 观看免费一级毛片| АⅤ资源中文在线天堂| 国产精品电影一区二区三区| or卡值多少钱| 欧美+日韩+精品| 国产精品久久久久久av不卡| av天堂中文字幕网| 日本一二三区视频观看| 国产精品综合久久久久久久免费| 最近2019中文字幕mv第一页| 婷婷精品国产亚洲av在线| 女的被弄到高潮叫床怎么办| 一区福利在线观看| 国产在线精品亚洲第一网站| 女生性感内裤真人,穿戴方法视频| 少妇被粗大猛烈的视频| 国产精品永久免费网站| 亚洲熟妇中文字幕五十中出| 久久久久久久久中文| 69人妻影院| 中文亚洲av片在线观看爽| 亚洲国产精品成人久久小说 | av中文乱码字幕在线|