• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous Morphologies and Luminescence Control of NaYF4∶Yb/Er Nanophosphors by Surfactants for Cancer Cell Imaging

    2023-05-18 14:30:56SHENGYangyi盛洋怡CHENGLuSONGYuelin宋岳林WANGZhaojie王兆潔JIANGWeizhong蔣偉忠CHENZhigang陳志鋼

    SHENG Yangyi(盛洋怡), CHENG Lu(程 璐), SONG Yuelin(宋岳林), WANG Zhaojie(王兆潔), JIANG Weizhong(蔣偉忠), CHEN Zhigang (陳志鋼)

    State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

    Abstract:Hydrophilic rare-earth up-conversion nanophosphors (UCNPs) with small sizes and a strong up-conversion luminescence have attracted much interest. Herein the simultaneous control of morphologies and the up-conversion luminescence intensities was reported for NaYF4∶Yb/Er nanophosphors by a facile hydrothermal procedure with different surfactants. With the change of the surfactants from polyvinylpyrrolidone (PVP) to sodium citrate (CIT), edetate disodium (EDTA) or sodium dodecyl benzenesulfonate (SDBS), the morphology of NaYF4∶Yb/Er nanophosphors transformed from nanoparticles with a diameter of about 70.0 nm to hexagonal nanoblocks with a thickness of about 125.0 nm and a length of about 240.0 nm, nanorods with a diameter of about 700.0 nm and a length of about 2.6 μm, or nanowires with a diameter of 250.0 nm and a length of about 3.2 μm. Simultaneously, their up-conversion luminescence intensity went down gradually under laser irradiation at a wavelength of 980 nm due to the increase of photobleaching. PVP-capped NaYF4∶Yb/Er nanoparticles exhibited the smallest size and the strongest up-conversion luminescence intensity. Biological experiment results revealed that NaYF4∶Yb/Er nanophosphors exhibited a high biocompatibility and could be used as biological labels with a perfect signal-to-noise ratio for cancer cell imaging.

    Key words:NaYF4; nanophosphor; luminescence; surfactant; adjustable morphology; cancer cell imaging

    Introduction

    Rare-earth up-conversion nanophosphors (UCNPs) have attracted much interest due to the advantages including low photobleaching, superior stability and sharp absorption/emission. Currently, UCNPs have been widely used in temperature detection, 3D flat-panel displays, optical devices and biomedical applications[1-4]. For biomedical applications, UCNPs with small sizes and a strong up-conversion luminescence are widely used. To prepare UCNPs with small sizes, two kinds of synthesis methods have been well developed. One is a simple hydrothermal method with a liquid-solid-solution (LSS) process[5-6]. For example, with this LSS process, Wangetal.[7]reported the controllable synthesis of NaYF4, YbF3and LaF3nanoparticles with diameters in the range of 4 nm to 12 nm. The other one is the thermolysis of lanthanide trifluoroacetate precursors in a high boiling solvent at 280-330 ℃[8-10]. For example, Maietal.[11]obtained NaREF4(RE∶ Pr to Lu, Y) nanocrystals with adjusted sizes (5.9-155.0 nm). These small-size UCNPs can be well used in many fields, especially in biomedical applications.

    There are three kinds of strategies to obtain UCNPs with a strong up-conversion luminescence. The first one is the optimization of host materials. Many kinds of host materials have been developed, including NaYF4[12], NaGdF4[13], KMnF3[14]and CaF2[15]. The second one is the tuning of the crystalline phase. Compared with the cubic-phase NaYF4∶Yb/Er nanophosphors, hexagonal-plase NaYF4∶Yb/Er nanophosphors demonstrate a stronger up-conversion luminescence intensity[16]. The last and the most important one is design and construction of the novel structure with an excellent energy transfer efficiency[1-2,17-18]. For example, researchers have developed various UCNPs with high energy migration, including NaGdF4∶Tb@NaGdF4@NaGdF4∶Yb/Tm[19], NaYF4∶Yb/Tm@NaYF4[20]and NaErF4∶Tm@NaYF4[21]. However, the above methods have some limitations, such as high costs, complex preparation processes and difficulty in the control of morphologies and sizes. Thus, it is still indispensable to explore other novel and facile ways to control morphologies and luminescence intensities.

    It is well-known that surfactants can manipulate the crystal growth and thus control the morphologies of nanomaterials[22]. In addition, surfactants may have some effects on the photobleaching process of nanophosphors. These features inspire our interest in developing a simple way to simultaneously control morphologies and the up-conversion luminescence intensities of NaYF4∶Yb/Er nanophosphors by adjusting surfactants. Herein, NaYF4∶Yb/Er nanophosphors are prepared by a simple hydrothermal method assisted with different surfactants, including polyvinylpyrrolidone (PVP), sodium citrate (CIT), edetate disodium (EDTA) and sodium dodecyl benzenesulfonate (SDBS). The effects of surfactants on morphologies and luminescence are analyzed. In addition, cytotoxicity and bioimaging performance of NaYF4∶Yb/Er nanophosphors are also evaluated.

    1 Experiments

    1.1 Materials

    PVP (PVP-K30), CIT (C6H5Na3O7), ethylene-diamine tetra-acetic acid (C10H16N2O8), SDBS(C18H29NaO3S), sodium dodecyl sulfate (C12H25SO4Na), ethylene glycol ((CH2OH)2), sodium fluoride (NaF) and glycerol (C3H8O3) were purchased from Sinopharm Chemical Reagent Co., Ltd., China. All the above chemicals are of analytical grades. Rare-earth chlorides (LnCl3, Ln∶Y, Yb, Er) were prepared by dissolving the corresponding oxides (Y2O3, Yb2O3and Er2O3from Beijing Lansu Co., Ltd., China) in a hydrochloric solution (a mass fraction of 10%) and then evaporating the water completely. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) were obtained from Beyotime Biotechnology, China. HeLa cells and human umbilical vein endothelial cells (HUVECs) were bought from Type Culture Collection of the Chinese Academy of Sciences, Shanghai, China.

    1.2 Material synthesis

    PVP, CIT, EDTA or SDBS was added at a mass of 0.5 g to the mixture solution (4 mL water and 4 mL ethylene glycol). LnCl3(0.78 mmol Y3+, 0.20 mmol Yb3+and 0.02 mmol Er3+) was dissolved in the above solution. Then, NaF (7.20 mmol) was dissolved in another solution (2 mL water and 2 mL ethylene glycol), and it was dropped into the LnCl3solution. The resulting solution was agitated for 30 min, and then hydrothermally treated at 180 ℃ for 10 h. After being naturally cooled, NaYF4∶Yb/Er nanophosphors were isolatedviacentrifugation, rinsed with water and dried under vacuum at room temperature.

    1.3 Characterization

    Morphologies and sizes of NaYF4∶Yb/Er nanophosphors were characterized by a field emission scanning electron microscope (FE-SEM, Hitachi S-4800, Japan) and a high-resolution transmission electron microscope (HR-TEM, JEOL JEM-2010F, Japan). Powder X-ray diffraction (XRD) measurements were performed on a Bruker D4 X-ray diffractometer with Cu Kαradiation (Bruker, Germany). Fourier transform infrared (FTIR) spectra were measured by using an IRPRESTIGE-21 spectrometer (Shimadzu, Japan) from samples in KBr pellets. Up-conversion luminescence spectra were measured by using an FP-6600 spectrometer (JASCO, Japan), but the excitation source was a laser at a wavelength of 980 nm.

    1.4 Cytotoxicity assay in vitro

    Theinvitrocytotoxicity was measured by using the MTT assay in HeLa cells. Cells growing in a log phase were seeded into a 96-well (5×104/well) cell culture plate in Dulbecoo’s modified eagle medium (DMEM) at 37 ℃ and in the presence of CO2(a volume fraction of 5%) for 24 h. Then the cells were incubated with PVP-capped NaYF4∶Yb/Er nanoparticles at different mass concentrations (0, 0.05, 0.10, 0.15, 0.20 and 0.25 mg/mL) at 37 ℃ for 24 h in the presence of CO2. Subsequently, 10 μL MTT (5 mg/mL) was added to each well of the 96-well cell culture plate and incubated for 4 h at 37 ℃ in the presence of CO2. After the addition of sodium dodecyl sulfate (100 μL/well), the cell culture plate was allowed to stand at room temperature for 12 h. A Multiskan MK3 monochromator-based multifunction microplate reader(Thermo Fisher, USA) was used to measure the absorbance of each well with background subtraction at 492 nm. All of the tests were independently performed three times.

    1.5 Bioimaging of cancer cells by PVP-capped NaYF4∶Yb/Er nanoparticles

    HeLa cells were incubated in phosphate buffered saline (PBS) containing PVP-capped NaYF4∶Yb/Er nanophosphors(0.20 mg/mL) at 37 ℃ for 3 h in the presence of CO2, and then washed with PBS sufficiently to remove excess nanoparticles. These cells were fixed with paraformaldehyde (a mass fraction of 4%), and their nuclei were stained with 5 μg/mL DAPI in glycerol (a mass fraction of 10%). The multilabeled cells were then imaged by a laser scanning up-conversion luminescence microscope (Olympus FV1000, Japan) and a conventional confocal microscope (Olympus BX51, Japan). These cells were excited by a laser at a wavelength of 980 nm, and up-conversion luminescence signals were detected in two channels: the green channel (500-570 nm) and the red channel (600-700 nm). In addition, these cells were also irradiated by a laser at a wavelength of 405 nm to obtain the fluorescence signals of DAPI for cell nuclei.

    2 Results and Discussion

    2.1 Characterization of NaYF4∶Yb/Er nanophosphors

    NaYF4∶Yb/Er nanophosphors were fabricated through the hydrothermal method[23-25]with different surfactants (PVP, CIT, EDTA and SDBS). The morphologies of these NaYF4∶Yb/Er nanophosphors were characterized (Fig. 1). When PVP is used as the surfactant, the nanophosphors consist of nanoparticles with a diameter of about 70.0 nm (Figs. 1(a), 1(b) and 2(a)). When the surfactant is CIT, the nanophosphors appear to be hexagonal nanoblocks with a thickness of about 125.0 nm and a length of about 240.0 nm (Figs.1(c), 1(d), 2(b) and 2(c)). By using EDTA as the surfactant, the nanophosphors are composed of nanorods with a diameter of about 700.0 nm and a length of about 2.6 μm (Figs.1(e), 1(f), 2(d) and 2(e)). Interestingly, the SDBS surfactant results in the formation of nanowires with a diameter of about 250.0 nm and a length of about 3.2 μm (Figs. 1(g), 1(h), 2(f) and 2(g)). These facts confirm that surfactants can adjust sizes and morphologies of NaYF4∶Yb/Er nanophosphors.

    Fig. 1 FE-SEM and HR-TEM images of NaYF4∶Yb/Er nanophosphors fabricated with different surfactants: (a) and (b) PVP; (c) and (d) CIT; (e) and (f) EDTA; (g) and (h) SDBS

    Fig. 2 Size distribution of NaYF4∶Yb/Er nanophosphors fabricated with different surfactants: (a) PVP; (b) and (c) CIT; (d) and (e) EDTA; (f) and (g) SDBS

    Subsequently, the phases of NaYF4∶Yb/Er nanophosphors were characterized by XRD patterns (Fig.3). When CIT or EDTA is used as the surfactant, the nanophosphors exhibit six distinct peaks with 2θvalues of 17.20°, 30.06°, 30.79°, 43.49°, 53.28° and 53.75°, which respectively correspond to (100), (110), (101), (201), (300) and (211) crystal planes ofβ-NaYF4(JCPDS file No.16-0334). Interestingly, when PVP or SDBS is used as the surfactant, there are three additional diffraction peaks at 28.23°, 46.94° and 55.69° that can be respectively assigned to (111), (220) and (311) planes ofα-NaYF4(JCPDS file No. 77-2042)[26]. Thus, these NaYF4∶Yb/Er nanophosphors capped with PVP or SDBS are the mixture of cubic and hexagonal phases. The above results verify that the surfactant can regulate the phase of NaYF4∶Yb/Er nanophosphors.

    Fig. 3 XRD patterns of NaYF4∶Yb/Er nanophosphors fabricated with different surfactants (PVP, CIT, EDTA and SDBS)

    Fig. 4 FTIR spectra of NaYF4∶Yb/Er nanophosphors fabricated with different surfactants (PVP, CIT, EDTA and SDBS)

    Owing to the presence of these surfactants, NaYF4∶Yb/Er nanophosphors can be easily dispersed in water. The up-conversion luminescence spectra of their aqueous dispersions (1 mg/mL) were recorded under laser irradiation at the wavelength of 980 nm(Fig.5). All the nanophosphors show three different Er3+emission bands that are consistent with the previous reports[29]. Two green emissions ranging from 514 nm to 534 nm and from 534 nm to 560 nm are observed, which result from2H11/2→4I15/2and4S3/2→4I15/2transitions, respectively. There is a red emission at 635-680 nm, which should be attributed to the transition from4F9/2to4I15/2. Importantly, these surfactants have strong effects on the up-conversion luminescence intensity. Obviously, PVP-capped NaYF4∶Yb/Er nanoparticles demonstrate the strongest up-conversion luminescence intensity, as vividly shown in the luminescence photo (the inset in Fig. 5). CIT-capped NaYF4∶Yb/Er nanoblocks demonstrate the second strongest up-conversion luminescence intensity which is almost 80% as strong as that of PVP-capped NaYF4∶Yb/Er nanoparticles. However, both EDTA-capped NaYF4∶Yb/Er nanorods and SDBS-capped NaYF4∶Yb/Er nanowires exhibit a weak up-conversion luminescence intensity(Fig.5). These results reveal the successful control of the up-conversion luminescence intensity of NaYF4∶Yb/Er nanophosphors by different surfactants.

    Fig. 5 Up-conversion luminescence spectra of aqueous dispersions containing NaYF4∶Yb/Er nanophosphors(1 mg/mL) fabricated with different surfactants (PVP, CIT, EDTA and SDBS) with luminescence photos in inset

    2.2 Applications as luminescent biological labels

    Because of their smallest size and strongest up-conversion luminescence intensity, PVP-capped NaYF4∶Yb/Er nanoparticles should have a great potential as biological labels for cancer cell imaging. To evaluate their cytotoxicity, HeLa cells were incubated with PVP-capped NaYF4∶Yb/Er dispersions (0-0.25 mg/mL) for 24 h. MTT assay results reveal that there is no obvious difference in the cell viability (Fig. 7), and the cell viability in 0.25 mg/mL NaYF4∶Yb/Er dispersions is higher than 87%, suggesting a high biocompatibility.

    Fig. 7 Cell viability estimated by MTT assay versus mass concentrations (0, 0.05, 0.10, 0.15, 0.20 and 0.25 mg/mL) of PVP-capped NaYF4∶Yb/Er nanoparticles

    To investigate the cell labeling ability, HeLa cells were incubated with PVP-capped NaYF4∶Yb/Er dispersions (0.20 mg/mL) at 37 ℃ for 3 h and then their nuclei were stained with DAPI, washed with PBS and then imaged by a microscope. Under laser irradiation at a wavelength of 980 nm, the typical HeLa cells exhibit strong up-conversion luminescence signals at 510-570 nm (green shown in Fig. 8(a)) and at 630-690 nm (red shown in Fig. 8(b)). In addition, the cell nucleus region is also displayed by DAPI (blue shown in Fig. 8(c)), and the brightfield image is also measured (Fig. 8(d)). The overlay images (Fig. 8(e)) reveal that up-conversion luminescence signals are located in the cytoplasm region but not in the DAPI-stained region. This fact suggests that PVP-capped NaYF4∶Yb/Er nanoparticles can be endocytosed by HeLa cells but cannot enter the nuclei of HeLa cells. Simultaneously, there is no obvious autofluorescence signal in the confocal images (Figs. 8(a) and 8(b)). To further quantify the signal, the up-conversion luminescence intensity across the line is recorded (Fig. 8(f)). Obviously, the up-conversion luminescence signal region has a very high intensity (counts in region 1 and region 3 are more than 4 095) and background fluorescence is zero (the count in region 2 is 0), which demonstrates a perfect signal-to-noise ratio and is similar to the previous report[31]. Therefore, such biocompatible PVP-capped NaYF4∶Yb/Er nanoparticles can be used as an efficient luminescence nanoagent for cancer cell imaging.

    Fig. 8 Confocal images of cells incubated with PVP-capped NaYF4∶Yb/Er nanoparticles: up-conversion luminescence collected (a) at 510-570 nm and (b) at 630-690 nm; (c) fluorescent image of DAPI; (d) brightfield image; (e) overlay of (a)-(d); (f) luminescence intensity across the line shown in inset

    3 Conclusions

    The simultaneous control of morphologies and up-conversion luminescence intensities of NaYF4∶Yb/Er nanophosphors has been realized by adjusting surfactants. PVP-capped NaYF4∶Yb/Er nanoparticles show the smallest size and the strongest up-conversion luminescence intensity. Especially, PVP-capped NaYF4∶Yb/Er nanoparticles exhibit a low cytotoxicity and can act as an efficient luminescence nanoagent for imaging of cancer cells. Therefore, surfactant-dependent synthesis of NaYF4∶Yb/Er nanophosphors may bring new perspectives for bioimaging.

    少妇熟女aⅴ在线视频| 欧美成人精品欧美一级黄| 精品熟女少妇av免费看| 亚洲av中文字字幕乱码综合| 又爽又黄无遮挡网站| av卡一久久| 狠狠狠狠99中文字幕| 国产精品国产三级国产av玫瑰| 男女下面进入的视频免费午夜| 精品一区二区三区人妻视频| 少妇熟女aⅴ在线视频| 国产v大片淫在线免费观看| 亚洲精品456在线播放app| 亚洲国产精品成人久久小说 | 国产精品,欧美在线| 午夜影院日韩av| 久久精品国产自在天天线| 午夜影院日韩av| 免费av毛片视频| www日本黄色视频网| 精品国产三级普通话版| 搡女人真爽免费视频火全软件 | 丰满乱子伦码专区| or卡值多少钱| 成人漫画全彩无遮挡| 国产 一区精品| 91麻豆精品激情在线观看国产| 波多野结衣高清无吗| 国产三级中文精品| 日本色播在线视频| 一进一出好大好爽视频| 国国产精品蜜臀av免费| 国产精品一及| 国产精品三级大全| 黄色视频,在线免费观看| 亚洲七黄色美女视频| 久久久久久大精品| or卡值多少钱| а√天堂www在线а√下载| 午夜免费激情av| 好男人在线观看高清免费视频| 高清毛片免费观看视频网站| 欧美xxxx黑人xx丫x性爽| 欧美激情在线99| 嫩草影院新地址| 丝袜美腿在线中文| 日韩欧美精品免费久久| 男插女下体视频免费在线播放| 99久久精品国产国产毛片| 午夜精品在线福利| 三级毛片av免费| 国产单亲对白刺激| 校园春色视频在线观看| 中文在线观看免费www的网站| 国产乱人偷精品视频| 高清毛片免费看| 亚洲精品乱码久久久v下载方式| 又爽又黄a免费视频| 国产乱人偷精品视频| 99热这里只有是精品50| 国产亚洲精品综合一区在线观看| av在线亚洲专区| 亚洲最大成人中文| 三级男女做爰猛烈吃奶摸视频| 国产毛片a区久久久久| 大香蕉久久网| 此物有八面人人有两片| 亚洲图色成人| 人妻丰满熟妇av一区二区三区| 欧美最黄视频在线播放免费| 国产精品永久免费网站| 亚洲欧美日韩高清在线视频| 久久久久精品国产欧美久久久| 国产高清三级在线| 亚洲av中文字字幕乱码综合| 网址你懂的国产日韩在线| 中文亚洲av片在线观看爽| 久久久久久九九精品二区国产| 免费看a级黄色片| 香蕉av资源在线| 国产成人福利小说| 淫秽高清视频在线观看| 男女视频在线观看网站免费| 国产成人影院久久av| 99在线视频只有这里精品首页| 在线看三级毛片| 欧美3d第一页| 在线播放国产精品三级| 欧美一级a爱片免费观看看| 99国产极品粉嫩在线观看| 天天一区二区日本电影三级| 成人亚洲欧美一区二区av| 中文字幕av成人在线电影| 国产不卡一卡二| 亚洲av不卡在线观看| 国产精品永久免费网站| 赤兔流量卡办理| 久久鲁丝午夜福利片| 亚洲一区二区三区色噜噜| 日本黄色视频三级网站网址| 成年女人看的毛片在线观看| 日韩人妻高清精品专区| 黄片wwwwww| 99在线人妻在线中文字幕| 美女xxoo啪啪120秒动态图| 最后的刺客免费高清国语| 精品欧美国产一区二区三| 久久人人爽人人片av| av黄色大香蕉| 在线播放无遮挡| 波野结衣二区三区在线| av在线蜜桃| 日本色播在线视频| 极品教师在线视频| 99热这里只有精品一区| 成人美女网站在线观看视频| 欧美日韩国产亚洲二区| 精品不卡国产一区二区三区| 99国产极品粉嫩在线观看| 亚洲av.av天堂| 激情 狠狠 欧美| 在线观看午夜福利视频| 亚洲欧美日韩高清专用| 极品教师在线视频| 亚洲人成网站在线观看播放| 亚洲经典国产精华液单| 2021天堂中文幕一二区在线观| 国产精品免费一区二区三区在线| aaaaa片日本免费| 欧美中文日本在线观看视频| 成熟少妇高潮喷水视频| 国产色婷婷99| 美女被艹到高潮喷水动态| 欧美激情久久久久久爽电影| 成人av一区二区三区在线看| 精品少妇黑人巨大在线播放 | 最新中文字幕久久久久| 久久人妻av系列| 一本精品99久久精品77| 亚洲丝袜综合中文字幕| 欧美人与善性xxx| 不卡一级毛片| 亚洲国产精品sss在线观看| 99热网站在线观看| 少妇的逼好多水| 99九九线精品视频在线观看视频| 亚洲高清免费不卡视频| 国产美女午夜福利| 女人被狂操c到高潮| 高清毛片免费看| 亚洲欧美成人精品一区二区| 亚洲av二区三区四区| 男女啪啪激烈高潮av片| 久久精品国产亚洲av香蕉五月| 久久久久久久午夜电影| 特大巨黑吊av在线直播| 国产精品野战在线观看| 我的老师免费观看完整版| 久久婷婷人人爽人人干人人爱| 高清日韩中文字幕在线| 欧美日韩乱码在线| aaaaa片日本免费| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美精品综合久久99| a级毛色黄片| 欧美高清性xxxxhd video| 国产伦精品一区二区三区四那| 国产成人一区二区在线| 少妇高潮的动态图| 国产av在哪里看| 哪里可以看免费的av片| 丝袜美腿在线中文| 午夜福利在线观看吧| 好男人在线观看高清免费视频| 51国产日韩欧美| 欧美极品一区二区三区四区| 99热精品在线国产| 九九在线视频观看精品| 少妇被粗大猛烈的视频| 久久久久久大精品| 国产亚洲精品久久久com| 女的被弄到高潮叫床怎么办| 可以在线观看毛片的网站| 在线天堂最新版资源| 婷婷色综合大香蕉| 欧美一区二区国产精品久久精品| 免费观看的影片在线观看| 成年女人毛片免费观看观看9| 亚洲国产日韩欧美精品在线观看| 永久网站在线| 日韩欧美一区二区三区在线观看| 女人十人毛片免费观看3o分钟| av女优亚洲男人天堂| 国产高清三级在线| 亚洲av二区三区四区| 成人国产麻豆网| 丰满的人妻完整版| 亚洲18禁久久av| 日韩欧美精品免费久久| 国产精品伦人一区二区| 看片在线看免费视频| 精品熟女少妇av免费看| 亚洲欧美成人综合另类久久久 | 中文字幕人妻熟人妻熟丝袜美| 两性午夜刺激爽爽歪歪视频在线观看| 国内少妇人妻偷人精品xxx网站| 精品乱码久久久久久99久播| 久久6这里有精品| 日本黄色片子视频| 国产av麻豆久久久久久久| 国产熟女欧美一区二区| 搡女人真爽免费视频火全软件 | 国产视频内射| 久久久a久久爽久久v久久| 精品少妇黑人巨大在线播放 | 久久久a久久爽久久v久久| 日韩精品中文字幕看吧| 一级a爱片免费观看的视频| 亚洲av一区综合| 美女 人体艺术 gogo| 乱码一卡2卡4卡精品| 国产精品亚洲一级av第二区| www.色视频.com| 欧美zozozo另类| 午夜精品国产一区二区电影 | 18禁在线无遮挡免费观看视频 | 日本 av在线| 丝袜美腿在线中文| 中出人妻视频一区二区| 伊人久久精品亚洲午夜| av在线观看视频网站免费| 91久久精品国产一区二区三区| 人妻少妇偷人精品九色| 99热这里只有是精品50| 国内精品美女久久久久久| 精品乱码久久久久久99久播| 毛片女人毛片| 淫妇啪啪啪对白视频| 亚洲一区二区三区色噜噜| 国产一区亚洲一区在线观看| 日韩欧美精品免费久久| 真实男女啪啪啪动态图| 熟女电影av网| 日日撸夜夜添| 美女cb高潮喷水在线观看| 久久久久久久亚洲中文字幕| 国产伦一二天堂av在线观看| 此物有八面人人有两片| 亚洲欧美成人综合另类久久久 | 国产av一区在线观看免费| 国产精品1区2区在线观看.| 草草在线视频免费看| 免费人成视频x8x8入口观看| 69av精品久久久久久| 男女视频在线观看网站免费| 国产精品电影一区二区三区| av天堂中文字幕网| 午夜亚洲福利在线播放| 亚洲av不卡在线观看| 国产在线男女| 男女啪啪激烈高潮av片| 亚洲无线在线观看| 少妇人妻精品综合一区二区 | 日本黄色片子视频| 亚洲婷婷狠狠爱综合网| 亚洲最大成人手机在线| 久久韩国三级中文字幕| 男人的好看免费观看在线视频| 日本在线视频免费播放| 白带黄色成豆腐渣| 九九久久精品国产亚洲av麻豆| 国产欧美日韩一区二区精品| 可以在线观看毛片的网站| 免费看a级黄色片| 日韩成人av中文字幕在线观看 | 自拍偷自拍亚洲精品老妇| 少妇裸体淫交视频免费看高清| 蜜桃亚洲精品一区二区三区| 久久久久久久久久成人| 美女大奶头视频| 久久天躁狠狠躁夜夜2o2o| 老师上课跳d突然被开到最大视频| 中文亚洲av片在线观看爽| 国产精品,欧美在线| 熟女人妻精品中文字幕| 波多野结衣巨乳人妻| 午夜福利18| 亚洲欧美日韩卡通动漫| av黄色大香蕉| 插逼视频在线观看| 久久中文看片网| 99久国产av精品国产电影| 青春草视频在线免费观看| 亚洲精品日韩在线中文字幕 | 亚洲av第一区精品v没综合| 又爽又黄无遮挡网站| 国产精品国产高清国产av| 国产蜜桃级精品一区二区三区| 俺也久久电影网| 久久久国产成人精品二区| 亚洲经典国产精华液单| av免费在线看不卡| 免费搜索国产男女视频| 欧美极品一区二区三区四区| 国产视频一区二区在线看| 少妇人妻一区二区三区视频| 听说在线观看完整版免费高清| 99热6这里只有精品| 日韩成人伦理影院| 欧美+亚洲+日韩+国产| 校园人妻丝袜中文字幕| 老司机午夜福利在线观看视频| 国产精品亚洲一级av第二区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲电影在线观看av| 日韩制服骚丝袜av| 性色avwww在线观看| 国产av麻豆久久久久久久| 免费看a级黄色片| 日日摸夜夜添夜夜爱| 又黄又爽又刺激的免费视频.| 亚洲av二区三区四区| 亚洲18禁久久av| 最新在线观看一区二区三区| 久久久久国产网址| 在线天堂最新版资源| 我要看日韩黄色一级片| 免费看日本二区| 一个人看的www免费观看视频| 国产一区亚洲一区在线观看| 久久久久性生活片| 国产精品国产高清国产av| 亚洲av免费在线观看| 日本黄色片子视频| 三级男女做爰猛烈吃奶摸视频| a级毛片免费高清观看在线播放| 男人狂女人下面高潮的视频| 熟女电影av网| 成人漫画全彩无遮挡| 亚洲av不卡在线观看| 国内少妇人妻偷人精品xxx网站| 日本a在线网址| 观看免费一级毛片| 日日啪夜夜撸| 欧美激情在线99| 欧美色视频一区免费| 少妇熟女aⅴ在线视频| 精品午夜福利在线看| 欧美3d第一页| 婷婷精品国产亚洲av| 十八禁网站免费在线| 极品教师在线视频| 全区人妻精品视频| 亚洲最大成人av| 国产乱人偷精品视频| 亚洲精品亚洲一区二区| 亚洲av第一区精品v没综合| 日韩欧美国产在线观看| 午夜福利高清视频| 99国产精品一区二区蜜桃av| 国产大屁股一区二区在线视频| 22中文网久久字幕| 综合色丁香网| 精品久久久久久久久久久久久| 两个人的视频大全免费| 国产黄色小视频在线观看| 欧美日本亚洲视频在线播放| 嫩草影院入口| 啦啦啦韩国在线观看视频| 国产 一区精品| 亚洲高清免费不卡视频| 国产伦精品一区二区三区四那| 国产一区二区在线观看日韩| 国产真实乱freesex| 国产成人freesex在线 | 国内久久婷婷六月综合欲色啪| 日本黄大片高清| 一级毛片电影观看 | av女优亚洲男人天堂| 中国美白少妇内射xxxbb| 草草在线视频免费看| 简卡轻食公司| 国产精品1区2区在线观看.| 欧美一区二区国产精品久久精品| 亚洲av不卡在线观看| 亚洲精品影视一区二区三区av| 精品一区二区三区av网在线观看| 人人妻,人人澡人人爽秒播| av卡一久久| 日韩欧美在线乱码| 免费不卡的大黄色大毛片视频在线观看 | 久久6这里有精品| 亚洲在线自拍视频| 国产精品无大码| 乱系列少妇在线播放| 三级经典国产精品| 99在线人妻在线中文字幕| 亚洲欧美精品综合久久99| 一进一出抽搐gif免费好疼| 日本免费a在线| 精品久久久久久久久久免费视频| 亚洲激情五月婷婷啪啪| 欧美成人a在线观看| 国产精品野战在线观看| 少妇被粗大猛烈的视频| 国产人妻一区二区三区在| 又黄又爽又免费观看的视频| 九色成人免费人妻av| 成熟少妇高潮喷水视频| 日韩欧美 国产精品| 男女视频在线观看网站免费| 国产精品人妻久久久久久| 亚洲18禁久久av| 女人被狂操c到高潮| 国产成人一区二区在线| 国产精品,欧美在线| 久久久久性生活片| 成人特级黄色片久久久久久久| 深爱激情五月婷婷| 黄色欧美视频在线观看| 久久亚洲精品不卡| 欧美xxxx性猛交bbbb| 国产熟女欧美一区二区| 嫩草影院新地址| 久久久欧美国产精品| av免费在线看不卡| 中出人妻视频一区二区| 99久久久亚洲精品蜜臀av| 男女视频在线观看网站免费| 国产伦精品一区二区三区四那| 91麻豆精品激情在线观看国产| 国产精品久久久久久久久免| 欧美一区二区精品小视频在线| 欧美xxxx黑人xx丫x性爽| 欧美激情国产日韩精品一区| 少妇的逼好多水| 亚洲图色成人| 亚洲真实伦在线观看| 亚洲欧美日韩高清专用| 久久鲁丝午夜福利片| 男女边吃奶边做爰视频| 亚洲国产精品国产精品| 村上凉子中文字幕在线| 别揉我奶头~嗯~啊~动态视频| 在线a可以看的网站| 亚洲在线自拍视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲性夜色夜夜综合| 国产综合懂色| 亚洲乱码一区二区免费版| 亚洲四区av| 成年版毛片免费区| 日日干狠狠操夜夜爽| 成人漫画全彩无遮挡| 亚洲国产精品久久男人天堂| 欧美最新免费一区二区三区| 久久久久久久午夜电影| 淫妇啪啪啪对白视频| 日日撸夜夜添| 亚洲不卡免费看| 在线观看一区二区三区| 国产v大片淫在线免费观看| 人人妻,人人澡人人爽秒播| 亚洲欧美中文字幕日韩二区| 99视频精品全部免费 在线| 深爱激情五月婷婷| 91精品国产九色| 免费av不卡在线播放| 国产精品伦人一区二区| 国产精品一区二区免费欧美| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久久久黄片| 高清毛片免费看| 国产高清激情床上av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品在线观看二区| 别揉我奶头~嗯~啊~动态视频| 国产精品电影一区二区三区| 久久精品人妻少妇| 亚洲精品国产成人久久av| 亚洲五月天丁香| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久精品电影| 亚洲成a人片在线一区二区| 人妻夜夜爽99麻豆av| 国模一区二区三区四区视频| 国产探花极品一区二区| 最近视频中文字幕2019在线8| 99久久精品一区二区三区| 亚洲18禁久久av| 亚洲av成人精品一区久久| 国产蜜桃级精品一区二区三区| 午夜精品国产一区二区电影 | 在现免费观看毛片| 国产老妇女一区| 久久天躁狠狠躁夜夜2o2o| 国产精品乱码一区二三区的特点| 亚洲最大成人手机在线| 亚洲人成网站在线播放欧美日韩| 天天躁日日操中文字幕| 又黄又爽又免费观看的视频| 嫩草影院新地址| 一个人看视频在线观看www免费| 舔av片在线| 欧美成人a在线观看| 欧美激情国产日韩精品一区| 乱人视频在线观看| 人人妻人人看人人澡| 91久久精品国产一区二区三区| 真人做人爱边吃奶动态| 欧美精品国产亚洲| 午夜精品一区二区三区免费看| 国产一区亚洲一区在线观看| 乱码一卡2卡4卡精品| 色吧在线观看| 丝袜喷水一区| 高清日韩中文字幕在线| 欧美高清性xxxxhd video| 久久精品夜夜夜夜夜久久蜜豆| 99热这里只有是精品在线观看| 色哟哟哟哟哟哟| 免费观看的影片在线观看| 一个人看的www免费观看视频| 国产成人a∨麻豆精品| 黄色一级大片看看| 91久久精品国产一区二区成人| 国产精品国产高清国产av| 狠狠狠狠99中文字幕| 亚洲性久久影院| 综合色丁香网| 国产探花极品一区二区| 午夜亚洲福利在线播放| 日韩,欧美,国产一区二区三区 | 国产精品一区二区性色av| 精品一区二区三区视频在线| 国产一级毛片七仙女欲春2| 久久国内精品自在自线图片| 国产熟女欧美一区二区| 久久久久九九精品影院| 国产亚洲精品久久久久久毛片| 日韩高清综合在线| 你懂的网址亚洲精品在线观看 | 欧美日韩在线观看h| 欧美中文日本在线观看视频| 亚洲精品日韩av片在线观看| 亚洲七黄色美女视频| 少妇人妻精品综合一区二区 | 日韩在线高清观看一区二区三区| 嫩草影院精品99| 久久久久久久久久成人| 岛国在线免费视频观看| 精品人妻一区二区三区麻豆 | 日日干狠狠操夜夜爽| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲av嫩草精品影院| 国产老妇女一区| 亚洲最大成人手机在线| 夜夜看夜夜爽夜夜摸| 成人性生交大片免费视频hd| 不卡一级毛片| 可以在线观看的亚洲视频| 久久精品人妻少妇| 少妇人妻精品综合一区二区 | av福利片在线观看| 97热精品久久久久久| 国产老妇女一区| 日本免费a在线| 久久久久国产网址| 午夜福利在线观看吧| 国产老妇女一区| 男插女下体视频免费在线播放| 亚洲欧美精品自产自拍| 精品一区二区三区视频在线| 日韩一本色道免费dvd| 午夜激情欧美在线| 国产一区二区三区av在线 | 久久久久精品国产欧美久久久| 亚洲一级一片aⅴ在线观看| 亚洲av成人精品一区久久| 女生性感内裤真人,穿戴方法视频| 天堂av国产一区二区熟女人妻| 欧美一区二区国产精品久久精品| 亚洲精华国产精华液的使用体验 | 久久6这里有精品| 亚洲精品一卡2卡三卡4卡5卡| 亚洲va在线va天堂va国产| 日本成人三级电影网站| 国产精品嫩草影院av在线观看| 欧美一区二区精品小视频在线| 三级毛片av免费| 亚洲精品一区av在线观看| 蜜桃亚洲精品一区二区三区| 色噜噜av男人的天堂激情| 精品人妻一区二区三区麻豆 | 好男人在线观看高清免费视频| 在线观看av片永久免费下载| 夜夜夜夜夜久久久久| 少妇丰满av| 99热这里只有是精品50| 一级毛片电影观看 | 男女边吃奶边做爰视频| 少妇的逼水好多| 亚洲七黄色美女视频| 在线观看免费视频日本深夜| 国产真实乱freesex| av中文乱码字幕在线| aaaaa片日本免费| 色噜噜av男人的天堂激情| 久久久久精品国产欧美久久久| 99在线人妻在线中文字幕| 日韩成人伦理影院| 91在线精品国自产拍蜜月| 国产亚洲精品久久久久久毛片| 国产成人aa在线观看| 美女免费视频网站|