摘 要:針對(duì)雷達(dá)型對(duì)空導(dǎo)彈在攔截超低空目標(biāo)時(shí),雷達(dá)導(dǎo)引頭俯視探測目標(biāo),受多徑效應(yīng)影響嚴(yán)重,會(huì)降低跟蹤精度的問題,將雷達(dá)擦地角控制在布儒斯特角附近,以減少海雜波干擾,使海雜波強(qiáng)度最小,提高制導(dǎo)精度。本文通過構(gòu)造海雜波模型,利用分段設(shè)計(jì)的彈道設(shè)計(jì)方法,對(duì)彈道中五個(gè)關(guān)鍵制導(dǎo)段進(jìn)行制導(dǎo)方法研究與分析,綜合設(shè)計(jì)出一種雷達(dá)型對(duì)空導(dǎo)彈攔截超低空目標(biāo)的特種彈道方案,并進(jìn)行了仿真驗(yàn)證。仿真結(jié)果表明,研究設(shè)計(jì)的彈道性能良好,可以有效降低海雜波干擾,滿足高截獲、高制導(dǎo)精度和高摧敵的總體要求。相比常規(guī)彈道,最佳布角彈道下脫靶量均值最多減小了近50%,命中概率最多提高了近20%,制導(dǎo)精度得到大幅度提升。
關(guān)鍵詞:對(duì)空導(dǎo)彈; 超低空目標(biāo); 海雜波; 布儒斯特角; 制導(dǎo)律; 彈道設(shè)計(jì); 制導(dǎo)精度
中圖分類號(hào):TJ765; V249
文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào):1673-5048(2023)05-0033-09
DOI: 10.12132/ISSN.1673-5048.2022.0176
0 引" 言
現(xiàn)代超低空突防武器如各種飛航導(dǎo)彈、戰(zhàn)斗機(jī)以及軍用無人機(jī)已成為更具威脅的武器,其具有雷達(dá)散射截面積小和不易被發(fā)現(xiàn)的特點(diǎn),依靠掠海超低空飛行,結(jié)合地球曲率以及海面的起伏來躲避雷達(dá)的直接探測,同時(shí)借助目標(biāo)與海面環(huán)境多次耦合所產(chǎn)生的多徑效應(yīng)與鏡面干擾,以隱藏自身的回波信號(hào)和誤導(dǎo)雷達(dá)探測信號(hào),躲避防空武器的探測,是現(xiàn)代防空體系面臨的主要威脅之一[1]。
通過研究分析導(dǎo)彈制導(dǎo)方式,完善彈道設(shè)計(jì),可以一定程度上減少導(dǎo)引頭的雜波干擾,采取布儒斯特角彈道攻擊目標(biāo),能夠盡可能減小海面的雜波反射強(qiáng)度,從而降低鏡像目標(biāo)帶來的影響。在彈道整體設(shè)計(jì)方面,文獻(xiàn)[2]針對(duì)中距空空導(dǎo)彈發(fā)射后不管的控制需求,對(duì)攔截目標(biāo)的彈道進(jìn)行了優(yōu)化設(shè)計(jì); 在進(jìn)行彈道規(guī)劃時(shí)主要分析了末段的制導(dǎo)控制要求,并給出實(shí)現(xiàn)途徑,但缺乏仿真驗(yàn)證。文獻(xiàn)[3]針對(duì)導(dǎo)彈在攔截超低空目標(biāo)時(shí)面臨的多路徑效應(yīng)問題,通過建立超低空目標(biāo)運(yùn)動(dòng)模型,設(shè)計(jì)出一種防空導(dǎo)彈攔截目標(biāo)的總體彈道方案,并對(duì)彈道特性進(jìn)行參數(shù)優(yōu)化與分析。仿真結(jié)果表明,所設(shè)計(jì)出的彈道較為平直且滿足要求,其彈道設(shè)計(jì)角度對(duì)對(duì)空導(dǎo)彈有一定借鑒作用,但忽略了各制導(dǎo)段交接問題,過載突變問題明顯。
本文以雷達(dá)型對(duì)空導(dǎo)彈為設(shè)計(jì)對(duì)象,考慮到常規(guī)彈道對(duì)超低空突防目標(biāo)攻擊效果不佳,在全面考慮彈道全過程的基礎(chǔ)上,有針對(duì)性地提出一種特種彈道,對(duì)各制導(dǎo)段進(jìn)行制導(dǎo)方法研究。重點(diǎn)在末制導(dǎo)段設(shè)計(jì)可自適應(yīng)攻擊角度的彈道方案,并滿足全彈道要求,同時(shí)根據(jù)地面環(huán)境的不同選取三種不同的約束角度,對(duì)彈道進(jìn)行仿真驗(yàn)證。
1 海雜波影響與超低空目標(biāo)攔截模型
1.1 海雜波影響
雷達(dá)型對(duì)空導(dǎo)彈在對(duì)超低空目標(biāo)進(jìn)行探測時(shí),導(dǎo)引頭視場中不但有目標(biāo),還有鏡像。以海面環(huán)境為背景的戰(zhàn)場環(huán)境不同于自由空間,自由空間中的主要散射回波是目標(biāo)散射,而在海面環(huán)境下,電磁散射回波是目標(biāo)散射回波、鏡面反射和漫反射以及海面散射回波的耦合,導(dǎo)致目標(biāo)散射回波有時(shí)完全淹沒在雜波信號(hào)中而無法探測,有時(shí)甚至近于對(duì)消," 從而產(chǎn)生對(duì)目標(biāo)的“漏探”和“漏跟”現(xiàn)象。海面散射形成的海雜波會(huì)造成大面積的雜波反射區(qū)域,從而影響導(dǎo)引頭對(duì)弱信號(hào)目標(biāo)的正常跟蹤與截獲,并產(chǎn)生跟蹤目標(biāo)的失調(diào)角誤差; 鏡面反射會(huì)形成鏡像目標(biāo),特別是處于迎頭攻擊態(tài)勢時(shí),使得導(dǎo)引頭跟蹤鏡像目標(biāo)或跟蹤真實(shí)目標(biāo)與鏡像的合成相位中心, 造成角跟蹤誤差,當(dāng)導(dǎo)彈距離低空迎頭目標(biāo)越來越近時(shí),角閃爍效應(yīng)會(huì)造成雷達(dá)跟隨角的劇烈抖動(dòng),影響角度測量精度,造成脫靶[4]。
針對(duì)上述海雜波的影響,引入了布儒斯特角的概念,其在光學(xué)領(lǐng)域中定義為當(dāng)反射光為線偏振光的最佳入射角,而在對(duì)空導(dǎo)彈雷達(dá)導(dǎo)引頭中,其定義為雷達(dá)導(dǎo)引頭俯視探測超低空目標(biāo)時(shí),雜波干擾強(qiáng)度最小的雷達(dá)擦地角或其范圍。在海面環(huán)境下,雜波反射強(qiáng)度隨擦地角的變化規(guī)律如圖1所示,存在一個(gè)雜波反射強(qiáng)度最小的角度,即為布儒斯特角。如果導(dǎo)彈按該角度跟蹤攔截目標(biāo),可最大限度弱化雜波干擾,保證制導(dǎo)精度[5-7]。
由于信號(hào)在雷達(dá)與目標(biāo)間是雙向傳播的,多徑效應(yīng)下目標(biāo)回波一共有4條傳播路徑,如圖2所示,分別為ATTA,ATT*A,AT*TA和AT*TT*A,T′為等效的目標(biāo)鏡像[8-9]。
一般情況下,海面可以看作半導(dǎo)電媒質(zhì),而海雜波正是雷達(dá)天線所發(fā)射的探測波束經(jīng)海面散射而形成的與目標(biāo)回波處于相同分辨單元的干擾回波。大量數(shù)據(jù)表明,海雜波符合一些特定的概率分布,其中,K分布來描述海雜波較為接近實(shí)際數(shù)據(jù),其概率密度函數(shù)表達(dá)式為
f(x)=2σΓ(v)x2σvKv-1xσ, x≥0(1)
式中: vgt;0表征概率分布的形狀變化; σgt;0表征概率分布的尺度變化; Γ(·)表示伽馬函數(shù); Kv-1(·)表示v-1階修正第二類貝塞爾函數(shù)。通過調(diào)整v和σ可改變K分布的幅度分布。接著利用球不變隨機(jī)過程法(SIRP法),對(duì)獨(dú)立高斯隨機(jī)序列進(jìn)行調(diào)制,即可得到K分布下的海雜波隨機(jī)序列,如圖3所示[10-11]。
綜上,雷達(dá)探測處于不同高度的超低空掠海目標(biāo)時(shí),由于鏡像多徑效應(yīng),測量數(shù)據(jù)會(huì)有不同程度的向下拉偏,且高度越高拉偏越明顯; 同時(shí)由于海雜波存在,隨擦地角變化,其噪聲強(qiáng)度也會(huì)相應(yīng)變化,以上因素共同造成導(dǎo)引頭對(duì)目標(biāo)位置測量誤差。因此,考慮將海雜波干擾模型加在目標(biāo)位置處,模擬導(dǎo)引頭受到的影響進(jìn)行仿真分析。
1.2 視線角和擦地角的近似分析
根據(jù)上述海雜波對(duì)探測低空目標(biāo)造成的影響,在設(shè)計(jì)相應(yīng)的攔截彈道時(shí),必定會(huì)涉及角度約束。依據(jù)雷達(dá)導(dǎo)引頭的相關(guān)定義,雷達(dá)探測主波束與水平面的夾角稱為擦地角或入射角余角,雜波干擾與該角度的相關(guān)性較大。因此,在雷達(dá)探測和跟蹤目標(biāo)的階段,要保證擦地角約束在布儒斯特角附近,以此來減少雜波干擾,提高制導(dǎo)精度[12]。
在實(shí)際飛行中,導(dǎo)彈很難實(shí)時(shí)精確測量擦地角,并且從設(shè)計(jì)導(dǎo)引律的角度來看,實(shí)時(shí)測量彈目視線的視線角更易實(shí)現(xiàn)。因此,導(dǎo)彈模型中考慮導(dǎo)引頭探測系和彈體系對(duì)信息處理時(shí)的運(yùn)算不同,可對(duì)比其視線角與擦地角。以導(dǎo)彈初始高度12 000 m,初始飛行馬赫數(shù)1.5,目標(biāo)高度100 m,飛行馬赫數(shù)1,迎頭攻擊,彈目初始距離分別為20 km,40 km和60 km為例,仿真擦地角與彈目視線角變化曲線,如圖4所示。不同目標(biāo)距離下的視線角與擦地角最大誤差如表1所示。
從仿真結(jié)果和表1可以看出,攔截超低空目標(biāo)時(shí),當(dāng)距目標(biāo)較遠(yuǎn)時(shí),雷達(dá)擦地角和彈目視線角的差異較??; 隨著距目標(biāo)越近,兩者之間的差異會(huì)略有增大??傮w上看,兩個(gè)角度間有一定的誤差存在,但對(duì)計(jì)算雜波強(qiáng)度時(shí)的影響并不明顯。因此,對(duì)制導(dǎo)律進(jìn)行研究分析時(shí),可針對(duì)較易獲取的視線角進(jìn)行修正,將其約束在布儒斯特角附近,同樣可以達(dá)到抗雜波的效果。
1.3 超低空目標(biāo)攔截模型
下面建立超低空目標(biāo)攔截模型。針對(duì)超低空目標(biāo),雷達(dá)導(dǎo)引頭的視角一定是向下由高空對(duì)目標(biāo)進(jìn)行俯沖攻擊,可以增大探測的范圍,增強(qiáng)對(duì)目標(biāo)的搜索和跟蹤能力。假設(shè)在飛行過程中彈體不發(fā)生滾轉(zhuǎn),并且根據(jù)低空目標(biāo)的特點(diǎn),為了方便分析只在縱向平面進(jìn)行研究。對(duì)超低空目標(biāo)攔截的彈目相對(duì)運(yùn)動(dòng)如圖5所示,圖中,M為導(dǎo)彈,T為目標(biāo),以Ay方向?yàn)檎?,VM為導(dǎo)彈的速度,θM為導(dǎo)彈彈道傾角,VT為目標(biāo)的速度,θT為目標(biāo)的航跡傾角,ηM和ηT分別為導(dǎo)彈速度和目標(biāo)速度與彈目視線的夾角,R為彈目距離,qA為導(dǎo)彈和目標(biāo)之間的視線角,Q為0~180°,Q=180°為迎頭,按照導(dǎo)彈飛行力學(xué),所有角度沿逆時(shí)針旋轉(zhuǎn)為正,順時(shí)針為負(fù)[13]。
2.5 彈目交會(huì)段制導(dǎo)方法
彈目交會(huì)段也稱遭遇段或遇靶段,是導(dǎo)彈十分接近目標(biāo)時(shí)的飛行段。由于導(dǎo)彈引信裝置在接近目標(biāo)時(shí)才啟動(dòng)工作,其探測裝置與導(dǎo)引頭的安裝位置不同,引信在探測低空目標(biāo)時(shí)同樣會(huì)受到海面的雜波影響,如果此時(shí)仍以原來的布儒斯特角攻擊目標(biāo),雜波仍會(huì)對(duì)引信和戰(zhàn)斗部的配合造成一定影響。在彈目交會(huì)時(shí),會(huì)考慮適當(dāng)調(diào)整交會(huì)角,改變交會(huì)狀態(tài),從而提高命中概率和殺傷效果。因此,該階段采用一種帶過重力補(bǔ)償?shù)臄U(kuò)展比例導(dǎo)引律[21],適當(dāng)改變對(duì)目標(biāo)攻擊時(shí)的交會(huì)角,提高殺傷效果。
帶重力補(bǔ)償?shù)臄U(kuò)展比例制導(dǎo)律為
AM=NR·q·A+cg(19)
式中: N為比例導(dǎo)引系數(shù); c為重力補(bǔ)償系數(shù),若c=1為正常重力補(bǔ)償,若cgt;1則為過重力補(bǔ)償。
3 彈道仿真
3.1 末制導(dǎo)段彈道仿真
仿真驗(yàn)證該制導(dǎo)律的控制效果,以海面超低空飛行目標(biāo)為例,仿真條件如表2所示。
仿真結(jié)果如圖8~11所示。
從仿真結(jié)果可以看出,設(shè)定導(dǎo)彈進(jìn)入末制導(dǎo)段時(shí)的高度不同,即初始狀態(tài)不同,控制效果也有所不同,但總可以在有限時(shí)間內(nèi)將視線角約束到期望角度,且將視線角速度收斂到零,所需收斂時(shí)間較短,具有很好的適應(yīng)能力; 同時(shí),整個(gè)過程的需用過載在-10g~+6g之間,在制導(dǎo)律作用初期過載較大,但整體符合導(dǎo)彈的過載要求,而且導(dǎo)彈較為平直,可保證制導(dǎo)精度。
3.2 中末制導(dǎo)交接段彈道仿真
選取以彈目距離為參數(shù)的自適應(yīng)交接律,通過仿真分析其性能以及過渡效果,仿真條件如表3所示。
用AHGL表示該自適應(yīng)交接制導(dǎo)律,仿真結(jié)果如圖12~15所示。
由圖12可知,加入自適應(yīng)交接制導(dǎo)律后,在中末制導(dǎo)段交接處的彈道明顯平整光滑很多;" 由圖13可知, 未加入交接律時(shí)交接段的過載變化幅度十分劇烈,這會(huì)對(duì)彈體的結(jié)構(gòu)造成很大的影響,而加入交接制導(dǎo)律后,過載變化明顯得到很大的改善; 由圖14~15可知,加入交接制導(dǎo)律后對(duì)于視線角的收斂效果有了很大的提升,同時(shí),由于中、末制導(dǎo)段進(jìn)行制導(dǎo)律變換時(shí),會(huì)對(duì)已形成的角度約束帶來一定影響,而加入交接段制導(dǎo)律后明顯減弱了這種影響,使得收斂時(shí)間減少且視線角速度的變化平緩許多; 對(duì)于中末交接段啟動(dòng)時(shí)機(jī)和持續(xù)時(shí)間可通過彈目距離在具體情況下確定。
3.3 全彈道仿真驗(yàn)證
按照上述設(shè)計(jì)的初制導(dǎo)段、 中制導(dǎo)段、 中末交接制導(dǎo)段、末制導(dǎo)段以及彈目交會(huì)段的制導(dǎo)方案,對(duì)導(dǎo)彈整個(gè)飛行過程進(jìn)行仿真,并與常規(guī)彈道進(jìn)行對(duì)比分析。
仿真條件如表4所示,布角彈道中各制導(dǎo)段設(shè)置: 初制導(dǎo)段調(diào)整時(shí)間為0.8 s,爬升角為20°,進(jìn)入中制導(dǎo)段,當(dāng)彈目距離為30 km時(shí),進(jìn)入中末交接段(考慮到主動(dòng)雷達(dá)導(dǎo)引頭探測距離在25 km左右,在導(dǎo)引頭截獲目標(biāo)前進(jìn)入末制導(dǎo)段),交接段長度為5 km,然后轉(zhuǎn)入末制導(dǎo)段,將視線角收斂且穩(wěn)定在期望角度,最后在彈目距離1~2 km左右,進(jìn)入彈目交會(huì)段,達(dá)到精準(zhǔn)殺傷目標(biāo)的效果; 常規(guī)彈道中,初制導(dǎo)段和彈目交會(huì)段與布角彈道設(shè)計(jì)一致,其余均為比例導(dǎo)引律,進(jìn)行仿真對(duì)比。
根據(jù)不同環(huán)境,分別對(duì)-10°,-20°和-30°三個(gè)代表性的布儒斯特角進(jìn)行仿真,同時(shí),根據(jù)目標(biāo)信息,對(duì)應(yīng)雜波強(qiáng)度變化規(guī)律,在目標(biāo)位置注入指定參數(shù)下的海雜波模型,目標(biāo)高度變化情況如圖16所示。
(1) 仿真結(jié)果 1
仿真條件1下的仿真結(jié)果如圖17~21所示。
由圖17可知,導(dǎo)彈發(fā)射后,經(jīng)初制導(dǎo)段爬升、中段制導(dǎo)及末段精確的角度約束下,最后成功攔截到目標(biāo)。整個(gè)彈道設(shè)計(jì)中盡管涉及到多種制導(dǎo)律,且在不同的布儒斯特角設(shè)定條件下,最終得到的彈道都較為平直,說明各制導(dǎo)律之間能夠協(xié)調(diào)配合,并且有著良好的適應(yīng)性。
由圖18~19可知,初制導(dǎo)后,導(dǎo)彈視線角可在中制導(dǎo)段快速向末制導(dǎo)要求的期望布角附近靠近,期望角度越小需要的收斂時(shí)間越短,在末制導(dǎo)段能夠很快穩(wěn)定在該角度保持不變; 同時(shí),視線角速率變化也趨于零,滿足設(shè)計(jì)要求,并且在彈目交會(huì)段視線角會(huì)發(fā)生5°左右的變化,改善交會(huì)條件,提高殺傷效果。由圖20可知,在大的期望角度下,過載需求會(huì)變大,但整體都在導(dǎo)彈的一般可用過載區(qū)間內(nèi); 同時(shí),考慮了中末交接段的制導(dǎo)律,使得過載變化也較為平滑,保證了彈體的穩(wěn)定性。由圖21可知,不同約束角下,導(dǎo)彈所需攻擊時(shí)間也會(huì)有所不同。
通過批量仿真驗(yàn)證,常規(guī)彈道與-10°布角彈道的脫靶量散布如圖22所示,脫靶量均值以及小脫靶量要求下的命中概率如表5所示。由于條件1下的常規(guī)彈道介于-20°和-30°布角彈道之間,這兩種布角彈道對(duì)常規(guī)彈道提升不是很明顯,但在-10°布角彈道下,雜波強(qiáng)度被控制在最小值附近,
脫靶量均值由3.78 m減小至1.69 m,命中概率由78.8%提升至97.7%, 制導(dǎo)精度得到大幅度提高,這說明布角彈道在適當(dāng)?shù)牟既逅固亟窃O(shè)定下能夠有效抑制海雜波影響。
(2)" 仿真結(jié)果2
仿真條件2下的仿真結(jié)果如圖23~27所示。
仿真條件2主要考慮了巡航導(dǎo)彈低空巡航轉(zhuǎn)超低空突防的戰(zhàn)術(shù)方式。當(dāng)巡航導(dǎo)彈檢測到雷達(dá)探測波束,進(jìn)行第一階段降高機(jī)動(dòng),增加探測難度; 當(dāng)距離目標(biāo)較近時(shí),進(jìn)一步降低飛行高度,增強(qiáng)突防效果。根據(jù)仿真結(jié)果可以看出,彈道整體性能較好,目標(biāo)機(jī)動(dòng)對(duì)其影響較小,視線角的控制效果良好。目標(biāo)第一段機(jī)動(dòng)發(fā)生在導(dǎo)彈截獲段,過載會(huì)發(fā)生小幅度的增加,但依舊能保證中、末制導(dǎo)律交接和視線角快速收斂; 目標(biāo)第二段機(jī)動(dòng)在導(dǎo)彈跟蹤段,過載有小幅度的震蕩,同時(shí)視線角和視線角速度也發(fā)生了一定變化,但在短時(shí)間內(nèi)重新收斂到穩(wěn)定值,驗(yàn)證了末段制導(dǎo)律的抗干擾性能。
4 結(jié) 束 語
本文討論了雷達(dá)型對(duì)空導(dǎo)彈對(duì)超低空目標(biāo)攔截的問題。考慮到截獲跟蹤過程中出現(xiàn)的海雜波及鏡像干擾,確定了三種不同的布儒斯特角,對(duì)整個(gè)攔截彈道進(jìn)行了制導(dǎo)方法研究。在總體規(guī)劃時(shí)運(yùn)用了彈道分段設(shè)計(jì)方法,對(duì)初制導(dǎo)段、中制導(dǎo)段和彈目交會(huì)段的控制方法進(jìn)行了說明,重點(diǎn)研究了中末交接段和末制導(dǎo)段,并分別進(jìn)行了仿真驗(yàn)證。一方面考慮到雷達(dá)型對(duì)空導(dǎo)彈自身結(jié)構(gòu)、飛行任務(wù)(目標(biāo)特性)以及作戰(zhàn)目的的特殊性; 另一方面改善現(xiàn)有的彈道設(shè)計(jì)方法,研究出新型有效、可靠的彈道,并最終針對(duì)性地設(shè)計(jì)出一種導(dǎo)彈從發(fā)射到命中目標(biāo)的特種彈道,各階段的制導(dǎo)律也滿足飛行要求。其中,在末制導(dǎo)段將視線角約束在期望布儒斯特角,可以減少海雜波干擾。對(duì)全彈道的仿真驗(yàn)證結(jié)果表明,所設(shè)計(jì)的彈道較為平直,各項(xiàng)性能指標(biāo)滿足設(shè)計(jì)要求,制導(dǎo)精度較高,對(duì)于彈道整體設(shè)計(jì)有一定的借鑒作用與工程實(shí)際意義。
參考文獻(xiàn):
[1] 周豪," 胡國平," 師俊朋. 低空目標(biāo)探測技術(shù)分析與展望[J]. 火力與指揮控制," 2015," 40(11): 5-9.
Zhou Hao," Hu Guoping," Shi Junpeng. Analysis and Prospect of Low-Altitude Target Detection Technologies[J]. Fire Control & Command Control," 2015," 40(11): 5-9.(in Chinese)
[2] 靳凌. 中遠(yuǎn)距空空導(dǎo)彈彈道總體規(guī)劃[J]. 四川兵工學(xué)報(bào)," 2013," 34(5): 38-39.
Jin Ling. Trajectory Planning of Middle-Long-Range Air-to-Air Missile[J]. Journal of Sichuan Ordnance," 2013," 34(5): 38-39.(in Chinese)
[3] 馬新鵬," 李旭昌," 吳達(dá)," 等. 反超低空突防的全程彈道設(shè)計(jì)優(yōu)化研究[J]. 彈箭與制導(dǎo)學(xué)報(bào)," 2019," 39(5): 166-171.
Ma Xinpeng," Li Xuchang," Wu Da," et al. Research on the Whole Trajectory Design and Optimization of Missile Againstthe Penetration of the Super-Low-Altitude Target[J]. Journal of Projectiles," Rockets," Missiles and Guidance," 2019," 39(5): 166-171.(in Chinese)
[4] 樊會(huì)濤. 空空導(dǎo)彈方案設(shè)計(jì)原理[M]. 北京: 航空工業(yè)出版社," 2013.
Fan Huitao. Air-to-Air Missile Conceptual Design[M]. Beijing: Aviation Industry Press," 2013.(in Chinese)
[5] Liu Y," Jiu B," Xia X G," et al. Height Measurement of Low-Angle Target Using MIMO Radar under Multipath Interference[J]. IEEE Transactions on Aerospace and Electronic Systems," 2018," 54(2): 808-818.
[6] 周豪," 胡國平," 匡旭斌," 等. 低空多徑環(huán)境下雷達(dá)目標(biāo)檢測性能研究[J]. 現(xiàn)代雷達(dá)," 2017," 39(2): 33-38.
Zhou Hao," Hu Guoping," Kuang Xubin," et al. A Study on the Target Detection Performance of Radar in Low-Altitude Multipath Environment[J]. Modern Radar," 2017," 39(2): 33-38.(in Chinese)
[7] Pedenko Y A. Using of the Music Algorithm to Elevation Angle Measurement of Low-Altitude Targets over Rough Sea Surface[J]. Telecommunications and Radio Engineering," 2011," 70(12): 1027-1036.
[8] Rosenberg L," Watts S. Radar Sea Clutter: Modelling and Target Detection[M]. London: The Institution of Engineering and Technology," 2021.
[9] 張放," 何憲鋒. 多路徑干擾條件下主動(dòng)雷達(dá)空空導(dǎo)彈對(duì)目標(biāo)攻擊能力分析及仿真[J]. 航空兵器," 2020," 27(2): 59-63.
Zhang Fang," He Xianfeng. Analysis and Simulation of Target Attack Capability of Active Radar Air-to-Air Missile under Multi-Path Jamming[J]. Aero Weaponry," 2020," 27(2): 59-63.(in Chinese)
[10] 馬井軍," 馬維軍," 趙明波," 等. 低空/超低空突防及其雷達(dá)對(duì)抗措施[J]. 國防科技," 2011 (3): 26-35.
Ma Jingjun," Ma Weijun," Zhao Mingbo," et al. Low Altitude/Very Low Altitude Penetration and Radar Countermeasures[J]. National Defense Science & Technology," 2011 (3): 26-35.(in Chinese)
[11] Wang R," Li X Y," Zhang Z L," et al. Modeling and Simulation Methods of Sea Clutter Based on Measured Data[J]. International Journal of Modeling," Simulation," and Scientific Computing," 2021," 12(1): 2050068.
[12] Li N, "Cui G L," Kong L J," et al. Moving Target Detection for Polarimetric Multiple-Input Multiple-Output Radar in Gaussian Clutter[J]. IET Radar," Sonar amp; Navigation," 2015," 9(3): 285-298.
[13] 李新國,方群.有翼導(dǎo)彈飛行動(dòng)力學(xué)[M].西安: 西北工業(yè)大學(xué)出版社,2004.
Li Xinguo," Fang Qun. Flight Dynamics of Winged Missiles[M]. Xi’an: Northwestern Polytechnical University Press," 2004. (in Chinese)
[14] 趙華超. 空空導(dǎo)彈研制階段總體設(shè)計(jì)數(shù)學(xué)模型的建立[J]. 戰(zhàn)術(shù)導(dǎo)彈技術(shù)," 2001(2): 21-28.
Zhao Huachao. Construction of Overall Design Mathematical Mo-del on Air to Air Missile Development Stage[J]. Tactical Missile Technology," 2001(2): 21-28.(in Chinese)
[15] 付主木," 曹晶," 張金鵬," 等. 帶落角和落點(diǎn)約束的空地導(dǎo)彈最優(yōu)制導(dǎo)律設(shè)計(jì)[J]. 航空兵器," 2014 (1): 3-6.
Fu Zhumu," Cao Jing," Zhang Jinpeng," et al. Design of Optimal Guidance Law with Impact Angle and Final Position Constraints for Air-to-Ground Missile[J]. Aero Weaponry," 2014 (1): 3-6.(in Chinese)
[16] 陳洪波," 張龍. 具有末端攻擊角度約束的新型末制導(dǎo)研究[J]. 戰(zhàn)術(shù)導(dǎo)彈技術(shù)," 2014(4): 68-74.
Chen Hongbo," Zhang Long. New Terminal Guidance Method with Terminal Impact Angle Constraint[J]. Tactical Missile Technology," 2014(4): 68-74.(in Chinese)
[17] 張濤," 李炯," 葉繼坤," 等. 基于布魯斯特角約束的超低空目標(biāo)攔截變結(jié)構(gòu)導(dǎo)引律[J]. 火力與指揮控制," 2019," 44(5): 66-69.
Zhang Tao," Li Jiong," Ye Jikun," et al. Sliding Mode Guidance Law with Restraint of Brewster Angle for Low Altitude Target Interception[J]. Fire Control & Command Control," 2019," 44(5): 66-69.(in Chinese)
[18] Wang H Q," Cao D Q," Wang X D. The Stochastic Sliding Mode Variable Structure Guidance Laws Based on Optimal Control Theory[J]. Journal of Control Theory and Applications," 2013," 11(1): 86-91.
[19] 王延. 近距空空導(dǎo)彈中末制導(dǎo)交接班策略研究[D]. 西安: 西北工業(yè)大學(xué)," 2006.
Wang Yan. Research on the Short Range Air-to-Air Missile Hand-ing-off Method between Midcourse and Terminal Guidance[D]. Xi’an: Northwestern Polytechnical University," 2006. (in Chinese)
[20] 劉鈞圣," 陳士超," 陳韻," 等. 一種適用于復(fù)合制導(dǎo)的中末制導(dǎo)彈道交接班方法[J]. 戰(zhàn)術(shù)導(dǎo)彈技術(shù)," 2020(2): 51-56.
Liu Junsheng," Chen Shichao," Chen Yun," et al. A Midcourse and Terminal Trajectory Handover Method Suitable for Composite Guidance Missiles[J]. Tactical Missile Technology," 2020(2): 51-56.(in Chinese)
[21] 林德福," 祁載康," 夏群力. 帶過重力補(bǔ)償?shù)谋壤龑?dǎo)引制導(dǎo)律參數(shù)設(shè)計(jì)與辨識(shí)[J]. 系統(tǒng)仿真學(xué)報(bào)," 2006(10): 2753-2756.
Lin Defu," Qi Zaikang," Xia Qunli. Design and Identification on Parameters of Proportional Navigation Guidance Law with Gravity over Compensation[J]. Journal of System Simulation," 2006(10): 2753-2756.(in Chinese)
Research on the Guidance Method of Radar-Type
Anti-Aircraft Missile against Ultra-Low-Altitude Target
Suo Sibo*,Zhao Huachao
(China Airborne Missile Academy,Luoyang 471009," China)
Abstract: In view of the problem that radar-type anti-aircraft missiles are affected by the multipath effect when intercepting ultra-low-altitude targets," the radar seeker looks down to detect the target," which seriously reduces the tracking accuracy," and the method of controlling the radar grazing angle near the Brewster’s angle can reduce the interference of sea clutter," minimize the intensity of sea clutter," and improve the guidance accuracy. In this paper," by constructing the sea clutter model," using the ballistic design method of segmented design," the guidance method of five key guidance sections in the trajectory is studied and analyzed,a special ballistic scheme for radar-type anti-aircraft missiles to intercept ultra-low-altitude targets is comprehensively designed," and simulation is verified. The simulation results show that the ballistic performance is good," which can effectively reduce the interference of sea clutter," meet the overall requirements of high interception," high guidance accuracy and high enemy destruction.
Compared with conventional trajectory, the average miss distance under the optimal angle trajectory is reduced by up to 50%, and the hit probability is increased by up to 20%, resulting in a significant improvment in guidance accuracy.
Key words: anti-aircraft missile; ultra-low-altitude targets; sea clutter; Brewster’s angle; guidance law; ballistic design; guidance accuracy