摘 要:針對(duì)傳統(tǒng)人工提取特征進(jìn)行通信信號(hào)識(shí)別準(zhǔn)確率低的問題,本文在支持向量機(jī)(SVM)的基礎(chǔ)上,提出了一種基于信息幾何去噪的改進(jìn)SVM的識(shí)別方法。該方法通過Choi-Williams分布(CWD)時(shí)頻變換獲得不同通信信號(hào)的時(shí)頻圖像,然后利用能夠更加準(zhǔn)確衡量像素點(diǎn)之間差異性的測(cè)地線距離實(shí)現(xiàn)時(shí)頻圖像的去噪,進(jìn)而利用AlexNet卷積神經(jīng)網(wǎng)絡(luò)對(duì)時(shí)頻圖進(jìn)行特征提取,并基于信息幾何改進(jìn)的SVM對(duì)通信信號(hào)進(jìn)行分類,實(shí)現(xiàn)了有效分類識(shí)別。仿真結(jié)果表明,該方法在0 dB信噪比(SNR)下,識(shí)別率仍然能夠達(dá)到97%以上,除此之外,該方法在小樣本的情況下仍然有效。
關(guān)鍵詞:信息幾何; 圖像去噪; 通信信號(hào); 調(diào)制識(shí)別; 支持向量機(jī)(SVM); 測(cè)地線距離; AlexNet
中圖分類號(hào):TJ760
文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào):1673-5048(2023)05-0121-06
DOI: 10.12132/ISSN.1673-5048.2023.0003
0 引" 言
在導(dǎo)彈和電子戰(zhàn)的通信對(duì)抗中想要通過截獲敵方通信信號(hào)來(lái)獲取敵方情報(bào),調(diào)制識(shí)別技術(shù)是必不可少的。將信號(hào)處理問題通過時(shí)頻變換轉(zhuǎn)化為圖像處理問題是調(diào)制識(shí)別中常用的方法,但其高準(zhǔn)確性很大程度上依賴于時(shí)頻圖的預(yù)處理。
傳統(tǒng)的圖像去噪方法主要有空間域去噪和變換域去噪兩種??臻g域去噪的方法主要包括中值濾波[1]、均值濾波[2]、維納濾波[3]和雙邊濾波[4]等。隨著科研人員的不斷研究,越來(lái)越多的技術(shù)被應(yīng)用在圖像去噪中,如低秩聚類算法[5]、統(tǒng)計(jì)方法[6]和偏微分方程[7-8]等。變換域去噪中的小波變換[9]是最常用的方法。信息幾何是近幾年發(fā)展起來(lái)的一門新興學(xué)科,是以概率分布為研究對(duì)象,深入挖掘不同的概率分布內(nèi)部蘊(yùn)含的幾何信息。利用信息幾何的概念可以在保持圖像細(xì)節(jié)信息的基礎(chǔ)上提高算法的去噪能力。
近年來(lái),隨著機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的崛起,調(diào)制識(shí)別技術(shù)也進(jìn)入了智能發(fā)展的階段。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)在自動(dòng)特征提取方面有很好的性能。文獻(xiàn)[10]提出了一種基于短時(shí)傅里葉變換和CNN的一種識(shí)別系統(tǒng),獲得了良好的性能。但是傳統(tǒng)的CNN難以在小樣本和低信噪比的情況對(duì)信號(hào)進(jìn)行分類。而層數(shù)更深的AlexNet卷積神經(jīng)網(wǎng)絡(luò)能更多地挖掘圖像的特征,文獻(xiàn)[11]將AlexNet卷積神經(jīng)網(wǎng)絡(luò)應(yīng)用到調(diào)制識(shí)別中,證明了AlexNet的有效性。但神經(jīng)網(wǎng)絡(luò)往往需要大量的樣本來(lái)獲得高的識(shí)別精度,而支持向量機(jī)(SVM)為通信信號(hào)識(shí)別提供了一種有效的替代方法[12-13]。Schlkopf等提出了核映射中的幾何概念[14],并從核函數(shù)中導(dǎo)出了核映射的黎曼度量的具體形式,表明可以用信息幾何的方法構(gòu)造一個(gè)與數(shù)據(jù)相關(guān)的核函數(shù)。
基于上述結(jié)果,本文提出基于信息幾何去噪的改進(jìn)SVM的識(shí)別算法。在該算法中,基于信息幾何對(duì)信號(hào)的時(shí)頻圖進(jìn)行去噪處理,使用基于遷移學(xué)習(xí)的AlexNet對(duì)去噪后的圖像進(jìn)行特征提取,通過改進(jìn)的SVM對(duì)提取的特征進(jìn)行分類識(shí)別。
1 信號(hào)模型
基本的數(shù)字調(diào)制方式有多進(jìn)制頻移鍵控(MFSK)、
多進(jìn)制振幅鍵控(MASK)、多進(jìn)制相移鍵控(MPSK)和多進(jìn)制正交振幅調(diào)制(MQAM)。
MFSK,MASK,MPSK調(diào)制信號(hào)的時(shí)域表達(dá)式為
5.2 去噪前后對(duì)比實(shí)驗(yàn)
為了驗(yàn)證本文去噪算法的有效性,將基于信息幾何去噪的改進(jìn)SVM的分類網(wǎng)絡(luò)與基于均勻?yàn)V波和雙邊濾波的分類網(wǎng)絡(luò)進(jìn)行了對(duì)比。整體的識(shí)別準(zhǔn)確率隨信噪比的變化曲線如圖6所示。從圖6可以看出,三種去噪算法均可提高識(shí)別性能,除此之外,本文去噪算法的識(shí)別準(zhǔn)確率要高于均勻?yàn)V波和雙邊濾波的識(shí)別準(zhǔn)確率。
為了驗(yàn)證本文去噪算法對(duì)整體識(shí)別網(wǎng)絡(luò)的有效性,分別比較本文提出的改進(jìn)SVM分類網(wǎng)絡(luò)和傳統(tǒng)SVM的分類網(wǎng)絡(luò)、Peng等[21]提出的改進(jìn)AlexNet網(wǎng)絡(luò)去噪前后的識(shí)別準(zhǔn)確率。信噪比為-6~6 dB,步長(zhǎng)為2 dB。整體的識(shí)別準(zhǔn)確率隨信噪比的變化曲線如圖7所示。
從圖7中可以看出,本文去噪算法對(duì)不同網(wǎng)絡(luò)的識(shí)別性能均有一定的提升,驗(yàn)證了本文去噪算法對(duì)整體的識(shí)別網(wǎng)絡(luò)的有效性。除此之外,在6 dB信噪比下,本文算法的識(shí)別率高達(dá)98.92%。結(jié)果表明,該算法是一種有效的通信信號(hào)識(shí)別算法,對(duì)噪聲具有魯棒性。
5.3 小樣本實(shí)驗(yàn)
SVM模型對(duì)小樣本數(shù)據(jù)具有很強(qiáng)的分類能力,本文算法是基于信息幾何改進(jìn)的SVM,因此為了進(jìn)一步說(shuō)明該算法的魯棒性,對(duì)該算法在小樣本下的識(shí)別性能進(jìn)行了仿真。原始實(shí)驗(yàn)樣本數(shù)量由原來(lái)的每個(gè)信號(hào)200個(gè)減少到50個(gè),而訓(xùn)練和測(cè)試樣本的比例保持不變。在SNR為0 dB下的混淆矩陣如圖8所示。
在0 dB情況下,所有通信信號(hào)的識(shí)別準(zhǔn)確率都達(dá)到了85%以上。除此之外,4ASK,2FSK,4FSK和4PSK能夠準(zhǔn)確地被識(shí)別。此外,與圖4相比,由于訓(xùn)練樣本數(shù)量的減少,整體識(shí)別概率從97.5%下降到95.714%。
為了進(jìn)一步評(píng)估該算法中基于信息幾何去噪這一步驟的必要性,對(duì)去噪前和去噪后算法的識(shí)別準(zhǔn)確率進(jìn)行了對(duì)比,對(duì)比結(jié)果如圖9所示。
由圖9可知,去噪后的算法始終高于去噪前的算法,在各個(gè)信噪比下,提高了3%~4%左右,進(jìn)一步驗(yàn)證了該算法的有效性。
6 結(jié)" 論
本文針對(duì)通信信號(hào)的調(diào)制識(shí)別問題,結(jié)合信息幾何的相關(guān)知識(shí),提出一種基于信息幾何去噪的改進(jìn)SVM的識(shí)別算法。該算法首先采用CWD獲取通信信號(hào)的時(shí)頻圖,然后利用像素點(diǎn)之間的測(cè)地線距離進(jìn)行加權(quán)濾波從而對(duì)時(shí)頻圖完成去噪,再利用AlexNet提取信號(hào)的時(shí)頻特征,將特征輸入到基于信息幾何改進(jìn)的SVM中進(jìn)行調(diào)制類型識(shí)別。仿真結(jié)果表明,該算法具有較高的識(shí)別精度和魯棒性。
參考文獻(xiàn):
[1] 黃春艷," 張?jiān)迄i. 有效的圖像濾波算法[J]. 計(jì)算機(jī)工程與應(yīng)用," 2012," 48(23): 165-167.
Huang Chunyan," Zhang Yunpeng. Effective Noise Image Filter Algorithm[J]. Computer Engineering and Applications," 2012," 48(23): 165-167.(in Chinese)
[2] Gonzalez R C," Woods R E. Digital Image Processing[M]. 3rd ed. Upper Saddle River," NJ: Pearson/Prentice Hall," 2008.
[3] Kazubek M. Wavelet Domain Image Denoising by Thresholding and Wiener Filtering[J]. IEEE Signal Processing Letters," 2003," 10(11): 324-326.
[4] Zhang M," Gunturk B K. Multiresolution Bilateral Filtering for I-mage Denoising[J]. IEEE Transactions on Image Processing," 2008," 17(12): 2324-2333.
[5] Gu S H," Zhang L," Zuo W M,nbsp; et al. Weighted Nuclear Norm Minimization with Application to Image Denoising[C]∥ IEEE Conference on Computer Vision and Pattern Recognition," 2014: 2862-2869.
[6] Luisier F," Blu T," Unser M. Image Denoising in Mixed Poisson-Gaussian Noise[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society," 2011," 20(3): 696-708.
[7] Zhang X J . An Adaptive Fourth-Order Partial Differential Equation for Image Denoising[J]. Computers amp; Mathematics with Applications," 2017," 74(10): 2529-2545.
[8] 楊迎春. 基于偏微分方程的圖像去噪算法研究[D]. 太原: 中北大學(xué)," 2012.
Yang Yingchun. Research on Image Denoising Based on Partial Differential Equations[D]. Taiyuan: North University of China," 2012. (in Chinese)
[9] Goyal B," Agrawal S," Sohi B S," et al. Noise Reduction in MR Brain Image via Various Transform Domain Schemes[J]. Research Journal of Pharmacy and Technology," 2016," 9(7): 919.
[10] Jeong S," Lee U," Kim S C. Spectrogram-Based Automatic Modulation Recognition Using Convolutional Neural Network[C]∥10th International Conference on Ubiquitous and Future Networks (ICUFN)," 2018.
[11] 郭立民," 陳鑫," 陳濤. 基于AlexNet模型的雷達(dá)信號(hào)調(diào)制類型識(shí)別[J]. 吉林大學(xué)學(xué)報(bào): 工學(xué)版," 2019," 49(3): 1000-1008.
Guo Limin," Chen Xin," Chen Tao. Radar Signal Modulation Type Recognition Based on AlexNet Model[J]. Journal of Jilin University: Engineering and Technology Edition," 2019," 49(3): 1000-1008.(in Chinese)
[12] 李紅光," 郭英," 眭萍," 等. 基于時(shí)頻能量譜紋理特征的跳頻調(diào)制方式識(shí)別[J]. 通信學(xué)報(bào)," 2019," 40(10): 20-29.
Li Hongguang," Guo Ying," Sui Ping," et al. Frequency Hopping Modulation Recognition Based on Time-Frequency Energy Spectrum Texture Feature[J]. Journal on Communications," 2019," 40(10): 20-29.(in Chinese)
[13] Ke C X," Cheng W," Peng C X," et al. A Modulation Classification Method for Communication Signals Using TFA and Two-Stream Convolutional Networks[C]∥ IEEE 4th Advanced Information Management," Communicates," Electronic and Automation Control Conference (IMCEC)," 2021.
[14] Schlkopf B," Burges C J C," Smola A J. Advances in Kernel Methods: Support Vector Learning[M]. Cambridge: MIT Press," 1999.
[15] Costas J P. A Study of a Class of Detection Waveforms Having nearly Ideal Range-Doppler Ambiguity Properties[J]. Proceedings of the IEEE," 1984," 72(8): 996-1009.
[16] Amari S I. Information Geometry on Hierarchy of Probability Distributions[J]. IEEE Transactions on Information Theory," 2001," 47(5): 1701-1711.
[17] 趙興剛," 王首勇. 雷達(dá)目標(biāo)檢測(cè)的信息幾何方法[J]. 信號(hào)處理," 2015," 31(6): 631-637.
Zhao Xinggang," Wang Shouyong. Information Geometry Method to Radar Target Detection[J]. Journal of Signal Processing," 2015," 31(6): 631-637.(in Chinese)
[18] Krizhevsky A," Sutskever I," Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM," 2017," 60(6): 84-90.
[19] Vapnik V N," Chervonenkis A Y. A Class of Algorithms for Pattern Recognition Learning[J]. Avtomatka i Telemekhanika," 1964," 25(6): 937-945.
[20] Amari S," Wu S. Improving Support Vector Machine Classifiers by Modifying Kernel Functions[J]. Neural Networks," 1999," 12(6): 783-789.
[21] Peng S L," Jiang H Y," Wang H X," et al. Modulation Classification Based on Signal Constellation Diagrams and Deep Learning[J]. IEEE Transactions on Neural Networks and Learning Systems," 2019," 30(3): 718-727.
Improved SVM Communication Signal Recognition
Based on Information Geometry Denoising
Cheng Yuqing1,Guo Muran1*,Wang Leping2
(1. College of Information and Communication Engineering," Harbin Engineering University," Key Laboratory of
Advanced Marine Communication and Information Technology," Ministry of
Industry and Information Technology," Harbin 150001," China;
2. College of Communication Engineering, Army Engineering University of PLA," Nanjing 210000," China)
Abstract: Aiming the problem of low accuracy of communication signal recognition by traditional manual feature extraction," an improved SVM recognition method based on information geometry denoising is proposed exploiting the support vector machine (SVM). The proposed method obtains the time-frequency images of different communication signals through the Choi-Williams distribution (CWD) time-frequency transform," and uses the geometric ground distance to accurately measure the difference between pixels for denoising. Then," the AlexNet is used to extract features from the time-frequency maps. Finally," by using the improved SVM based on the information geometry," the classification of communication signal is made to achieve effective classification and recognition. The simulation results show that the recognition rate of the proposed method achieves more than 97% at 0 dB signal-to-noise ratio (SNR). In addition," the method is still effective in the case of small samples.
Key words:" information geometry; image denoising; communication signal; modulation identification; support vector machine(SVM); ground distance measurement; AlexNet