胡艷梅 李中平
摘 要:在齊次Neumann邊界條件下,本文考慮了一類(lèi)具有非線性產(chǎn)生和信號(hào)依賴(lài)的拋物-橢圓趨化模型,當(dāng)運(yùn)動(dòng)函數(shù)和模型中的參數(shù)滿(mǎn)足一定的條件時(shí),研究了該趨化模型解的全局有界性和漸近行為。首先通過(guò)運(yùn)用Lp估計(jì)、Youngs不等式、Hlder不等式等工具,在運(yùn)動(dòng)函數(shù)和模型中的參數(shù)滿(mǎn)足一些假設(shè)時(shí),得到趨化模型解的全局有界。然后通過(guò)構(gòu)造適當(dāng)?shù)腖yapunov函數(shù),在邏輯源系數(shù)適當(dāng)大時(shí),得到該趨化模型解的漸近行為。
關(guān)鍵詞:非線性;全局存在;有界;漸近行為;趨化
中圖分類(lèi)號(hào):O175.25 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1673-5072(2023)04-0365-08
細(xì)菌和微生物有趨利避害的天然本能,通常這種行為被描述為生物的趨化性。在某些微生物演化過(guò)程中,物質(zhì)的擴(kuò)散依賴(lài)于化學(xué)信號(hào)的強(qiáng)度,其演化過(guò)程可以描述為以下生物趨化模型:
參考文獻(xiàn):
[1] FUJIE K,JIANG J.Boundedness of classical solutions to a degenerate Keller-Segel type model with signal-dependent motilities[J].Acta Applicandae Mathematicae,2020,176(1):1-36.
[2] JIANG J.Boundedness and exponential stabilization in a parabolic-elliptic Keller-Segel model with signal-dependent motilities for local sensing chemotaxis[J].Acta Mathematica Scientia,2022,42B(3):825-846.
[3] WANG Z A.On the parabolic-elliptic Keller-Segel system with signal-dependent motilities:a paradigm for global boundedness and steady states[J].Mathematical Methods in the Applied Sciences,2020,44B(13):10881-10898.
[4] 夏鵬.一類(lèi)具有密度抑制運(yùn)動(dòng)效應(yīng)菌群模型的分支及其穩(wěn)定性[D].上海:上海交通大學(xué).2020.
[5] 孫傲霜.具有非線性信號(hào)產(chǎn)生機(jī)制的趨化模型研究[D].南充:西華師范大學(xué),2020.
[6] 張雨沛.密度抑制運(yùn)動(dòng)的細(xì)菌條紋模型的全局分岔和平衡狀態(tài)的穩(wěn)定性研究[D].上海:上海交通大學(xué),2017.
[7] KIM Y,YOON C.Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion[J].Acta Applicandae Mathematicae,2017,149(1):101-123.
[8] AHN J,YOON C.Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing[J].Nonlinearity,2019,32(4):1327-1351.
[9] JIANG J,LAURENOT P.Global existence and uniform boundedness in a chemotaxis model with signal-dependent motility[J].Journal of Differential Equations,2021:513-541.
[10]FUJIE K,JIANG J.Global existence for a kinetic model of pattern formation with density-suppressed motilities[J].Journal of Differential Equations,2020,269(6):5338-5378.
[11]BELLOMO N,BELLOUQUID A,TAO Y.Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues[J].Mathematical Models and Methods in Applied Sciences,2015,25(9):1663-1763.
[12]LI J,KE Y,WANG Y.Large time behavior of solutions to a fully parabolic attraction-repulsion chemotaxis system with logistic source[J].Nonlinear Analysis Real World Applications,2018:261-277.
[13]TAO Y,WINKLER M.Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity[J].Journal of Differential Equations,2012,252(1):692-715.
[14]BAI X,WINKLER M.Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics[J].Indiana University Mathematics Journal,2016,65(2):553-583.
[15]PORZIO M,VESPRI V.Hlder estimates for local solutions of some doubly nonlinear degenerate parabolic equations[J].Journal of Differential Equations,1993,103(1):146-178.
Solution to Chemotaxis Model with Nonlinear Generationand Signal Dependence
HU Yan-mei,LI Zhong-ping
(School of Mathematics & Information,China West Normal University,Nanchong Sichuan 637009,China)
Abstract:This paper considers a class of parabolic elliptic chemotaxis model with nonlinear generation and signal dependence under the homogeneous Neumann boundary condition.The global boundedness and asymptotic behavior of the solution to the chemotaxis model are studied in the case of satisfying certain conditions by the motility function and parameters in the model.First,when the assumptions of motility function and parameters are true,the global boundedness of the solution to the chemotactic model is obtained by Lpestimation,Youngs inequality,Hlder inequality and other tools.Then,when logical source coefficient is appropriately large,the asymptotic behavior of the solution to the chemotactic model is obtained by constructing an appropriate Lyapunov function.
Keywords:nonlinear;global existence;boundedness;asymptotic behavior;chemotaxis
收稿日期:2022-05-20 基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(11301419);西華師范大學(xué)科研創(chuàng)新團(tuán)隊(duì)項(xiàng)目(CXTD2020-5)
作者簡(jiǎn)介:胡艷梅(1995—),女,碩士研究生,主要從事偏微分方程研究。
通信作者:李中平(1980—),男,博士,教授,碩士生導(dǎo)師,主要從事偏微分方程研究。E-mail:30120683@qq.com
引文格式:胡艷梅,李中平.具有非線性產(chǎn)生和信號(hào)依賴(lài)的趨化模型解的研究[J].西華師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,44(4):365-372. [HU Y M,LI Z P.Solution to chemotaxis model with nonlinear generation and signal dependence[J].Journal of China West Normal University (Natural Sciences),2023,44(4):365-372.]