• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Higher Accuracy Shape-preserving Modeling Based on the Two-level Fitting Method

    2022-01-07 08:31:42YangDangfuLiuShengjun2LiuPingboLiuXinru

    Yang DangfuLiu Shengjun,2Liu PingboLiu Xinru,

    (1.School of Mathematics and Statistics,Central South University,Changsha410083,China?2.State Key Laboratory of High Performance Complex Manufacturing,Central South University,Changsha410083,China?3.College of Computer and Information Engineering,Central South University of Forestry and Technology,Changsha410004,China)

    Abstract Compactly supported radial basis function(CSRBF)has been widely used in surface modeling methods to interpolate or approximate the given data,which avoids solving a large dense linear system with a proper supported radius.The surfaces reconstructed by the CSRBF-based method usually are not shape preserving,while the multivariate multiquadric quasi-interpolation results the lower approximation accuracy.In this paper,we introduce a two-level fitting method to conduct the shape-preserving modelling with a higher accuracy.An initial shape-preserving model is constructed by using the lower accuracy quasi-interpolation,and then a CSRBF-based networks interpolation is performed to compensate the errors between the initial fitting model and the given data,then the higher accuracy shape-preserving model can be obtained.Moreover,we discuss the choice of the smoothing factor in quasi-interpolation and the supported radius in CSRBF-based networks,and an empirical formula between them is constructed.The numerical examples demonstrate the performance of our method.

    Key words Surface modeling Two-level fitting Multivariate multiquadric quasi-interpolation CSRBF-based networks Shape-preserving model

    1 Introduction

    The interpolation of functions from the given data is an important theme in many fields of science and engineering.However,we often have some additional requirements that we wish to confine to interpolation.For example,we know the quantity from which the data is sampled,is positive,monotonic or convex.Thus,it is important to construct a function which satisfies the underlying constraints.Many works have been done on the problem of shape preserving interpolation[1,2,3,4,5].They mainly used polynomial interpolation or spline interpolation with a certain continuity to solve it.

    Among the interpolation methods,there is an important class of methods—radial basis function-based interpolation.Radial basis function(RBF)is a relatively simple multivariate function generated by a univariate function.Due to its simple form and good approximation behavior,more and more researchers construct interpolation functions with them,and have obtained better results during the last two decades[6,7,8,9,10,11,12,13].However,there has been little work done on the imposition of constraints for these interpolation methods by using radial basis functions.For RBF,in the special case of thin-plate splines for2D data,reference[14]showed how positivity can be imposed as a constraint.Reference[15]discussed several meshless methods for constrained scattered data interpolation and applied them on3D data.For the Shepard interpolation,reference[16]discussed the modified quadratic Shepard method,which interpolates scattered data of any dimensionality,can be constrained to preserve positivity.Recently,Wu[17]presented an algorithm to construct a kind of so-called shape preserving interpolating function with the use of compactly supported RBF(CSRBF)and a class of multiquadric quasi-interpolation(MQ-QI)operators.But,his method is only for curve construction.

    In this paper,inspired from Wu’s idea[17],we will propose a method for shape preserving surface reconstruction from the given surface data.We first reconstruct an initial surface from the given points with a multivariate multiquadric(MMQ)quasi-interpolation operator,and then compensate the error between the initial surface and the given points with the CSRBF networks.In addition,to balance the efficiency and the accuracy,we provide a valid interval of the number of neighbors for RBF centers,and create a relationship between it and the smoothing factor in MMQ.

    The remainder of this paper is organized as follows.In Section2,we introduce the basis of our method,CSRBF interpolation and MMQ quasi-interpolation(MMQ-QI).After that,in Section3,we construct a shape preserving interpolation function for surface reconstruction combining with a CSRBF networks interpolation operator and a MMQ-QI operator(abbr:MMQ-CSRBF),and discuss the determination of the shape parameters in detail.Then,in Section4,we give some numerical examples to compare the approximation capacity of our hybrid scheme with that of CSRBF networks interpolation method and MMQ-QI scheme.Following this,conclusions about this work and the future works are listed in the last section.

    2 Preliminaries

    2.1 Compactly supported radial basis function interpolation

    Given a set of distinctive data{xi,fi}∈Rd×R,i=0,1,···,n,the radial basis function-based interpolant is a function

    where?i(x)=?(//x?xi//)is a basis function which depends on the Euclidean distance between any point x∈Rdand a given point xi∈Rd,the coefficients,λi,are determined by the following constraints

    There are many choices for the basic function?which include the biharmonic spline?(r)=r,the triharmonic spline?(r)=r3,the thin-plate spline?(r)=r2log(r),the multiquadric?(r)=+c2,the Gaussian?(r)=exp(?c2r2),and the inverse multiquadric?(r)=(r2+c2)?1/2,wherecis the shape parameter.However,in order to ensure the uniqueness of the solution of the interpolation problem,the coefficient matrix generated by the basis function?in the linear system(2.2)should be positive definitely.In this paper,we take the compactly supported positive definite radial basis function[18]

    whereρis the support size,andr=//p?q//is the Euclidean distance between a point p and a RBF center q.

    The CSRBF methods(eg.CSRBF networks)can interpolate well on the given data set,but it is ineffective in shape preserving,as shown in Figs.1(b)and1(e).In Fig.1,the subfigure1(a)shows the original surface defined by a quadric polynomial

    and the sampling pointsP(training points,also)on the surface.Fig.1(b)gives out the reconstructed surface with CSRBF networks interpolation directly from the pointsP.And the residual surface between the original surface and the reconstructed surface is shown in Fig.1(e).The maximum and the variance of the residuals are listed in Table1.Here,we randomly selectk=20in[4,35](h=1.2 by(3.8 ),correspondingly),and apply them for all examples in section4to show the robustness of the way to set the parameters in our proposed method.

    2.2 Multivariate multiquadraic quasi-interpolation

    Quasi-interpolation is a class of approximation methods for data fitting.Compared with the RBF-based interpolation,the quasi-interpolation method constructs the approximation formula directly with some approximating errors,but it can preserve the shape of given data well,as shown in Figs.1(c)and1(f).By using the linear combination of Hardy’s MQ basis

    and low order polynomials to construct the kernel functionαi(x),Beaton and Powell[19]first proposed a univariate quasi-interpolation formula.However,the requirement of the derivative information of the approximating functionfat the endpoints prevents the practical use of this formula.Wu and Schaback[20]proposed an improved univariate quasi-interpolation formula without using the derivative values at the endpoints,and their formula is given by

    where the quasi-interpolation kernelαi(x)is as follows

    It has been proved that the MQ quasi-interpolation(2.6)preserves linear reproduction,monotonicity,convexity and variation-diminishing[20].

    Ling[21]extended(2.6)to bivariate quasi-interpolation by using the dimension-splitting multi-quadric basis function approach.For a given data setP={xi,yj,fij}(i=0,1,···,n,j=0,1,···,m),the bivariate quasi-interpolation function is given by

    whereαi(x)is given by(2.7)and the interpolation kernelβj(y)is defined by

    The quasi-interpolation scheme(2.8)only has the property of linear reproduction.Feng and Zhou[22]proposed an improved formula which satisfies the quadric polynomial reproduction property.In this paper,the main function of(2.8)is to preserve shape,and we will improve the accuracy by compensating the approximating error generated by quasi-interpolation with RBF-based interpolation,as shown in Figs.1(d)and1(g).

    Table1Analysis of residual(quadric polynomial surface,11×11sampling points)

    Figure1 Approximating the quadric polynomial surface defined by(2.4)from11×11sampling points.(a)Original surface and training points.(b)and(e)are the reconstructed CSRBF surface and its residual to(a).(c)and(f)are the MMQ-QI surface and its residual to(a).(d)and(g)are our MMQ-CSRBF surface and its corresponding residual to(a).The parameters are set as ρ=0.45 ,c=0.1 2.

    3 Shape Preserving Surface Reconstruction

    In this section,we will present a two-level fitting method to reconstruct a surface with shape preserving from scattered data.An initial surface is constructed by the MMQ quasi-interpolation formula(2.6),which makes the shape of the surface to be similar with that of the scattered data.RBF-based interpolation is then used to fitting the difference between the initial surface and the scattered data.Shape parameters in the MMQ quasi-interpolation and RBF-based interpolations will be discussed with the shape-preserving property and the approximation capacity.

    3.1 Two-level fitting

    Surface reconstruction from sampling points discussed here can be stated as follows.For a given(n+1)×(m+1)points setP={xi,yj,zij}(i=0,1,···,n,j=0,1,···,m),a surface can be reconstructed in an implicit way which is to find a functionf(x,y,z)such that its zero level-setS={(x,y,z)|f(x,y,z)=0}passes through the point setP.

    RBF-based interpolation is one of the most widely used implicit methods.We can construct a bivariate functiong(x,y)=∑λi?i(x,y),where?iis the basis function,and the coefficientsλican be determined by the constraintsg(xi,yj)=zij.The given pointsPwill exactly locate on the result surfaceS={(x,y,z)|f(x,y,z)=z?g(x,y)=0}.However,as stated in section2.1,this method does not possess the shape preserving property.

    Here,we propose a two-level fitting algorithm to solve the shape preserving problem in surface interpolation by combining the CSRBF networks interpolation and the MMQ quasi-interpolation.We first approximate the points setPwith the MMQ quasi-interpolation scheme(2.8)which provides the good shape preserving property,

    The approximating error between the surfaces generated by(3.1)and the given dataPcan be described with a bivariate correction function

    We adopt a CSRBF networks interpolation to construct the correction function(3.2)under the constraintsh(xi,yj)=zij?(LLf)(xi,yj),i=0,1,2,···,n,j=0,1,2,···,m,as

    In the above equation,the first term in the right-hand side gives a base surface for achieving shape preserving.Meanwhile,the second term is for interpolating the given dataPand improving the global approximating accuracy.

    The main steps of the shape preserving interpolation algorithm for the given data can be outlined as follows:

    Algorithm1.Shape preserving surface reconstruction from the given points.

    Input:A set of pointsP.

    Output:A surfaceSpassing throughPwith shape preserving properties.

    Step1.Construct the MMQ-QI surfaceLLf(x,y)approximating the shape of pointsP.

    Step2.Define a correction function(3.2)and compute the correction quantity of the points,hij=h(xi,yj).

    Step3.Construct the functionh(x,y)on the data{(xi,yj,hij),i=0,1,···,n,j=0,1,···,m}by using CSRBF networks.

    Step4.Obtain the required shape preserving interpolating surface function,z=LLf(x,y)+h(x,y).

    3.2 Shape parameters

    In the fitting function(3.4 ),there are two shape parameters:the parametercin the MMQ quasi-interpolation and the support sizeρin the CSRBF networks.The accuracy of our two-level fitting depends heavily on the choice of these two parameters.In this subsection,we try to explore the relationship betweencandρ,and provide their heuristic setting for surface approximation with small errors.

    As discussed by Floater and Iske[23],the supported radiusρis adjusted to the density of the given points,and it is difficult and time-consuming.To obtain a appropriateρ,we define thek-supported radius of CSRBF.

    Definition3.1(k-Supported Radius)Thek-supported radius of CSRBF in the points setPis given as

    According to the construction of MMQ basis function(2.5),the smoothing factorcplays an important role in quasi-interpolation.The smallercmakes the quasi-interpolation curves(surfaces,also)closer to the given data.And the biggercmakes the curves further away the given points.Furthermore,from numeric experiments,we found that,for the data with large gradients,the CSRBF-based methods can interpolate the given points exactly,while the errors are large at the other points.In order to obtain an accurate approximation,it is necessary to find a proper smoothing factorcin MMQ quasi-interpolation to generate the error functions with small gradients.

    Obviously,the density of the given points is an important factor to determine the parameterc.Here,it can be given as

    From(3.5 )and(3.6 ),the problem of determiningcandρis converted into finding two parameterskandh.With a number of numeric experiments,we observed that there existed a function relationship betweenkandhfor achieving a fitting accuracy.The experiments are taken in the following way.

    Numeric experiment1

    Step1.Sample a surfacef(x,y).The sampling point set is ?={xi,yj,zij=f(xi,yj),i=0,1,···,an,j=0,1,···,bm},whereaandbare integers.In our experiments,bothaandbare set as5.This set is divided into two subsetsPandQ,whereP={xai,ybj,zai,bj,i=0,1,···,n,j=0,1,···,m}is the training point set for surface fitting,andQ=??Pis for error measuring.

    Step2.Fit the data setPwith differentkandh.For each pair of(k,h),a surfaceS(x,y)can be reconstructed from the setP.It is known that too bigkandhwill affect the fitting efficiency and accuracy.Here,we setkas the integer numbers in the interval(0,120],andhas the values of 101uniform samples in the interval[0,10].So,for each data setP,120×101surfaces are generated.

    Step3.Compute the approximation errors with the data setQ.The approximation error is defined as

    whereDis the domain of the surfacef(x,y).For each fitting surfaceSk,h(x,y)with the specifiedkandh,the approximation errorek,his computed by the setQ.We denote the minimum of the approximation errors with all pairs(k,h)asemin.

    Step4.Construct the valid intervals ofh.We use a ratee/eminto measure the fitting accuracy of a surface with the specifiedkandh.Then,all validhs can be found for eachkwhen the ratee/eminof a fitting surface is less than the given error thresholdηe.Thesehs form a set in which the minimal one and the maximal one are the bounds of a interval[hLB,hUB].Fig.2shows the intervals ofhunder different precision thresholdsηe=20,15,and5,where the surface is the quadratic polynomial surface in Fig.1(a).As the precision of the approximation increases,the interval ofhgets shorter for a fixedk.The same phenomenon happens in other surface approximation cases.

    Whenηeis traversed from1to100,we do the above steps for surfaces with different sizes of the fitting setP,such as Quadric polynomial surface(11×11),Quadrical polynomial surface(21×21),Cubic polynomial surface(11×11),Sine polynomial surface(11×11),Arc surface(11×11),Peaks(part)(11×11),Peaks(part)(21×21),where all surfaces are defined in the next section,except for the quadric polynomial surface which is defined in subsection2.1,and combine all valid intervals ofhtogether,see Fig.3(a).

    In CSRBF methods,too smallkwill lead the domain of the surface to be uncovered by influences of the RBF centers,while too bigkwill increase the complexity and the instability.In our paper,k∈[4,35]can work well for all sampling points.Fig.3(b)extracted from Fig.3(a)shows the intervals ofhwithk∈[4,35].It is observed that there is a narrow band where the upper bounds and lower bounds are mixed.The mixed band illustrates a relationship ofk-hunder a acceptable precision.Fig.3(c)shows a quadratic polynomial curve which is used to fit the relationship ofk-hin the band,

    Figure2 Relationship between the interval of the right h and k under a given precision threshold ηe for quadratic polynomial surface(2.4)

    Figure3 Construction of the functional relationship between h and k by all the experiments in Table2with ηe traversing from1to100.(a)The upper bounds and lower bounds of h for all experiments with all ηe.(b)The part of(a)where k∈[4,35].(c)The fitting curve between h and k in the narrow band formed by the mixed upper bounds and lower bounds of h.

    With(3.8),the correspondinghis obtained for eachk∈[4,35].In Table2,for seven data sets,we list the maximal errorse1,the minimal errorse2,and the values of their corresponding(h1,k1)and(h2,k2).Errorse3are also listed in Table2,which is the minimal approximation errors for allk∈(0,120]and allh∈[0,10].Actually,his set as one of the101uniform samples in the interval[0,10].From Table2,it is exciting that(3.8)can provide a good choice ofhwith respect to anyk∈[4,35]for fitting a surface with a small approximation error.And in interval[4,35],the biggerk,the smaller approximation error.

    Table2Analysis of approximation accuracy

    4 Numerical Examples

    In this section,several results are provided to illustrate the effectiveness of the proposed algorithm for shape preserving surface approximation,where the residuals are the errors in the whole domain of a surface,not only on the training points.Especially,the residuals on the training points are almost zero,because the method interpolates those points.If without considering the round-off error,they are exactly equal to zero.Given the approximated functionf(x,y),the residual function could be defined as follows

    whereS(x,y)denotes the approximation surface,and(x,y)∈Df,the domain of the functionf(x,y).

    In all Examples(Example4.1 -4.5 )in this section,the training points are taken from the samples of the surface,and the testing set are5times more dense than the training set in each direction.Due to the density of the training points,the parametersρa(bǔ)ndcare not the same for different samples.In the fitting procedure,the parameterkcan be selected randomly in the interval[4,35].Here,kis set as20for all examples and works well.The parameterhis computed with(3.8),soh=1.2.The fixedkandhare beneficial to study the robustness of the parameters setting in the proposed method.

    In each example,the results of the CSRBF networks interpolation(2.1),the MMQ quasi-interpolation(2.8 )and our proposed method(3.4 )are compared with each other.Figs.4-10show seven examples.Each result includes the original surface,the training points for surface fitting,three reconstructed surfaces with three different methods and their corresponding residuals to the original surface.Their approximation errors are listed in Table3.From the Figs.4-10and Table3,it is easy to find that our MMQ-CSRBF method can reconstruct shape-preserving surfaces with high accuracy.

    Table3Approximation error statistics

    Example4.1(Quadric Polynomial Surface)The point setPis obtained by sampling the quadric polynomial surface(2.4)with21×21training points.According to Figs.4(d)and4(g),it is obviously that MMQ-CSRBF approximates the quadric polynomial surface well.Like MMQ-CSRBF,MMQ-QI reconstructs the surface with shape preserving(Fig.4(c)),but its approximation error(e=2.434 e-2)is bigger than MMQ-CSRBF(e=1.608 e-4).Figs.4(b)and4(e)show the CSRBF networks leads to a non-shape preserving and overfitting surface.Moreover,the variance in Table3indicates the stability of the proposed MMQ-CSRBF method.

    Compared with the surface approximated by using11×11sampling points in subsection2.1,MMQ-CSRBF stands out in the three methods with the samekandhfor different density sampling points.On the other hand,the approximation accuracy of MMQ-CSRBF with11×11sampling points(3.552 e-4 in Table1)is still several orders of magnitude better than the other two methods with21×21sampling points(CSRBF:1.080 e-0and MMQ-QI:2.434 e-2in Table3).

    Example4.2(Cubic Polynomial Surface)The training point setPis formed by sampling11×11 points on a cubic polynomial surface

    From the setP,three surfaces reconstructed by three methods are shown in Fig.5.Figs.5(b)and5(e)demonstrate that the CSRBF interpolation surfaces are the worst for their largest approximation errors and big deformations near the boundaries.Fig.5(c)indicates the MMQ-QI only approximates the surface with shape preserving,and the residual errors are larger than the MMQ-CSRBF(Fig.5(f)).As expected,Figs.5(d)and5(g)show that the MMQ-CSRBF approximates the cubic polynomial surface very well,and the residuals listed in Table3show that the MMQ-CSRBF is the highest accurate and most stable method to approximate the cubic polynomial surface.

    Example4.3(Sine Polynomial Surface)The sine polynomial surface

    is sampled into11×11points as the training points for surface fitting.From the points,three reconstructed surfaces are displayed in Fig.6.Fig.6(c)indicates that there are many sampling points are away the MMQ-QI approximation surface,and Fig.6(f)shows the residual errors are big.Although Figs.6(b)and 6(e)demonstrate that the CSRBF performs better than the MMQ-QI,the residual errors of the CSRBF networks surface are still large.Figs.6(d)and6(g)show our MMQ-CSRBF method can approximate the sine polynomial surface very well.The residuals in Table3could verify this.

    Figure4 Surfaces reconstructed from21×21points sampled on the quadric polynomial surfaces(2.4).(a)The original surface and training points.(b)-(d)and(e)-(g)are the surfaces and their residuals to(a)using three methods,CSRBF,MMQ-QI,and MMQ-CSRBF,respectively.The parameters are set as ρ=0.22 (k=20)and c=0.06 (h=1.2).

    Example4.4(Arc Surface)Given a points setPwith11×11training points sampled on the arc surface

    three surfaces are reconstructed by three methods for comparison,as shown in Fig.7.From the fitting results in Fig.7and the approximation errors in Table3,these three approximation surfaces are not fitted well.That maybe because the samples on the Arc surface are very non-uniformly distributed,especially near the boundaries.

    Figure5 Comparisons of reconstructed surfaces by three different methods.(a)The cubic polynomial surface and 11×11training points.(b)and(e)are the result surface by CSRBF and its residual to(a).(c)and(f)are for MMQ-QI.(d)and(g)are for MMQ-CSRBF.All results are generated by the same parameter setting as ρ=0.45 (k=20)and c=0.12 (h=1.2 ).

    Example4.5(Peaks Surface)Given the peaks surface

    in order to show the performance of the proposed method approximating the surface with different density,we sample two training points sets on the part of the surface(4.5),wherex,y∈[0,1]×[1,2].LetP11denote the set with11×11sampling points,andP21the set with21×21sampling points,the approximation surfaces can be generated by the three methods from the two training point sets.From Table3,Fig.8and Fig.9,it obviously shows that any one of the surfaces reconstructed by the MMQ-CSRBF is significantly better than the surfaces generated by the other two methods.

    Figure6 Comparisons among the reconstructed surfaces by three methods from a point set with11×11points sampled on a sine polynomial surface(4.3).(a)the original surface and training points.(b),(c),and(d)are the surfaces generated by CSRBF,MMQ-QI,and MMQ-CSRBF,respectively,with same parameter setting ρ=0.45 (k=20)and c=0.12 (h=1.2 ).(e),(f),and(g)are their corresponding residuals to(a).

    Moreover,if we expand the fitting domain up to36times,e.g.x,y∈[?3,3]×[?3,3],and the number of the sampling points goes up to31×31,Fig.10shows that the MMQ-CSRBF can still reconstruct the best approximation surface among the three methods.Their approximation errors can be checked in Table 3.

    Figure7 Approximations of the arc surface(4.4)with three methods from11×11training points.(a)is the original surface and training points.(b)-(d)are the approximating surfaces with methods CSRBF,MMQ-QI,and MMQ-CSRBF.(e)-(g)are the residuals of(b)-(d)to(a),respectively.All results are generated by using the same parameter setting ρ=0.45 (k=20)and c=0.12 (h=1.2 ).

    Figure8 Comparison of the three approximate surfaces by different methods(CSRBF,MMQ-QI,and MMQ-CSRBF).(a)The original surface which is one part of the peaks surface(4.5),with11×11training points on it.The second row includes the surfaces by the three methods,(b)CSRBF,(c)MMQ-QI,and(d)MMQ-CSRBF.The third row shows their corresponding residuals to the original surface(a).All methods adopt the same parameter setting,ρ=0.50 (k=20),c=0.12 (h=1.2 ).

    Figure9 Comparison of the three approximate surfaces by different methods(CSRBF,MMQ-QI,and MMQ-CSRBF).(a)The original surface which is one part of the peaks surface(4.5),with21×21training points on it.The second row gives the surfaces by the three methods,(b)CSRBF,(c)MMQ-QI,and(d)MMQ-CSRBF.The third row shows their corresponding residuals to the original surface(a).All methods use the same parameter setting,ρ=0.22 (k=20),c=0.06 (h=1.2 ).

    Figure10 Comparison of the three approximate surfaces by different methods(CSRBF,MMQ-QI,and MMQ-CSRBF).(a)The original peaks surface(4.5)with31×31training points on it.The surfaces shown in the second row are generated by the methods,(b)CSRBF,(c)MMQ-QI,and(d)MMQ-CSRBF,respedtinely.The third row shows their corresponding residuals to the original surface(a).The three surfaces are generated by using the same parameter setting,ρ=0.89 (k=20),c=0.24 (h=1.2 ).

    5 Conclusions

    The RBF-based interpolation methods are an important class of surface approximation methods[7,8,9,10,11,12,13].However,they suffer from the efficiency and the non shape-preserving property which limit them to be used widely for the large scale data.Although using CSRBFs[6]can improve the fitting efficiency,the surface reconstructed by them is still not shape-preserving.The MMQ quasi-interpolation method[19,20,21]is a shape-preserving surface fitting method,while the parametercis hardly chosen to balance the smoothness and the accuracy.In this paper,a two-level fit method is proposed to fitting a shape-preserving surface with a high accuracy from the given data,by combining the MMQ quasi-interpolation method and the CSRBF-based method.An initial surface is first constructed by the MMQ quasi-interpolation method,which is shape-preserving,and then a CSRBF networks fitting process is performed to improve the fitting accuracy.In addition,a function betweenhandkfor determining the values of parameterscandρis created to generate a fitting surface with a small approximation error by a number of numerical experiments,wherek∈[4,35],with balancing the efficiency and the accuracy.It simplifies the setting of parameterscandρ,and benefits the users without experiences in shape designing.

    精品国产亚洲在线| 首页视频小说图片口味搜索| 十八禁人妻一区二区| 国产av在哪里看| 国产91精品成人一区二区三区| 999久久久精品免费观看国产| 少妇高潮的动态图| 欧美绝顶高潮抽搐喷水| 看免费av毛片| 亚洲人成网站在线播| 国产v大片淫在线免费观看| 成人无遮挡网站| 精品免费久久久久久久清纯| 精品久久国产蜜桃| 男女做爰动态图高潮gif福利片| 亚洲欧美日韩无卡精品| 三级国产精品欧美在线观看| 在线观看免费视频日本深夜| 亚洲国产精品合色在线| 一本综合久久免费| 赤兔流量卡办理| 99热精品在线国产| 国产高清三级在线| 直男gayav资源| 夜夜夜夜夜久久久久| 久久6这里有精品| 久久精品影院6| 十八禁网站免费在线| 男女做爰动态图高潮gif福利片| 久久久成人免费电影| 亚洲片人在线观看| 在线观看一区二区三区| av欧美777| 搡女人真爽免费视频火全软件 | 变态另类成人亚洲欧美熟女| 日韩精品中文字幕看吧| 一本综合久久免费| 欧美+日韩+精品| 在线十欧美十亚洲十日本专区| 国产免费男女视频| 99久久99久久久精品蜜桃| 日韩欧美在线乱码| 国产成+人综合+亚洲专区| 真人做人爱边吃奶动态| 亚洲欧美日韩高清在线视频| 国产大屁股一区二区在线视频| 亚洲av电影不卡..在线观看| 一级av片app| 久久草成人影院| bbb黄色大片| 午夜激情福利司机影院| 国产欧美日韩一区二区精品| 成人性生交大片免费视频hd| 欧美xxxx性猛交bbbb| 最后的刺客免费高清国语| 一个人免费在线观看电影| 极品教师在线免费播放| 免费高清视频大片| 美女大奶头视频| 亚洲精品一区av在线观看| 一区二区三区高清视频在线| 两性午夜刺激爽爽歪歪视频在线观看| 又黄又爽又刺激的免费视频.| 午夜福利成人在线免费观看| 免费在线观看成人毛片| 青草久久国产| 成人无遮挡网站| 欧美激情在线99| 女人十人毛片免费观看3o分钟| 欧美zozozo另类| 亚洲精品影视一区二区三区av| 一区二区三区免费毛片| 男女视频在线观看网站免费| 久久午夜福利片| 99在线视频只有这里精品首页| 18禁裸乳无遮挡免费网站照片| 嫩草影院入口| 国产精品久久久久久人妻精品电影| 亚洲最大成人av| 国产不卡一卡二| 少妇丰满av| 男女做爰动态图高潮gif福利片| 国产午夜精品久久久久久一区二区三区 | 国产精品免费一区二区三区在线| 他把我摸到了高潮在线观看| 亚洲片人在线观看| 五月伊人婷婷丁香| www日本黄色视频网| 国产精品av视频在线免费观看| 久久精品国产自在天天线| 亚洲激情在线av| 日韩欧美三级三区| 十八禁网站免费在线| 黄色视频,在线免费观看| 一区二区三区免费毛片| 桃红色精品国产亚洲av| 日本 欧美在线| 亚洲欧美激情综合另类| 精品久久久久久成人av| 国产综合懂色| 国产 一区 欧美 日韩| netflix在线观看网站| 老司机深夜福利视频在线观看| 久久精品国产亚洲av涩爱 | a级一级毛片免费在线观看| 午夜视频国产福利| 国产熟女xx| 激情在线观看视频在线高清| 亚洲精品一卡2卡三卡4卡5卡| 成人特级黄色片久久久久久久| 亚洲一区二区三区不卡视频| 亚洲av成人精品一区久久| 真人做人爱边吃奶动态| 亚洲va日本ⅴa欧美va伊人久久| 在线观看66精品国产| 99视频精品全部免费 在线| 永久网站在线| 亚洲国产精品sss在线观看| 国产高清激情床上av| 国产精品三级大全| 51午夜福利影视在线观看| 桃红色精品国产亚洲av| 国产视频内射| 亚洲avbb在线观看| 午夜久久久久精精品| 色综合婷婷激情| 国产精品98久久久久久宅男小说| 亚洲 欧美 日韩 在线 免费| 午夜两性在线视频| 亚洲 国产 在线| 最新中文字幕久久久久| 久久久成人免费电影| 99热只有精品国产| 欧美精品国产亚洲| 搡老妇女老女人老熟妇| 欧美成人一区二区免费高清观看| 国产精品美女特级片免费视频播放器| 日韩欧美精品免费久久 | 99久久精品一区二区三区| 亚洲中文日韩欧美视频| 亚洲精品一卡2卡三卡4卡5卡| 成人毛片a级毛片在线播放| 婷婷色综合大香蕉| 精品久久国产蜜桃| 亚洲av熟女| 国产真实乱freesex| 中出人妻视频一区二区| 久久人妻av系列| 日日摸夜夜添夜夜添av毛片 | 国产成+人综合+亚洲专区| 亚洲中文字幕日韩| 91字幕亚洲| 99久久精品热视频| 国产一区二区亚洲精品在线观看| 国产精品爽爽va在线观看网站| 中国美女看黄片| 日本黄色片子视频| 国产色婷婷99| 欧美激情国产日韩精品一区| 精品不卡国产一区二区三区| 精品人妻1区二区| 久久久成人免费电影| 成年女人永久免费观看视频| 亚洲精华国产精华精| 无人区码免费观看不卡| 一级av片app| 啦啦啦韩国在线观看视频| 国产白丝娇喘喷水9色精品| 国产高清视频在线播放一区| 最新中文字幕久久久久| 国产精品一区二区三区四区久久| av视频在线观看入口| 简卡轻食公司| 午夜福利成人在线免费观看| 日韩欧美在线乱码| 三级男女做爰猛烈吃奶摸视频| 精品国产亚洲在线| 精华霜和精华液先用哪个| 五月玫瑰六月丁香| 丝袜美腿在线中文| 在线免费观看不下载黄p国产 | 国产综合懂色| 内射极品少妇av片p| 欧美一区二区精品小视频在线| 亚洲综合色惰| 在线观看美女被高潮喷水网站 | 国产精品永久免费网站| 亚洲中文日韩欧美视频| 国产视频一区二区在线看| 午夜免费成人在线视频| 色吧在线观看| av视频在线观看入口| 成人鲁丝片一二三区免费| a级一级毛片免费在线观看| 一区二区三区激情视频| 国产午夜精品久久久久久一区二区三区 | av欧美777| 99久久精品热视频| 国产精品精品国产色婷婷| 午夜久久久久精精品| 伊人久久精品亚洲午夜| 成人av一区二区三区在线看| 在线免费观看的www视频| 久久天躁狠狠躁夜夜2o2o| 最新在线观看一区二区三区| 免费观看精品视频网站| 婷婷精品国产亚洲av| 精华霜和精华液先用哪个| 亚洲狠狠婷婷综合久久图片| 99精品久久久久人妻精品| 别揉我奶头 嗯啊视频| 国产伦一二天堂av在线观看| 午夜福利在线观看免费完整高清在 | 天天一区二区日本电影三级| 99久久久亚洲精品蜜臀av| 国产91精品成人一区二区三区| 一夜夜www| 三级毛片av免费| 国内精品久久久久精免费| 日韩精品中文字幕看吧| 欧美日本亚洲视频在线播放| 亚洲精品粉嫩美女一区| 18禁裸乳无遮挡免费网站照片| 91麻豆av在线| 国产免费男女视频| av中文乱码字幕在线| 97超视频在线观看视频| 欧美成人a在线观看| 久久草成人影院| 在线观看舔阴道视频| 精品人妻偷拍中文字幕| www.999成人在线观看| a在线观看视频网站| 国产精品久久电影中文字幕| 日韩欧美在线乱码| 此物有八面人人有两片| 有码 亚洲区| 午夜福利视频1000在线观看| 精品99又大又爽又粗少妇毛片 | 免费av观看视频| 好男人电影高清在线观看| 长腿黑丝高跟| 毛片女人毛片| 国产色爽女视频免费观看| 三级男女做爰猛烈吃奶摸视频| 最新中文字幕久久久久| 91久久精品国产一区二区成人| 国产成人欧美在线观看| 色综合婷婷激情| 每晚都被弄得嗷嗷叫到高潮| 欧美午夜高清在线| 日本 欧美在线| 国产精品久久电影中文字幕| 757午夜福利合集在线观看| 亚洲美女黄片视频| 亚洲av电影在线进入| 少妇人妻精品综合一区二区 | 久久精品国产亚洲av天美| 亚洲av五月六月丁香网| 欧美在线黄色| 欧美zozozo另类| 亚洲国产精品久久男人天堂| 免费无遮挡裸体视频| avwww免费| 成人午夜高清在线视频| 国产精品久久久久久久久免 | 人人妻人人澡欧美一区二区| 亚洲av电影在线进入| 97超级碰碰碰精品色视频在线观看| 成人一区二区视频在线观看| 大型黄色视频在线免费观看| 精品久久国产蜜桃| 国产美女午夜福利| 波多野结衣巨乳人妻| 国产免费一级a男人的天堂| 一二三四社区在线视频社区8| 国产亚洲精品久久久com| 淫妇啪啪啪对白视频| 精品一区二区三区视频在线观看免费| 色吧在线观看| 午夜福利在线观看吧| 国产大屁股一区二区在线视频| 久久久久国产精品人妻aⅴ院| 精品国产三级普通话版| 丝袜美腿在线中文| 久久伊人香网站| 国产亚洲精品久久久久久毛片| 久久精品国产清高在天天线| 18禁裸乳无遮挡免费网站照片| 国产aⅴ精品一区二区三区波| 欧美三级亚洲精品| 亚洲综合色惰| 午夜免费激情av| 中文字幕久久专区| 三级国产精品欧美在线观看| 长腿黑丝高跟| 99热6这里只有精品| 免费av观看视频| 亚洲成人精品中文字幕电影| 搡老妇女老女人老熟妇| 国产精品亚洲av一区麻豆| 国产熟女xx| 午夜福利在线在线| 偷拍熟女少妇极品色| 亚洲avbb在线观看| 国产精品98久久久久久宅男小说| 我的女老师完整版在线观看| 成年人黄色毛片网站| 国产欧美日韩精品一区二区| 人人妻,人人澡人人爽秒播| 18禁在线播放成人免费| 99久国产av精品| 国产老妇女一区| 男女床上黄色一级片免费看| 最近在线观看免费完整版| 国产伦精品一区二区三区四那| 日本与韩国留学比较| 啪啪无遮挡十八禁网站| 久久精品国产亚洲av天美| 变态另类成人亚洲欧美熟女| 在线免费观看的www视频| 真实男女啪啪啪动态图| 亚洲精品一卡2卡三卡4卡5卡| 国产精品,欧美在线| 国产精品嫩草影院av在线观看 | 高清日韩中文字幕在线| 欧美三级亚洲精品| 中出人妻视频一区二区| 嫩草影院精品99| 天天一区二区日本电影三级| 国产麻豆成人av免费视频| 亚洲精品456在线播放app | 精品久久久久久久人妻蜜臀av| 久久久久亚洲av毛片大全| 一区二区三区四区激情视频 | 伦理电影大哥的女人| 男女床上黄色一级片免费看| 一级黄片播放器| 亚洲国产精品合色在线| 久久精品夜夜夜夜夜久久蜜豆| 在现免费观看毛片| 看片在线看免费视频| 日韩中字成人| 久久久久国内视频| 欧美潮喷喷水| 亚洲成人中文字幕在线播放| 欧美xxxx黑人xx丫x性爽| 免费人成在线观看视频色| 午夜福利18| 一区二区三区免费毛片| 看免费av毛片| 日韩中字成人| 一本一本综合久久| 欧美+日韩+精品| 色综合亚洲欧美另类图片| 欧美日韩福利视频一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 久久中文看片网| 亚洲人成伊人成综合网2020| 国产精品国产高清国产av| 深夜精品福利| 日本黄色片子视频| 亚洲专区国产一区二区| 国产成年人精品一区二区| 99久久精品国产亚洲精品| 欧美最新免费一区二区三区 | 禁无遮挡网站| a级一级毛片免费在线观看| 亚洲精品日韩av片在线观看| 男女之事视频高清在线观看| bbb黄色大片| 欧美不卡视频在线免费观看| 哪里可以看免费的av片| 最新在线观看一区二区三区| 国产乱人伦免费视频| 亚洲精品粉嫩美女一区| 色综合欧美亚洲国产小说| 精品国产亚洲在线| 我要搜黄色片| 十八禁国产超污无遮挡网站| 免费看a级黄色片| 俺也久久电影网| 日日摸夜夜添夜夜添av毛片 | 国产精品一区二区三区四区久久| xxxwww97欧美| 中文亚洲av片在线观看爽| 午夜福利免费观看在线| 日本三级黄在线观看| 久久久久亚洲av毛片大全| 日韩欧美精品免费久久 | 国产一区二区亚洲精品在线观看| 首页视频小说图片口味搜索| 日本黄色视频三级网站网址| or卡值多少钱| 中文字幕免费在线视频6| 每晚都被弄得嗷嗷叫到高潮| 两个人视频免费观看高清| 99久久精品一区二区三区| 午夜a级毛片| 欧美色视频一区免费| 在线国产一区二区在线| 国产私拍福利视频在线观看| 两人在一起打扑克的视频| 欧美区成人在线视频| 中文字幕熟女人妻在线| 亚洲国产精品久久男人天堂| 国产高清视频在线播放一区| 91久久精品国产一区二区成人| 免费一级毛片在线播放高清视频| 美女大奶头视频| 成人av在线播放网站| 少妇熟女aⅴ在线视频| 精品久久久久久久久av| 精品99又大又爽又粗少妇毛片 | 欧美一区二区精品小视频在线| 国产伦人伦偷精品视频| 亚洲三级黄色毛片| 美女免费视频网站| 日韩亚洲欧美综合| 白带黄色成豆腐渣| 国产三级黄色录像| 久久久久精品国产欧美久久久| 国产极品精品免费视频能看的| 国产伦人伦偷精品视频| 免费在线观看日本一区| 91午夜精品亚洲一区二区三区 | 国产黄色小视频在线观看| 又爽又黄a免费视频| 午夜福利18| 99在线视频只有这里精品首页| 少妇高潮的动态图| 综合色av麻豆| 亚洲第一电影网av| 国产男靠女视频免费网站| 好男人在线观看高清免费视频| 婷婷亚洲欧美| 成人特级av手机在线观看| 亚洲天堂国产精品一区在线| 久久欧美精品欧美久久欧美| 午夜福利在线观看吧| 搞女人的毛片| 国产欧美日韩精品亚洲av| 美女高潮的动态| 1000部很黄的大片| 丝袜美腿在线中文| 午夜免费男女啪啪视频观看 | 九色国产91popny在线| 最好的美女福利视频网| 美女cb高潮喷水在线观看| 欧美绝顶高潮抽搐喷水| 国产精品三级大全| 欧美3d第一页| 亚洲经典国产精华液单 | 亚洲一区高清亚洲精品| 999久久久精品免费观看国产| 午夜福利成人在线免费观看| 国产精品亚洲美女久久久| 亚洲激情在线av| 91麻豆av在线| 亚洲精品在线观看二区| 久久性视频一级片| 国产探花极品一区二区| 国产一区二区激情短视频| 日本在线视频免费播放| 婷婷精品国产亚洲av在线| 毛片一级片免费看久久久久 | 色精品久久人妻99蜜桃| 午夜日韩欧美国产| 国产精品一区二区三区四区久久| a级一级毛片免费在线观看| 91久久精品电影网| 性插视频无遮挡在线免费观看| 免费观看精品视频网站| 亚洲真实伦在线观看| 欧美色视频一区免费| 在线观看66精品国产| 一夜夜www| 午夜免费男女啪啪视频观看 | 啦啦啦观看免费观看视频高清| 久久婷婷人人爽人人干人人爱| 别揉我奶头~嗯~啊~动态视频| 午夜两性在线视频| 丰满乱子伦码专区| 男女那种视频在线观看| 色综合亚洲欧美另类图片| 亚洲av电影不卡..在线观看| 97碰自拍视频| 精品一区二区三区视频在线| 亚洲va日本ⅴa欧美va伊人久久| 变态另类丝袜制服| 国产大屁股一区二区在线视频| av欧美777| 男人狂女人下面高潮的视频| 欧美又色又爽又黄视频| 国产真实乱freesex| 永久网站在线| 男人的好看免费观看在线视频| 黄色日韩在线| 免费人成视频x8x8入口观看| 国产精品乱码一区二三区的特点| 欧美一区二区亚洲| netflix在线观看网站| 久久久久久国产a免费观看| 欧美一级a爱片免费观看看| 他把我摸到了高潮在线观看| 精品久久久久久成人av| 成人三级黄色视频| 亚洲成a人片在线一区二区| av中文乱码字幕在线| 99久久精品国产亚洲精品| 欧美又色又爽又黄视频| 能在线免费观看的黄片| 日本黄色视频三级网站网址| 18禁裸乳无遮挡免费网站照片| 亚洲专区国产一区二区| 亚洲av第一区精品v没综合| 国产精品99久久久久久久久| 亚洲性夜色夜夜综合| 9191精品国产免费久久| 亚洲内射少妇av| 日韩大尺度精品在线看网址| 美女高潮喷水抽搐中文字幕| 老女人水多毛片| 国产私拍福利视频在线观看| 亚洲天堂国产精品一区在线| 亚洲激情在线av| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产清高在天天线| 午夜福利成人在线免费观看| 亚洲成人中文字幕在线播放| 又爽又黄无遮挡网站| 色在线成人网| 又爽又黄无遮挡网站| 搡老岳熟女国产| 特大巨黑吊av在线直播| 色噜噜av男人的天堂激情| 色综合欧美亚洲国产小说| 亚洲成人中文字幕在线播放| 午夜福利成人在线免费观看| 午夜a级毛片| 欧美国产日韩亚洲一区| 亚洲美女视频黄频| www.熟女人妻精品国产| 免费电影在线观看免费观看| 午夜久久久久精精品| 国产91精品成人一区二区三区| 亚洲人成网站高清观看| 十八禁网站免费在线| 真人做人爱边吃奶动态| 亚洲av电影在线进入| 午夜日韩欧美国产| 99国产综合亚洲精品| 欧美+日韩+精品| 两个人视频免费观看高清| 日韩精品中文字幕看吧| 天天躁日日操中文字幕| 国产精品久久久久久久电影| 成年人黄色毛片网站| ponron亚洲| xxxwww97欧美| 美女免费视频网站| 亚洲久久久久久中文字幕| 精品一区二区免费观看| 国产综合懂色| 免费高清视频大片| 国产伦精品一区二区三区四那| 久久久久久大精品| 国产精品99久久久久久久久| 亚洲黑人精品在线| 国产精品一区二区三区四区免费观看 | 丰满人妻熟妇乱又伦精品不卡| 我的女老师完整版在线观看| 欧美一级a爱片免费观看看| 成年女人永久免费观看视频| 亚洲国产日韩欧美精品在线观看| 深爱激情五月婷婷| h日本视频在线播放| 一本一本综合久久| 91字幕亚洲| 首页视频小说图片口味搜索| 国产不卡一卡二| 欧美高清性xxxxhd video| 高清日韩中文字幕在线| 亚洲三级黄色毛片| 国产一区二区三区在线臀色熟女| 欧美激情国产日韩精品一区| 亚洲欧美日韩卡通动漫| 在线a可以看的网站| 一本一本综合久久| 99国产极品粉嫩在线观看| 老司机福利观看| 高清日韩中文字幕在线| 久久久精品大字幕| or卡值多少钱| 99国产精品一区二区三区| 国模一区二区三区四区视频| 亚洲电影在线观看av| 午夜精品久久久久久毛片777| 婷婷精品国产亚洲av在线| 久久精品国产99精品国产亚洲性色| 欧美在线黄色| 级片在线观看| 麻豆国产97在线/欧美| 国产熟女xx| 老鸭窝网址在线观看| 国产一级毛片七仙女欲春2| 亚洲人与动物交配视频| 美女免费视频网站| 中文字幕人妻熟人妻熟丝袜美| 床上黄色一级片| 亚洲,欧美,日韩| 97热精品久久久久久| 99久久久亚洲精品蜜臀av| 久久99热6这里只有精品| 久久亚洲精品不卡|