[摘要]
單細(xì)胞代謝組學(xué)(SCM)是以高通量檢測(cè)和數(shù)據(jù)處理為手段,以組群指標(biāo)分析為基礎(chǔ),以信息建模和系統(tǒng)集成為目標(biāo),對(duì)特定生理時(shí)期的某種細(xì)胞的所有小分子量代謝物進(jìn)行定量和定性分析。本文綜述了近年來(lái)代謝組學(xué)在單細(xì)胞領(lǐng)域中的研究及應(yīng)用進(jìn)展,并對(duì)其在醫(yī)學(xué)領(lǐng)域的最新應(yīng)用進(jìn)行了詳細(xì)的討論。
[關(guān)鍵詞] 代謝組學(xué);高通量篩選分析;顯微鏡檢查,原子力;流式細(xì)胞術(shù);綜述
[中圖分類號(hào)] R34;R446-33
[文獻(xiàn)標(biāo)志碼] A
[文章編號(hào)] 2096-5532(2023)06-0941-04
doi:10.11712/jms.2096-5532.2023.59.186
[網(wǎng)絡(luò)出版] https://link.cnki.net/urlid/37.1517.R.20231229.1009.002;2024-01-02 10:45:53
RESEARCH ADVANCES IN THE APPLICATION OF METABOLOMICS IN THE FIELD OF SINGLE-CELL ANALYSIS
LUAN Ruixue, LI Lei, YI Shuyuan, LI Yunqi, WANG Shoushi
(School of Anesthesiology, Weifang Medical College, Weifang 261053, China)
; [ABSTRACT]Single-cell metabolomics is a quantitative and qualitative analysis of all low molecular weight metabolites wi-
thin a certain type of cells at a specific physiological status, through high-throughput detection and data processing of sets of indicators for information modeling and system integration. This article reviews the research and application progress of metabolomics in the field of single-cell analysis in recent years, focusing on its latest application in the medical field.
[KEY WORDS]metabolomics; high-throughput screening assays; microscopy, atomic force; flow cytometry; reviews
代謝組學(xué)可以檢測(cè)到所有的小分子,更具體地說(shuō),是分子量小于2 000的化學(xué)物質(zhì)[1-2]。通過(guò)代謝組學(xué)的研究,可以獲得與代謝物及其產(chǎn)物變化和代謝途徑相關(guān)的生物學(xué)信息。相對(duì)于僅顯示細(xì)胞群共同特征的整體細(xì)胞分析,單細(xì)胞代謝組學(xué)(SCM)能夠較為準(zhǔn)確地發(fā)現(xiàn)細(xì)胞群體的特殊特征[3-5]。SCM是目前僅有的可以描述只在幾秒或幾分鐘內(nèi)發(fā)生的細(xì)胞實(shí)時(shí)生化反應(yīng)的分析技術(shù)[6],它能夠?qū)Σ煌?xì)胞群中的細(xì)胞進(jìn)行準(zhǔn)確的生化表征,幫助我們深入了解各種細(xì)胞代謝機(jī)制。本文將從SCM的概念和常用方法、最新應(yīng)用精選實(shí)例及其挑戰(zhàn)和展望等方面進(jìn)行綜述。
1 SCM的概念及發(fā)展歷史
1.1 SCM的定義
SCM是一種基于單個(gè)細(xì)胞水平對(duì)其代謝過(guò)程進(jìn)行研究分析的技術(shù)。其基本原理是應(yīng)用高通量測(cè)序技術(shù),對(duì)單個(gè)細(xì)胞的代謝物進(jìn)行檢測(cè)。SCM具有高靈敏度和高分辨率,能夠?qū)?xì)胞內(nèi)的微小變化進(jìn)行檢測(cè),相比于多細(xì)胞或組織可以有效地避免由于細(xì)胞異質(zhì)性引起的誤差,并且可反映單一細(xì)胞功能以及揭示細(xì)胞異質(zhì)性與其代謝間的關(guān)系[7-8]。
1.2 SCM的實(shí)驗(yàn)流程
與其他組學(xué)的流程類似,SCM分析的流程可以概述為:①靶細(xì)胞或者靶細(xì)胞類型鑒定;②靶細(xì)胞檢測(cè)樣本的制備;③應(yīng)用SCM技術(shù)分析樣本;④SCM數(shù)據(jù)分析;⑤差異代謝物鑒定及相關(guān)代謝通路研究;⑥數(shù)據(jù)的生物學(xué)解釋及后續(xù)實(shí)驗(yàn)[4,9-10]。但不同實(shí)驗(yàn)的SCM分析步驟可根據(jù)不同的實(shí)驗(yàn)要求進(jìn)行適當(dāng)?shù)恼{(diào)整。
SCM分析最常見(jiàn)的障礙是分離單個(gè)檢測(cè)細(xì)胞。根據(jù)細(xì)胞內(nèi)、外不同的特性,可以通過(guò)一些方法從不同類別的細(xì)胞混合物中分離出單個(gè)細(xì)胞[7-8]。常見(jiàn)的細(xì)胞樣本制備方法包括通過(guò)原子力顯微鏡探針直接可視化和穿透/提取、熒光激活細(xì)胞分選及微流控陣列等。其中第一種方法只保留了探針中的細(xì)胞代謝物,而后兩種方法卻可以保留細(xì)胞的完整原始形態(tài)[7]。
1.3 SCM的發(fā)展歷史
代謝組學(xué)是20世紀(jì)90年代中期發(fā)展起來(lái)的一門新興學(xué)科,目前已經(jīng)在疾病早期診斷、藥物靶點(diǎn)發(fā)現(xiàn)、疾病機(jī)制研究及疾病診斷等方面取得了許多重大成果。生物學(xué)研究的歷程往往要經(jīng)過(guò)從宏觀表型的觀察到微觀機(jī)制的探索,最后再回到宏觀表型的解釋和修正。而代謝組學(xué)起步較晚,并且與DNA和RNA不同,代謝物無(wú)法擴(kuò)增,一些非常稀少的代謝物依賴更為靈敏的檢測(cè)方法。此外,代謝物的濃度也可能會(huì)在很短時(shí)間內(nèi)發(fā)生顛覆性的變化,這些都決定了SCM的研究正面臨著諸多困難。
2 目前常用的SCM研究方法或技術(shù)
常用的SCM分析方法主要包括質(zhì)譜法、色譜法、熒光法以及超微電極電化學(xué)方法,其中單細(xì)胞質(zhì)譜法(SCMS)已經(jīng)成為目前應(yīng)用最為廣泛的分析方法。
2.1 SCMS
質(zhì)譜法憑借其高特異性、高靈敏度、強(qiáng)大的結(jié)構(gòu)解析能力以及準(zhǔn)確定量能力,近年來(lái)廣泛應(yīng)用于單細(xì)胞分析中。例如,有學(xué)者使用氣相色譜-質(zhì)譜儀測(cè)量單個(gè)海兔(海參)神經(jīng)元中氨基酸的濃度[11-12]。
根據(jù)使用離子化技術(shù)的不同分為如下4類:納升電噴霧離子化質(zhì)譜法、激光解吸附離子化質(zhì)譜法、二次離子質(zhì)譜法和電感耦合等離子體質(zhì)譜法[13]。納升電噴霧離子化質(zhì)譜法是一種具有高靈敏度和高離子化效率的“軟”離子化技術(shù),廣泛應(yīng)用于生命科學(xué)領(lǐng)域[14-17],與傳統(tǒng)的電噴霧離子源相比具有更充分的離子化時(shí)間和更高的離子化效率[14,18]。激光解吸附離子化質(zhì)譜法是利用一種特定波長(zhǎng)的激光實(shí)現(xiàn)目標(biāo)化合物的解吸附和離子化的,其中,基質(zhì)輔助激光解吸電離可利用激光能量吸收基質(zhì)并以最小碎片化的方式從大分子中產(chǎn)生離子[14, 19]。二次離子質(zhì)譜法是一種兼具高分辨率和高靈敏度的表面分析質(zhì)譜技術(shù)[20-21],該法通常是使用特殊的高能一次離子束給予樣品表面轟擊處理將待測(cè)分子離子化。電感耦合等離子體質(zhì)譜法是一種可以通過(guò)利用高溫等離子體將檢測(cè)樣品原子化和離子化來(lái)實(shí)現(xiàn)多種同位素和金屬元素的質(zhì)譜定性和定量分析的無(wú)機(jī)元素質(zhì)譜離子法[22],具有多元素檢測(cè)、低檢測(cè)限、高分辨率等優(yōu)點(diǎn)[23-24]。
2.2 色譜法
色譜法是一種可以定義為在流動(dòng)相和固定相組成的恒定場(chǎng)中,因?yàn)槲镔|(zhì)和該兩相作用差異的原因而將物質(zhì)彼此分離開(kāi)來(lái)的方法[25]。早在1903年,就有研究人員發(fā)現(xiàn)并研究了色譜分離法[18,26]。色譜法通常分為高效液相色譜法、毛細(xì)管電泳法[27]、開(kāi)管毛細(xì)管親和液相色譜法等,這些檢測(cè)技術(shù)由于分離效率高、質(zhì)量檢測(cè)限低等優(yōu)勢(shì),已經(jīng)廣泛應(yīng)用于SCM的檢測(cè)。然而,色譜法的劣勢(shì)在于樣品前處理、衍生和分離等方面花費(fèi)的時(shí)間較多,導(dǎo)致分析效率低下。
2.3 熒光法
對(duì)于單細(xì)胞的研究,熒光法是其中一種經(jīng)典的分析方法[28-29]。熒光顯微成像法是實(shí)時(shí)觀測(cè)單細(xì)胞物質(zhì)釋放的重要工具,其原理是利用熒光衍生反應(yīng),即通過(guò)熒光探針標(biāo)記囊泡或者關(guān)鍵蛋白分子[30],但是熒光探針的波長(zhǎng)寬度有一定限制,在有限光窗下只能檢測(cè)3~4種不互相干擾的物質(zhì)[31]。熒光顯微成像法主要采用納米顯微鏡及激光掃描共聚焦顯微鏡等實(shí)時(shí)監(jiān)測(cè)分泌囊泡、蛋白分子的運(yùn)動(dòng)。
2.4 超微電極電化學(xué)方法
超微電極電化學(xué)技術(shù)是實(shí)時(shí)觀測(cè)單個(gè)細(xì)胞釋放兒茶酚胺類遞質(zhì)等具有電化學(xué)活性信號(hào)分子的主要技術(shù)。這種技術(shù)一般采用半人工突觸模式以及安培法將電極靠近單個(gè)細(xì)胞,在500~800 mA的電流條件下實(shí)時(shí)觀測(cè)擴(kuò)散到電極表面的信號(hào)分子。超微電極電化學(xué)技術(shù)雖然具有尺寸小、靈敏度高、響應(yīng)速度快的優(yōu)勢(shì),但卻局限于只能檢測(cè)細(xì)胞釋放的物質(zhì)。此外,這種技術(shù)只能用于檢測(cè)具有電化學(xué)活性信號(hào)分子的物質(zhì)[32-33]。
3 SCM在不同研究領(lǐng)域的應(yīng)用
SCM在腫瘤的診斷與藥物治療方面的應(yīng)用廣泛[34-35],它不僅可以發(fā)現(xiàn)惡性腫瘤新的治療組合策略,還可能有助于識(shí)別藥物毒性的早期跡象[34,36-38]。腫瘤細(xì)胞在發(fā)生遺傳或非遺傳改變時(shí),會(huì)進(jìn)行代謝重排以適應(yīng)其免疫逃逸、快速生長(zhǎng)、增殖、侵襲及轉(zhuǎn)移所需要的物質(zhì)基礎(chǔ)和能量等變化。由于致癌活性、增殖狀態(tài)、營(yíng)養(yǎng)物質(zhì)的可獲得性及微環(huán)境在空間和時(shí)間上的不同,使得眾多癌癥類型的代謝過(guò)程變化各不相同[39]。白血病細(xì)胞的代謝改變通常表現(xiàn)為葡萄糖消耗水平大幅提高、脂肪生成增加以及谷氨酰胺分解等,這些差異代謝變化為惡性血液系統(tǒng)腫瘤提供了新的治療方案——靶點(diǎn)的競(jìng)爭(zhēng)性葡萄糖代謝及靶向谷氨酰胺代謝[39-41]。此外,代謝重排有助于形成腫瘤細(xì)胞免疫抑制的微環(huán)境,導(dǎo)致抗癌治療的耐藥性增加[42-43]。但是,通過(guò)SCM分析并結(jié)合遺傳信息,可以區(qū)分驅(qū)動(dòng)耐藥發(fā)展的調(diào)控途徑和相關(guān)基因并找到改善抗癌治療耐藥性的新方法[44],例如CHEN等[45]將不同處理?xiàng)l件下的活伊立替康耐藥細(xì)胞利用SCM技術(shù)進(jìn)行了分析,證實(shí)了二甲雙胍-伊立替康協(xié)同作用可以克服耐藥。
SCM在神經(jīng)學(xué)領(lǐng)域被廣泛應(yīng)用。神經(jīng)元對(duì)比正常細(xì)胞有非常詳細(xì)的亞型且體積更大,由疾病或信號(hào)導(dǎo)致的神經(jīng)系統(tǒng)一系列變化通常會(huì)在單個(gè)細(xì)胞中得到反映[46-47]。當(dāng)前其多組學(xué)聯(lián)合分析在結(jié)合神經(jīng)細(xì)胞的生理學(xué)、形態(tài)學(xué)之后,將不斷推進(jìn)人類腦部疾病的診斷及治療發(fā)展進(jìn)程[44-45,48-50]。
SCM在其他人類精準(zhǔn)醫(yī)學(xué)領(lǐng)域也有很深入而廣泛的應(yīng)用。①SCMS揭示感染細(xì)胞異質(zhì)性。NGUYEN等[51]研究了寄生蟲克氏錐蟲感染宿主細(xì)胞的異質(zhì)性。這是首次在哺乳動(dòng)物感染性疾病中應(yīng)用SCM分析技術(shù),即使用單探針SCMS技術(shù)對(duì)克氏錐蟲異質(zhì)性感染細(xì)胞進(jìn)行SCM研究。②脂類分析是SCMS的另一個(gè)最新應(yīng)用[52-54]。準(zhǔn)確而深入地表征類脂異構(gòu)體在脂類組學(xué)研究領(lǐng)域中十分關(guān)鍵[12,55]。針對(duì)這一現(xiàn)狀,LI等[55]開(kāi)發(fā)了一種單細(xì)胞脂質(zhì)組學(xué)的工作流程,即使用單細(xì)胞的光化學(xué)衍生化、電遷移和常壓電離串聯(lián)質(zhì)譜法來(lái)量化區(qū)分脂質(zhì)水平。
4 SCM的挑戰(zhàn)及展望
綜上所述,SCM在很多方面具有巨大的應(yīng)用潛力,然而,仍還有一些挑戰(zhàn)需要進(jìn)一步解決。例如:①代謝組樣本變化很快,這導(dǎo)致了代謝物及其相關(guān)產(chǎn)物的鑒定困難;②代謝物的豐度在單個(gè)細(xì)胞中可能會(huì)有非常大的差異,而微小代謝物需要具有高靈敏度的檢測(cè)技術(shù)才能檢測(cè)到,此外,單細(xì)胞內(nèi)代謝物隨時(shí)間變化的速率如何進(jìn)行量化也仍是一個(gè)大挑戰(zhàn);③許多代謝組分析工具并不能覆蓋更多滿足不同研究需求的代謝物[3]。值得高興的是,最近分子生物學(xué)技術(shù)和計(jì)算方法的快速進(jìn)展使上述問(wèn)題不斷得到解決。
SCM分析作為一個(gè)新興的研究領(lǐng)域,近年來(lái)受到越來(lái)越多的關(guān)注[56-58]。隨著更高效、更廉價(jià)的高通量技術(shù)的出現(xiàn)及革新,跨模式的單細(xì)胞組學(xué)的聯(lián)合將會(huì)極大擴(kuò)展我們的視野,加深我們對(duì)不同生物層之間相互作用的理解[59]??偠灾?,我們可以預(yù)見(jiàn)SCM分析將繼續(xù)在具有不同表型的單個(gè)細(xì)胞或細(xì)胞亞群的研究中不斷取得新成果,這些成果對(duì)細(xì)胞分化、疾病的發(fā)生和發(fā)展以及藥物治療等方面至關(guān)重要。相信在不久的未來(lái),SCM分析將在各個(gè)領(lǐng)域的基礎(chǔ)研究和精準(zhǔn)醫(yī)學(xué)的發(fā)展等方面大放異彩。
[參考文獻(xiàn)]
[1]GUO S H, ZHANG C, LE A. The limitless applications of single-cell metabolomics[J]." Current Opinion in Biotechnology, 2021,71:115-122.
[2]BAUERMEISTER A, MANNOCHIO-RUSSO H, COSTA-LOTUFO L V, et al. Mass spectrometry-based metabolomics in microbiome investigations[J]." Nature Reviews Microbiology, 2022,20(3):143-160.
[3]SHRESTHA B. Single-cell metabolomics by mass spectrometry[J].
Methods in Molecular Biology, 2020,2064:1-8.
[4]董媛媛,孫桂江,李遇伯,等. 單細(xì)胞組學(xué)相關(guān)技術(shù)的研究進(jìn)展[J]." 廣東醫(yī)學(xué), 2022,43(7):920-924.
[5]MACAULAY I C, PONTING C P, VOET T. Single-cell multiomics: multiple measurements from single cells[J]." Trends in Genetics, 2017,33(2):155-168.
[6]EMARA S, AMER S, ALI A, et al. Single-cell metabolomics[J].nbsp; Advances in Experimental Medicine and Biology, 2017,965:323-343.
[7]KUMAR R, GHOSH M, KUMAR S, et al. Single cell metabolomics: a future tool to unmask cellular heterogeneity and virus-host interaction in context of emerging viral diseases[J]." Frontiers in Microbiology, 2020,11:1152.
[8]MISRA B B. Open-source software tools, databases, and resources for single-cell and single-cell-type metabolomics[J].
Methods in Molecular Biology, 2020,2064:191-217
[9]CAO G D, SONG Z B, HONG Y J, et al. Large-scale targeted metabolomics method for metabolite profiling of human samples[J]." Analytica Chimica Acta, 2020,1125:144-151.
[10]ROBERTS L D, SOUZA A L, GERSZTEN R E, et al. Targeted metabolomics[J]." Current Protocols in Molecular Biology, 2012,30:2.1-2.24.
[11]ILIFFE T M, MCADOO D J, BEYER C B, et al. Amino acid concentrations in the Aplysia nervous system: neurons with high glycine concentrations[J]." Journal of Neurochemistry,1977,28(5):1037-1042.
[12]TAJIK M, BAHARFAR M, DONALD W A. Single-cell mass spectrometry[J]." Trends in Biotechnology, 2022,40(11):1374-1392.
[13]譚思源,李曼莉,傅博強(qiáng),等. 單細(xì)胞質(zhì)譜分析方法研究進(jìn)展[J]." 計(jì)量科學(xué)與技術(shù), 2021,65(5):20-29,13.
[14]YIN L, ZHANG Z, LIU Y Z, et al. Recent advances in single-cell analysis by mass spectrometry[J]." The Analyst, 2019,144(3):824-845.
[15]DUNCAN K D, FYRESTAM J, LANEKOFF I. Advances in mass spectrometry based single-cell metabolomics[J]." The Analyst, 2019,144(3):782-793.
[16]LAGEVEEN-KAMMEIJER G S M, HAAN N D, MOHAUPT P, et al. Highly sensitive CE-ESI-MS analysis of N-glycans from complex biological samples[J]." Nature Communications, 2019,10(1):2137.
[17]CAO Y Q, ZHANG L, ZHANG J, et al. Single-cell on-probe derivatization-noncontact nanocarbon fiber ionization: unraveling cellular heterogeneity of fatty alcohol and sterol metabolites[J]." Analytical Chemistry, 2020,92(12):8378-8385.
[18]OOMEN P, AREF M A, KAYA I, et al. Chemical analysis of single cells[J]." Analytical Chemistry, 2019,91(1):588-621.
[19]HU K K, NGUYEN T D K, RABASCO S, et al. Chemical analysis of single cells and organelles[J]." Analytical Chemistry, 2021,93(1):41-71.
[20]SVATO A. Single-cell metabolomics comes of age: new developments in mass spectrometry profiling and imaging[J]." Analytical Chemistry, 2011,83(13):5037-5044.
[21]LANNI E J, RUBAKHIN S S, SWEEDLER J V. Mass spectrometry imaging and profiling of single cells[J]." Journal of Proteomics, 2012,75(16):5036-5051.
[22]LIU R, WU P, YANG L, et al. Inductively coupled plasma mass spectrometry-based immunoassay: a review[J]." Mass Spectrometry Reviews, 2014,33(5):373-393.
[23]PRFROCK D, PRANGE A. Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends[J]." Applied Spectroscopy, 2012,66(8):843-868.
[24]BINGS N H, BOGAERTS A, BROEKAERT J A C. Atomic spectroscopy[J]." Analytical Chemistry, 2013,85(2):670-704.
[25]波多野博行,史念東. 高速液相色譜法概論[J]." 分析儀器,1976(1):76-85.
[26]ROOT K, WITTWER Y, BARYLYUK K, et al. Insight into signal response of protein ions in native ESI-MS from the ana-
lysis of model mixtures of covalently linked protein oligomers[J]." Journal of the American Society for Mass Spectrometry, 2017,28(9):1863-1875.
[27]STOLZ A, JOO K, HCKER O, et al. Recent advances in capillary electrophoresis-mass spectrometry: Instrumentation, methodology and applications[J]." Electrophoresis, 2019,40(1):79-112.
[28]CONG Y Z, LIANG Y R, MOTAMEDCHABOKI K, et al. Improved single-cell proteome coverage using narrow-bore packed NanoLC columns and ultrasensitive mass spectrometry[J]." Analytical Chemistry, 2020,92(3):2665-2671.
[29]MONDAL S, KUMAR V, SINGH S P. Oxidative stress measurement in different morphological forms of wild-type and mutant cyanobacterial strains: overcoming the limitation of fluorescence microscope-based method[J]." Ecotoxicology and Environmental Safety, 2020,200:110730.
[30]NASUNO R, SHINO S, YOSHIKAWA Y, et al. Detection
system of the intracellular nitric oxide in yeast by HPLC with a fluorescence detector[J]." Analytical Biochemistry, 2020,598:113707.
[31]李玉桃. 基于納米電化學(xué)探針的神經(jīng)細(xì)胞突觸間隙信號(hào)傳輸過(guò)程研究[D]." 武漢:武漢大學(xué), 2014.
[32]孟君. 超微電極電化學(xué)研究表面活性劑水溶液[D]." 北京:中國(guó)科學(xué)院研究生院(理化技術(shù)研究所), 2009.
[33]蔣靜. 單納米粒子在超微電極上的隨機(jī)碰撞電化學(xué)新方法研究[D]." 廣州:華南理工大學(xué), 2016.
[34]MINNO A D, GELZO M, STORNAIUOLO M, et al. The evolving landscape of untargeted metabolomics[J]." Nutrition, Metabolism, and Cardiovascular Diseases, 2021,31(6):1645-1652.
[35]CHALECKIS R, MEISTER I, ZHANG P, et al. Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics[J]." Current Opinion in Biotechnology, 2019,55:44-50.
[36]TIAN J J, FU G H, XU Z J, et al. Urinary exfoliated tumor single-cell metabolomics technology for establishing a drug resistance monitoring system for bladder cancer with intravesical chemotherapy[J]." Medical Hypotheses, 2020,143:110100.
[37]PUSAPATI R V, DAEMEN A, WILSON C, et al. mTORC1-dependent metabolic reprogramming underlies escape from glycolysis addiction in cancer cells[J]." Cancer Cell, 2016,29(4):548-562.
[38]XIAO Z T, DAI Z W, LOCASALE J W. Metabolic landscape of the tumor microenvironment at single cell resolution[J]." Nature Communications, 2019,10(1):3763.
[39]ZUO F L, YU J, HE X J. Single-cell metabolomics in hematopoiesis and hematological malignancies[J]." Frontiers in Onco-
logy, 2022,12:931393.
[40]MAYER R L, SCHWARZMEIER J D, GERNER M C, et al. Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia[J]." Molecular amp; Cellular Proteomics, 2018,17(2):290-303.
[41]CHAN W K, HORVATH T D, TAN L, et al. Glutaminase activity of L-asparaginase contributes to durable preclinical activity against acute lymphoblastic leukemia[J]." Molecular Cancer Therapeutics, 2019,18(9):1587-1592.
[42]DAGOGO-JACK I, SHAW A T. Tumour heterogeneity and resistance to cancer therapies[J]." Nature Reviews Clinical Oncology, 2018,15(2):81-94.
[43]NOTARANGELO G, SPINELLI J B, PEREZ E M, et al. Oncometabolite d-2HG alters T cell metabolism to impair CD8+ T cell function[J]." Science, 2022,377(6614):1519-1529.
[44]LEI Y L, TANG R, XU J, et al. Applications of single-cell sequencing in cancer research: progress and perspectives[J]." Journal of Hematology amp; Oncology, 2021,14(1):91.
[45]CHEN X X, SUN M, YANG Z B. Single cell mass spectrometry analysis of drug-resistant cancer cells: Metabolomics stu-
dies of synergetic effect of combinational treatment[J]." Analytica Chimica Acta, 2022,1201:339621.
[46]QI M, PHILIP M C, YANG N, et al. Single cell neurometabolomics[J]." ACS Chemical Neuroscience, 2018,9(1):40-50.
[47]REHMAN R, MILLER M, KRISHNAMURTHY S S, et al. Met/HGFR triggers detrimental reactive microglia in TBI[J]." Cell Reports, 2022,41(13):111867.
[48]PE’ER D, OGAWA S, ELHANANI O, et al. Tumor heterogeneity[J]." Cancer Cell, 2021,39(8):1015-1017.
[49]YANG J, HAMADE M, WU Q, et al. Current and future biomarkers in multiple sclerosis[J]." International Journal of Molecular Sciences, 2022,23(11):5877.
[50]INAK G, RYBAK-WOLF A, LISOWSKI P, et al. Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome[J]." Nature Communications, 2021,12(1):1929.
[51]NGUYEN T D, LAN Y P, KANE S S, et al. Single-cell mass spectrometry enables insight into heterogeneity in infectious disease[J]." Analytical Chemistry, 2022,94(30):10567-10572.
[52]DANLOS F X, GRAJEDA-IGLESIAS C, DURAND S, et al. Metabolomic analyses of COVID-19 patients unravel stage-dependent and prognostic biomarkers[J]." Cell Death amp; Disease, 2021,12(3):258.
[53]HU T, ZHANG J L. Mass-spectrometry-based lipidomics[J]." Journal of Separation Science, 2018,41(1):351-372.
[54]HONDO T, OTA C, NAKATANI K, et al. Attempts to detect lipid metabolites from a single cell using proton-transfer-reaction mass spectrometry coupled with micro-scale supercri-
tical fluid extraction: a preliminary study[J]." Mass Spectrometry, 2022,11(1):A0112.
[55]LI Z S, CHENG S M, LIN Q H, et al. Single-cell lipidomics with high structural specificity by mass spectrometry[J]." Nature Communications, 2021,12(1):2869.
[56]COLOM-TATCH M, THEIS F J. Statistical single cell multi-omics integration[J]." Current Opinion in Systems Biology, 2018,7:54-59.
[57]SEYDEL C. Single-cell metabolomics hits its stride[J]." Nature Methods, 2021,18(12):1452-1456.
[58]MISEVIC G. Single-cell omics analyses with single molecular detection: challenges and perspectives[J]." The Journal of Biomedical Research, 2021,35(4):264-276.
[59]LANEKOFF I, SHARMA V V, MARQUES C. Single-cell metabolomics: where are we and where are we going[J]?"" Current Opinion in Biotechnology, 2022,75:102693.
(本文編輯 劉寧)