[摘要] 目的
采用生物信息學(xué)分析方法對(duì)癌癥基因組圖譜(TCGA)數(shù)據(jù)庫中急性髓細(xì)胞白血病(AML)數(shù)據(jù)進(jìn)行分析,建立銅死亡相關(guān)長鏈非編碼RNA(lncRNA)預(yù)后風(fēng)險(xiǎn)模型,并進(jìn)行效能驗(yàn)證。
方法 通過共表達(dá)和單因素Cox回歸分析鑒定與預(yù)后相關(guān)的銅死亡相關(guān)lncRNA。采用lasso回歸和多因素Cox回歸分析選出最優(yōu)的銅死亡相關(guān)lncRNA構(gòu)建預(yù)后風(fēng)險(xiǎn)模型,根據(jù)風(fēng)險(xiǎn)模型評(píng)分將AML病人分為高、低風(fēng)險(xiǎn)組。采用校準(zhǔn)曲線、C指數(shù)、受試者工作特征(ROC)曲線以及臨床決策曲線評(píng)價(jià)預(yù)測(cè)模型。
結(jié)果 共獲得4個(gè)與AML病人預(yù)后相關(guān)性最佳的銅死亡相關(guān)lncRNA(LINC01547、LINC02356、NORAD和AC000120.1),基于此4個(gè)lncRNA構(gòu)建列線圖模型來預(yù)測(cè)AML病人1、3、5年預(yù)后,預(yù)測(cè)的準(zhǔn)確性較高,C指數(shù)為0.686,在訓(xùn)練集中1、3、5年預(yù)后預(yù)測(cè)的ROC曲線下面積分別為0.758、0.717和0.804,在測(cè)試集中則分別為0.704、0.682和0.927。在訓(xùn)練集和測(cè)試集中,高風(fēng)險(xiǎn)組病人的生存率均明顯低于低風(fēng)險(xiǎn)組。
結(jié)論 基于銅死亡相關(guān)lncRNA構(gòu)建的預(yù)后風(fēng)險(xiǎn)模型評(píng)分是一個(gè)獨(dú)立的預(yù)后因素,可有效預(yù)測(cè)AML病人的預(yù)后。
[關(guān)鍵詞] 白血病,髓樣,急性;銅死亡;RNA,長鏈非編碼;預(yù)后;比例危險(xiǎn)度模型
[中圖分類號(hào)] R733.7
[文獻(xiàn)標(biāo)志碼] A
[文章編號(hào)] 2096-5532(2023)06-0826-06
doi:10.11712/jms.2096-5532.2023.59.190
[網(wǎng)絡(luò)出版] https://link.cnki.net/urlid/37.1517.R.20231229.1009.004;2024-01-02 10:47:46
CONSTRUCTION OF A PROGNOSTIC RISK MODEL BASED ON CUPROPTOSIS-RELATED LNCRNAS FOR ACUTE MYELOID LEUKEMIA
XIE Wenjie, WANG Zhichao, GUO Xiaofang, GUAN Hongzai
(Department of Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266071, China)
; [ABSTRACT]ObjectiveTo establish and validate a prognostic risk model based on cuproptosis-related long non-coding RNAs (lncRNAs) for acute myeloid leukemia (AML) using AML data in The Cancer Genome Atlas database through bioinforma-
tic analysis.
MethodsCuproptosis-related lncRNAs associated with AML prognosis were determined by co-expression and univariable Cox regression analyses. Lasso regression and multivariable Cox regression analyses were performed to identify the optimal cuproptosis-related lncRNAs for constructing the prognostic risk model. Patients with AML were divided into high- and low-risk groups according to the risk model. The prediction model was evaluated by using the calibration curve, C index, receiver operating characteristic (ROC) curve, and decision curve.
ResultsFour optimal cuproptosis-related lncRNAs (LINC01547, LINC02356, NORAD, AC000120.1) associated with the prognosis of patients with AML were obtained. The nomogram model based on the four lncRNAs showed high accuracy when predicting the 1, 3, and 5 year outcomes of patients with AML patients. The C index was 0.686. The areas under the ROC curves for 1, 3, and 5 year outcome prediction in the training set were 0.758, 0.717, and 0.804, respectively; and those in the test set were 0.704, 0.682, and 0.927, respectively. In both the training and test sets, the survival rate of the high-risk group was significantly lower than that of the low-risk group.
ConclusionThe risk model score based on cuproptosis-related lncRNAs was an independent prognostic factor, which could effectively predict the prognosis of patients with AML.
[KEY WORDS]leukemia, myeloid, acute; cuproptosis; RNA, long noncoding; prognosis; proportional hazards models
急性髓細(xì)胞白血?。ˋML)是常見的血液系統(tǒng)惡性腫瘤之一,約占所有癌癥的1%[1],其特征是骨髓和外周血中髓系細(xì)胞過度增殖和成熟停止、造血祖細(xì)胞遺傳改變的積累及正常自我更新機(jī)制的改變。AML具有高度異質(zhì)性[2], 臨床表現(xiàn)為貧血、出血、感染和發(fā)熱、臟器浸潤、代謝異常等。AML病人復(fù)發(fā)率高、生存率低、預(yù)后差,影響其風(fēng)險(xiǎn)分層和治療選擇的主要因素包括細(xì)胞遺傳學(xué)和分子學(xué)異常[3]。長鏈非編碼RNA(lncRNA)是一種長度超過200個(gè)核苷酸的非編碼RNA[4],它可以與蛋白質(zhì)、RNA和DNA結(jié)合,通過遺傳印記、染色質(zhì)重塑、細(xì)胞周期調(diào)控、剪接調(diào)控、mRNA降解和翻譯調(diào)控來控制表觀遺傳學(xué)、轉(zhuǎn)錄調(diào)控等機(jī)制中的基因表達(dá)水平[5]。銅死亡參與多種生理和病理過程,銅離子載體和銅螯合劑都具有強(qiáng)大的抗癌活性[6]。有研究表明,含銅雙硫侖可通過激活 ROS-JNK 選擇性根除 AML 干細(xì)胞,同時(shí)抑制核因子κB和Nrf2途徑[7]。然而,銅死亡在AML中的作用尚不清楚。因此,本研究基于銅死亡相關(guān)lncRNA構(gòu)建AML預(yù)后預(yù)測(cè)模型,并進(jìn)行驗(yàn)證,分析該模型的臨床價(jià)值,以更精準(zhǔn)地評(píng)估AML預(yù)后,為其治療提供新的靶點(diǎn)。現(xiàn)將結(jié)果報(bào)告如下。
1 材料與方法
1.1 數(shù)據(jù)收集
在癌癥基因組圖譜(TCGA)數(shù)據(jù)庫(https://portal.gdc.cancer.gov)中收集AML病人的轉(zhuǎn)錄組、突變和臨床數(shù)據(jù)。利用R語言軟件的“l(fā)imma包”將銅死亡基因與AML基因表達(dá)矩陣取交集獲取交集基因的表達(dá)量,輸出銅死亡基因表達(dá)矩陣[8]。隨后,使用Pearson函數(shù)對(duì)銅死亡基因與lncRNA進(jìn)行共表達(dá)相關(guān)性分析。
1.2 銅死亡相關(guān)lncRNA預(yù)后模型的構(gòu)建
從文獻(xiàn)中獲得19個(gè)銅死亡基因[9-10],利用訓(xùn)練集鑒定銅死亡相關(guān)的lncRNA,應(yīng)用測(cè)試集和所有集驗(yàn)證lncRNA特征。采用R軟件中“survival包”中的Cox.ph函數(shù)對(duì)訓(xùn)練集進(jìn)行單因素Cox回歸分析[11],從而獲得與預(yù)后相關(guān)的lncRNA。之后,在1 000次10倍交叉驗(yàn)證的基礎(chǔ)上,再運(yùn)用R軟件中的“glmnet包”對(duì)單因素Cox回歸分析所獲得的lncRNA進(jìn)行l(wèi)asso回歸分析[12-13],獲得lasso相關(guān)的lncRNA。通過多變量Cox回歸分析確定最優(yōu)預(yù)后lncRNA,并使用最佳模型參數(shù)構(gòu)建特征,然后計(jì)算風(fēng)險(xiǎn)評(píng)分。
1.3 生存分析
基于預(yù)后模型的中位數(shù)風(fēng)險(xiǎn)評(píng)分,將訓(xùn)練集、測(cè)試集、所有集中的病人劃分為高風(fēng)險(xiǎn)組和低風(fēng)險(xiǎn)組。運(yùn)用R軟件的“survminer包”生成Kaplan-Meier生存曲線[14],采用log-rank檢驗(yàn)比較各組病人的生存率。
1.4 獨(dú)立預(yù)后分析
采用單因素和多因素Cox回歸分析,評(píng)估本研究構(gòu)建模型的風(fēng)險(xiǎn)評(píng)分是否可以作為獨(dú)立于其他臨床特征的預(yù)后因素對(duì)AML病人生存率和生存狀態(tài)進(jìn)行預(yù)測(cè)。
1.5 預(yù)測(cè)模型評(píng)價(jià)
運(yùn)用R軟件的“rms包”構(gòu)建列線圖[15]。為了評(píng)估列線圖的預(yù)測(cè)準(zhǔn)確性,使用R軟件的“survival包”計(jì)算C指數(shù)來量化列線圖模型的鑒別性能;利用time ROC函數(shù)[16]繪制受試者工作特征(ROC)曲線,采用曲線下面積(AUC)評(píng)估該預(yù)后模型預(yù)測(cè)1、3、5年生存率的準(zhǔn)確性;繪制校準(zhǔn)曲線來評(píng)價(jià)校準(zhǔn)度;進(jìn)行臨床決策曲線分析以評(píng)估不同決策策略的臨床結(jié)果。
2 結(jié)" 果
2.1 訓(xùn)練集和測(cè)試集病人臨床資料比較
在TCGA數(shù)據(jù)庫中收集了130例AML病人的臨床資料,將AML病人按7∶3的比例隨機(jī)分為訓(xùn)練集91例和測(cè)試集39例,訓(xùn)練集與測(cè)試集病人臨床資料比較差異無顯著性(Pgt;0.05)。見表1。
2.2 銅死亡相關(guān)lncRNA的鑒定以及預(yù)后模型的構(gòu)建
以CorFilter=0.6和PFilter<0.001為篩選標(biāo)準(zhǔn),從9 064個(gè)lncRNA中鑒定出443個(gè)與銅死亡基因共表達(dá)的lncRNA。用?;鶊D可視化銅死亡基因和lncRNA的共表達(dá)關(guān)系(圖1A)。使用訓(xùn)練集進(jìn)行
單因素分析后篩選出42個(gè)與AML預(yù)后顯著相關(guān)
的lncRNA(圖1B)。再經(jīng)lasso回歸和多因素Cox回歸分析后,風(fēng)險(xiǎn)模型中最終納入了4個(gè)銅死亡相關(guān)的lncRNA(圖1C、D)。然后根據(jù)4個(gè)lncRNA的表達(dá)計(jì)算每例AML病人風(fēng)險(xiǎn)評(píng)分。風(fēng)險(xiǎn)評(píng)分=LINC01547×0.294+AC000120.1×(-0.640)+LINC02356×0.360+NORAD×(-0.540)。此外,相關(guān)性熱圖展現(xiàn)了銅死亡基因和模型lncRNA之間的相關(guān)性(圖1E)。
2.3 生存分析
在所有集、訓(xùn)練集和測(cè)試集中,高風(fēng)險(xiǎn)組病人的生存率均明顯低于低風(fēng)險(xiǎn)組(圖2A~C)。另外,風(fēng)險(xiǎn)曲線反映了AML病人風(fēng)險(xiǎn)評(píng)分與生存狀態(tài)之間的關(guān)系,在所有集、訓(xùn)練集和測(cè)試集中高風(fēng)險(xiǎn)組病人的病死率均高于低風(fēng)險(xiǎn)組(圖2D~F)。
2.4 獨(dú)立預(yù)后分析
本研究多因素Cox回歸分析結(jié)果顯示,風(fēng)險(xiǎn)評(píng)分(HR=1.480,95%CI=1.263~1.734,P<0.001)可以作為AML病人的獨(dú)立預(yù)后指標(biāo)(圖3A、B)。
ROC曲線分析結(jié)果顯示,在各臨床參數(shù)中,預(yù)后模型風(fēng)險(xiǎn)評(píng)分的AUC最大,說明模型預(yù)測(cè)AML病人預(yù)后較其他臨床參數(shù)(年齡、性別、FAB分型)更為準(zhǔn)確(圖3C)。
2.5 列線圖模型的評(píng)價(jià)
基于4個(gè)lncRNA構(gòu)建了列線圖模型來預(yù)測(cè)AML病人1、3、5年預(yù)后(圖4A)。對(duì)列線圖模型進(jìn)行評(píng)估,在區(qū)分度方面,C指數(shù)為0.686,在訓(xùn)練集中1、3、5年預(yù)后預(yù)測(cè)的AUC分別為0.758、0.717和0.804(圖4B),在測(cè)試集中AUC則分別為0.704、0.682和0.927(圖4C),表明模型預(yù)測(cè)預(yù)后的準(zhǔn)確性較高。在校準(zhǔn)度方面,訓(xùn)練集和測(cè)試集校準(zhǔn)曲線表明,模型預(yù)測(cè)與實(shí)際觀察結(jié)果之間具有良好的一致性(圖4D、E)。在臨床適用度方面,訓(xùn)練集和測(cè)試集中列線圖模型閾值概率明顯優(yōu)于閾值概率gt;0.05的默認(rèn)策略(圖4F、G)。
3 討" 論
AML是一種髓系造血干/祖細(xì)胞克隆性增殖的異質(zhì)性疾病,其主要特征為髓系原始細(xì)胞異常增生,抑制正常骨髓的造血功能,出現(xiàn)血細(xì)胞減少以及白血病細(xì)胞異常增殖浸潤的表現(xiàn)。白血病對(duì)人類健康的危害極大,年輕AML病人的5年總生存率低于
50%,而老年AML病人在診斷后2年總生存率僅為20%[17]。到目前為止,盡管AML的治療方式和治療效果有很大改善,但其總體生存率依舊較低,因此急需新的生物標(biāo)志物,以早期檢出AML,開展個(gè)性化治療,提高病人的生存率。銅死亡是新發(fā)現(xiàn)的銅依賴的細(xì)胞死亡方式,與多種疾病有密切關(guān)系。另外,lncRNA作為生物標(biāo)志物已經(jīng)得到廣泛研究,但目前銅死亡相關(guān)lncRNA的報(bào)道較少。因此,本研究基于TCGA數(shù)據(jù)庫構(gòu)建銅死亡相關(guān)lncRNA預(yù)后風(fēng)險(xiǎn)模型來預(yù)測(cè)AML病人的預(yù)后,利用新的生物標(biāo)志物提高AML的早期檢出率,并預(yù)測(cè)可能的治療靶點(diǎn)。
本研究通過對(duì)TCGA數(shù)據(jù)庫中AML轉(zhuǎn)錄組和臨床數(shù)據(jù)進(jìn)行l(wèi)asso和多因素Cox回歸分析,共篩選出4個(gè)(LINC01547、AC000120.1、LINC02356和NORAD)最優(yōu)的具有獨(dú)立預(yù)后價(jià)值的銅死亡相關(guān)lncRNA。有研究報(bào)道,LINC01547作為一種高危的lncRNA,能夠預(yù)測(cè)卵巢癌病人的預(yù)后[18]。另一項(xiàng)研究結(jié)果表明,與健康人相比較,在對(duì)放療部分敏感或不敏感的直腸腫瘤病人中,LINC01547表達(dá)量升高,lncRNA-mRNA復(fù)合體減少,從而減少了對(duì)下游mRNA的靶向調(diào)控,進(jìn)而影響DNA損傷修復(fù)和凋亡功能[19]。NORAD參與了多種癌癥的進(jìn)展,在一些癌組織和細(xì)胞中高表達(dá),可以作為腫瘤促進(jìn)劑[20]。在胃癌中,NORAD通過靶向miR-125a-3p激活了RhoA/ROCK信號(hào)通路[21],進(jìn)而上調(diào)的NORAD通過海綿miR-214調(diào)節(jié)Akt/mTOR信號(hào)通路[22]。在膀胱癌中,NORAD可以作為潛在的預(yù)后和治療生物標(biāo)志物[23]。在肝癌中,NORAD通過調(diào)節(jié)miR-202-5p和miR-144-3p表達(dá)促進(jìn)肝癌的進(jìn)展[24]。在胰腺癌中,NORAD可以提高RhoA的表達(dá),充當(dāng)miR-125a-3p的海綿,與預(yù)后不良有關(guān)[25]。此外,NORAD是食管鱗狀細(xì)胞癌體外和體內(nèi)順鉑耐藥的關(guān)鍵lncRNA。NORAD充當(dāng)海綿吸附miR-224-3p上調(diào)順鉑抗性食管鱗狀細(xì)胞中的異黏蛋白,通過NORAD/miR-224-3p/MTDH軸促進(jìn)β連環(huán)蛋白的核積累,從而上調(diào)順鉑的抗性[26]。雖然在多種癌癥中已有研究,但LINC01547和NORAD在白血病中的作用尚未見報(bào)道。此外,LINC02356和AC000120.1與白血病的相關(guān)研究也尚未見報(bào)道,還需要更多研究對(duì)其意義進(jìn)行探討。這些銅死亡相關(guān)lncRNA可能可以幫助我們更好地了解AML,并為癌癥治療找到新的靶點(diǎn)。
本研究根據(jù)風(fēng)險(xiǎn)評(píng)分的中位數(shù)將AML病人分為高風(fēng)險(xiǎn)組和低風(fēng)險(xiǎn)組,生存分析結(jié)果顯示,在所有集、訓(xùn)練集和測(cè)試集中,與低風(fēng)險(xiǎn)組相比,高風(fēng)險(xiǎn)組病人生存率明顯降低。從風(fēng)險(xiǎn)評(píng)分圖來看,隨著風(fēng)險(xiǎn)評(píng)分的增加,高風(fēng)險(xiǎn)組病人死亡數(shù)明顯增加,且大部分高風(fēng)險(xiǎn)組病人已經(jīng)死亡。獨(dú)立預(yù)后分析表明,風(fēng)險(xiǎn)評(píng)分可以作為AML病人的獨(dú)立預(yù)后因素。用ROC曲線驗(yàn)證風(fēng)險(xiǎn)評(píng)分的預(yù)測(cè)準(zhǔn)確性,結(jié)果顯示,列線圖模型預(yù)測(cè)AML病人1、3、5年預(yù)后的AUC較大,表明模型預(yù)測(cè)預(yù)后的準(zhǔn)確性較高。另外,校準(zhǔn)曲線分析顯示,模型預(yù)測(cè)結(jié)果與實(shí)際觀察結(jié)果之間具有良好的一致性。以上結(jié)果表明,基于4個(gè)銅死亡相關(guān)lncRNA構(gòu)建的風(fēng)險(xiǎn)模型預(yù)測(cè)臨床預(yù)后的效能顯著優(yōu)于其他臨床因素,模型風(fēng)險(xiǎn)評(píng)分的增加與AML的進(jìn)展明顯相關(guān)。
總之,本研究成功構(gòu)建了基于4個(gè)銅死亡相關(guān)lncRNA的AML預(yù)后風(fēng)險(xiǎn)模型。然而,由于偏差和商用微陣列數(shù)據(jù)的局限性以及數(shù)據(jù)中沒有相關(guān)的生存信息,本研究不能獲得基因表達(dá)綜合(GEO)和國際癌癥基因組聯(lián)盟(ICGC)等數(shù)據(jù)庫中的數(shù)據(jù)來進(jìn)一步驗(yàn)證。本研究構(gòu)建的模型有助于更精準(zhǔn)地評(píng)估AML病人的預(yù)后,為其治療提供新的靶點(diǎn)。另外,目前并沒有銅死亡與AML發(fā)生、發(fā)展有直接聯(lián)系的確鑿證據(jù),本研究有助于進(jìn)一步探索銅死亡相關(guān)lncRNA在AML中的作用。
[參考文獻(xiàn)]
[1]MOLICA M, BRECCIA M, FOA R, et al. Maintenance the-
rapy in AML: the past, the present and the future[J]." American Journal of Hematology, 2019,94(11):1254-1265.
[2]ESTEY E, DHNER H. Acute myeloid leukaemia[J]." Lancet (London, England), 2006,368(9550):1894-907.
[3]LINDSLEY R C, MAR B G, MAZZOLA E, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations[J]." Blood, 2015,125(9):1367-1376.
[4]BATISTA P J, CHANG H Y. Long noncoding RNAs: cellular address codes in development and disease[J]." Cell, 2013,152(6):1298-1307.
[5]TAN Y T, LIN J F, LI T, et al. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer[J]." Cancer Communications (London, England), 2021,41(2):109-120.
[6]OLIVERI V. Selective targeting of cancer cells by copper ionophores: an overview[J]." Frontiers in Molecular Biosciences, 2022,9:841814.
[7]XU B, WANG S Y, LI R W, et al. Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo
by simultaneous induction of ROS-JNK and inhibition of NF-κB and Nrf2[J]." Cell Death amp; Disease, 2017,8(5):e2797.
[8]RITCHIE M E, PHIPSON B, WU D, et al. Limma Powers differential expression analyses for RNA-sequencing and microarray studies[J]." Nucleic Acids Research, 2015,43(7):e47.
[9]TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]." Science (New York, N Y), 2022,375(6586):1254-1261.
[10]DONG J J, WANG X, XU C C, et al. Inhibiting NLRP3 inflammasome activation prevents copper-induced neuropathology in a murine model of Wilson’s disease[J]." Cell Death amp; Disease, 2021,12(1):87.
[11]SUNDRANI S, LU J. Computing the hazard ratios associated with explanatory variables using machine learning models of survival data[J]." JCO Clinical Cancer Informatics, 2021,5:364-378.
[12]ENGEBRETSEN S, BOHLIN J. Statistical predictions with glmnet[J]." Clinical Epigenetics, 2019,11(1):123.
[13]YAN C, NIU Y D, MA L K, et al. System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma[J]." Journal of Translational Medicine, 2022,20(1):452.
[14]YUAN Y, XIE W H, LI R Z, et al. Comprehensive treatment experience of anal squamous cell carcinoma from a tertiary cancer center in South China[J]." Cancer Medicine, 2022,11(1):117-127.
[15]HE S H, JIANG R Y, SUN H T, et al. Surgical efficacy and survival prediction of patients with unspecified malignant bone tumors[J]." BMC Cancer, 2022,22(1):1078.
[16]CAO R, LPEZ-DE-ULLIBARRI I. ROC curves for the statistical analysis of microarray data[J]." Methods in Molecular Biology (Clifton, N J), 2019, 1986:245-253.
[17]ESTEY E H. Acute myeloid leukemia:2019 update on risk-stratification and management[J]." American Journal of Hematology, 2018,93(10):1267-1291.
[18]LI N, ZHAN X Q. Identification of clinical trait-related lncRNA and mRNA biomarkers with weighted gene co-expression network analysis as useful tool for personalized medicine in ovarian cancer[J]." EPMA Journal, 2019,10(3):273-290.
[19]KUTILIN D S, GUSAREVA M A, KOSHELEVA N G, et al. Regulatory network of competitively interacting RNAs and effectiveness of rectal tumors radiotherapy[J]." Klinicka Onko-
logie: Casopis Ceske a Slovenske Onkologicke Spolecnosti, 2022,35(4):297-306.
[20]YANG Z, ZHAO Y Q, LIN G F, et al. Noncoding RNA activated by DNA damage (NORAD): Biologic function and mechanisms in human cancers[J]." Clinica Chimica Acta; International Journal of Clinical Chemistry, 2019,489:5-9.
[21]YU S Y, PENG H, ZHU Q, et al. Silencing the long nonco-
ding RNA NORAD inhibits gastric cancer cell proliferation and invasion by the RhoA/ROCK1 pathway[J]." European Review for Medical and Pharmacological Sciences, 2019,23(9):3760-3770.
[22]TAO W, LI Y J, ZHU M, et al. LncRNA NORAD promotes proliferation and inhibits apoptosis of gastric cancer by regulating miR-214/Akt/mTOR axis[J]." OncoTargets and Therapy, 2019,12:8841-8851.
[23]LI Q Q, LI C, CHEN J B, et al. High expression of long noncoding RNA NORAD indicates a poor prognosis and promotes clinical progression and metastasis in bladder cancer[J]." Urologic Oncology, 2018,36(6):310.e15-310.e22.
[24]YANG X, CAI J B, PENG R, et al. The long noncoding RNA NORAD enhances the TGF-β pathway to promote hepatocellular carcinoma progression by targeting miR-202-5p[J]." Journal of Cellular Physiology, 2019,234(7):12051-12060.
[25]LI H Z, WANG X J, WEN C L, et al. Long noncoding RNA NORAD, a novel competing endogenous RNA, enhances the hypoxia-induced epithelial-mesenchymal transition to promote metastasis in pancreatic cancer[J]." Molecular Cancer, 2017,16(1):169.
[26]JIA Y L, TIAN C, WANG H Y, et al. Long non-coding RNA NORAD/miR-224-3p/MTDH axis contributes to CDDP resistance of esophageal squamous cell carcinoma by promoting nuclear accumulation of β-catenin[J]." Molecular Cancer, 2021,20(1):162.
(本文編輯 馬偉平)