潘陽(yáng)陽(yáng),王靖雷,王萌,王立斌,張倩,陳睿,張?zhí)鹛?,崔燕,徐庚全,樊江峰,余四?/p>
牦牛早期胚胎核旁斑點(diǎn)形成及對(duì)后續(xù)發(fā)育的影響
1甘肅農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院,蘭州 730070;2甘肅省牛羊胚胎工程技術(shù)研究中心,蘭州 730070
【目的】明確牦牛早期胚胎發(fā)育過(guò)程中核旁斑點(diǎn)形成的關(guān)鍵時(shí)期,確定其參與形成長(zhǎng)鏈非編碼RNA(Long non-coding RNA,LncRNAs),探索核旁斑點(diǎn)形成對(duì)后續(xù)胚胎發(fā)育能力的影響及調(diào)控機(jī)制?!痉椒ā矿w外受精生產(chǎn)牦牛胚胎,DAPI染色標(biāo)記結(jié)合核旁斑點(diǎn)結(jié)構(gòu)蛋白1(paraspeckle Protein 1,)mRNA實(shí)時(shí)熒光定量PCR(real-time fluorescence quantitative PCR,qRT-PCR)檢測(cè)確定牦牛早期胚胎發(fā)育核旁斑點(diǎn)形成關(guān)鍵時(shí)期,免疫熒光技術(shù)驗(yàn)證胚胎PSPC1蛋白表達(dá)水平;qRT-PCR檢測(cè)核旁斑點(diǎn)形成相關(guān)LncRNAs核旁斑點(diǎn)組裝轉(zhuǎn)錄因子1(encoding nuclear paraspeckle assembly transcript 1,)、共激活因子相關(guān)的精氨酸甲基轉(zhuǎn)移酶1(coactivator associated arginine methyltransferase 1,)及54 kD核結(jié)合蛋白(non-POU domain containing octamer-binding protein,)mRNA在各時(shí)期胚胎中表達(dá)水平;RNA干擾技術(shù)抑制合子mRNA水平,比較后續(xù)各階段胚胎發(fā)育率,通過(guò)分析囊胚細(xì)胞總數(shù)、滋養(yǎng)層細(xì)胞數(shù)(trophoblast cells,TE)、內(nèi)細(xì)胞團(tuán)數(shù)(inner cell mass,ICM)評(píng)估囊胚質(zhì)量;檢測(cè)對(duì)照組和mRNA干擾組囊胚中B-細(xì)胞淋巴瘤/白血病-2原癌基因(B-celllymphoma/leukemia-2,Bcl-2)和B細(xì)胞淋巴瘤/白血病基因伴隨蛋白x(B-cell lymphoma/leukemia associatedx protein,Bax)表達(dá)水平?!窘Y(jié)果】(1)在不同發(fā)育階段胚胎細(xì)胞的細(xì)胞核均可觀察到核旁斑點(diǎn),但2-細(xì)胞和4-細(xì)胞時(shí)期胚胎細(xì)胞核中核旁斑點(diǎn)更為清晰,2-細(xì)胞至桑椹胚階段mRNA呈現(xiàn)高水平表達(dá),其中4-細(xì)胞到桑椹胚階段mRNA水平最高,PSPC1蛋白熒光強(qiáng)度在此階段最強(qiáng)。(2)、及mRNA均在2-細(xì)胞到桑椹胚階段呈現(xiàn)高水平表達(dá),其中和在4細(xì)胞時(shí)期水平最高,在2-細(xì)胞到桑椹胚3個(gè)階段表達(dá)水平差異不顯著(>0.05)。(3)mRNA干擾組桑椹胚與囊胚發(fā)育率均顯著降低,且桑椹胚發(fā)育率降低幅度高于囊胚,mRNA干擾組囊胚細(xì)胞總數(shù)顯著低于對(duì)照組,其中以ICM細(xì)胞數(shù)降低為主,TE細(xì)胞數(shù)在兩組之間差異不顯著。(4)mRNA干擾處理組囊胚中促細(xì)胞凋亡因子mRNA和蛋白均顯著增加,抑凋亡相關(guān)因子mRNA和蛋白降低,且囊胚中內(nèi)細(xì)胞團(tuán)發(fā)生裂解。【結(jié)論】牦牛早期胚胎發(fā)育核旁斑點(diǎn)形成的關(guān)鍵時(shí)期為2-細(xì)胞至桑椹胚階段,其中主要集中在4-細(xì)胞時(shí)期,且PSPC1、NEAT1、CRAM1、p54nrb在核旁斑點(diǎn)形成時(shí)期呈高水平表達(dá)。干擾牦牛合子mRNA導(dǎo)致后續(xù)胚胎發(fā)育能力降低,并通過(guò)誘導(dǎo)ICM凋亡降低囊胚質(zhì)量,影響囊胚中細(xì)胞命運(yùn)決定。
牦牛;核旁斑點(diǎn);細(xì)胞命運(yùn);細(xì)胞凋亡;長(zhǎng)鏈非編碼RNA(LncRNAs)
【研究意義】核旁斑點(diǎn)為核小體的一種,是在哺乳動(dòng)物細(xì)胞核內(nèi)發(fā)現(xiàn)的一種新型亞細(xì)胞器結(jié)構(gòu)[1],其通過(guò)長(zhǎng)鏈非編碼RNA(long non-coding RNA,LncRNAs)介導(dǎo)形成,參與細(xì)胞核重定位、染色質(zhì)重組、組蛋白修飾等多種生理應(yīng)答,也可滯留細(xì)胞核內(nèi)RNA,調(diào)控特定基因表達(dá),阻止某些RNA與靶標(biāo)蛋白結(jié)合,限制相關(guān)生物學(xué)功能,如影響小鼠早期胚胎發(fā)育細(xì)胞分化、抵抗外源病原體感染、調(diào)節(jié)機(jī)體和細(xì)胞適應(yīng)低氧環(huán)境應(yīng)激等[2-4]。以不同哺乳動(dòng)物早期發(fā)育胚胎為試驗(yàn)材料,探索核旁斑點(diǎn)形成關(guān)鍵時(shí)期,明確其形成分子機(jī)制及對(duì)后續(xù)胚胎發(fā)育能力的調(diào)控,有助于從環(huán)境應(yīng)激和細(xì)胞命運(yùn)決定等理論層面改善胚胎發(fā)育質(zhì)量,促進(jìn)家畜體外胚胎生產(chǎn)、胚胎干細(xì)胞分離培養(yǎng)等技術(shù)的發(fā)展?!厩叭搜芯窟M(jìn)展】核旁斑點(diǎn)最早于2002年發(fā)現(xiàn)于Hela細(xì)胞[5],隨后在多種哺乳動(dòng)物組織和細(xì)胞均發(fā)現(xiàn)存在核旁斑點(diǎn),由于其最早發(fā)現(xiàn)在細(xì)胞核染色體空隙中,因此被命名為核旁斑點(diǎn)(paraspeckles),在這些細(xì)胞核特殊結(jié)構(gòu)中發(fā)現(xiàn)了一種新的蛋白被稱為核旁斑點(diǎn)蛋白1(paraspeckle protein 1,PSPC1),目前許多學(xué)者通過(guò)PSPC1免疫標(biāo)記分析核旁斑點(diǎn)數(shù)量及大小[6]。研究發(fā)現(xiàn)有大量LncRNAs位于該特殊細(xì)胞核結(jié)構(gòu),是其結(jié)合蛋白關(guān)鍵位置,且核旁斑點(diǎn)形成依賴于LncRNAs合成,其可作為開(kāi)放的細(xì)胞核系統(tǒng),進(jìn)行分子自由交換[6]。LncRNAs為核旁斑點(diǎn)結(jié)構(gòu)建立了基本支架,主要以核旁斑點(diǎn)組裝轉(zhuǎn)錄因子1(encoding nuclear paraspeckle assembly transcript 1,)為主,其持續(xù)轉(zhuǎn)錄是維持核旁斑點(diǎn)結(jié)構(gòu)完整性的必要條件,也可通過(guò)核旁斑點(diǎn)調(diào)控其他基因轉(zhuǎn)錄。和其協(xié)同因子54 kD核結(jié)合蛋白(Non-POU domain containing octamer- binding protein,)有助于共激活因子相關(guān)精氨酸甲基轉(zhuǎn)移酶1(coactivator associated arginine methyltransferase 1,)和核旁斑點(diǎn)之間結(jié)合,導(dǎo)致蛋白修飾出現(xiàn)差異,相反CARM1又影響核旁斑點(diǎn)形成[7-8]。除此之外,通過(guò)干細(xì)胞研究發(fā)現(xiàn)可調(diào)控關(guān)鍵多能性細(xì)胞因子八聚體結(jié)合轉(zhuǎn)錄因子(octamer-binding transcription factor 4,OCT4)轉(zhuǎn)錄,其在哺乳動(dòng)物早期胚胎發(fā)育過(guò)程參與細(xì)胞命運(yùn)決定調(diào)控。低氧條件下,細(xì)胞可通過(guò)低氧誘導(dǎo)因子家族(hypoxia inducible factors,HIFs)介導(dǎo)而表達(dá)NEAT1,其再作為調(diào)節(jié)子誘導(dǎo)核旁斑點(diǎn)形成,提高細(xì)胞對(duì)低氧適應(yīng)性,當(dāng)氧氣濃度恢復(fù)正常時(shí)核旁斑點(diǎn)消失[9]。利用毒性干擾素處理動(dòng)物細(xì)胞,蛋白酶體可導(dǎo)致NEAT1聚集點(diǎn)成熟核旁斑點(diǎn)釋放延遲,進(jìn)而調(diào)控B-細(xì)胞淋巴瘤/白血病-2原癌基因(B-celllymphoma/ leukemia-2,Bcl-2)和B細(xì)胞淋巴瘤/白血病基因伴隨蛋白x(B-cell lymphoma/leukemia associatedx protein,Bax)表達(dá)促進(jìn)細(xì)胞凋亡[10]?!颈狙芯壳腥朦c(diǎn)】牦牛因長(zhǎng)期生活在青藏高原,獨(dú)特的生殖環(huán)境影響機(jī)體相關(guān)基因和蛋白表達(dá),使其具備獨(dú)特生殖調(diào)控特性。已有研究顯示,牦牛胚胎或生殖細(xì)胞體外發(fā)育過(guò)程受低氧誘導(dǎo)因子(hypoxia-inducible factor, HIF-1α)[11]、熱休克蛋白(heat shock proteins, HSPs)[12]、冷誘導(dǎo)RNA結(jié)合蛋白(cold inducible RNA-binding protein, CIRP)等高寒低氧相關(guān)因子調(diào)控[13]。在表皮生長(zhǎng)因子(epidermal growth factor, EGF)和胰島素生長(zhǎng)因子(insulin-like growth factor, IGF)作用下,不僅可以通過(guò)減少細(xì)胞凋亡提高牦牛體外胚胎發(fā)育能力,而且可通過(guò)調(diào)控高寒環(huán)境相關(guān)因子影響囊胚質(zhì)量,改變囊胚中不同命運(yùn)細(xì)胞分布[14]??梢?jiàn)高寒低氧環(huán)境哺乳動(dòng)物胚胎體外發(fā)育過(guò)程細(xì)胞分化、囊胚質(zhì)量和囊胚附植能力的體外調(diào)控機(jī)制均具有自身獨(dú)特性[13, 15-16]。【擬解決的關(guān)鍵問(wèn)題】本研究以附植前不同階段的牦牛胚胎為試驗(yàn)材料,探索高寒哺乳動(dòng)物早期胚胎發(fā)育核旁斑點(diǎn)的形成關(guān)鍵時(shí)期,分析其對(duì)胚胎發(fā)育能力的影響及其潛在調(diào)控機(jī)制,為進(jìn)一步解析哺乳動(dòng)物胚胎發(fā)育過(guò)程中核旁斑點(diǎn)形成機(jī)制和生理功能提供關(guān)鍵信息。
M199卵母細(xì)胞成熟培養(yǎng)液,促卵泡生成素(follicle- stimulating hormone,F(xiàn)SH)、促黃體生成素(luteinizing hormone,LH)和雌二醇(Estradiol,E2)均購(gòu)自美國(guó)Sigma公司,G1/G2液購(gòu)自瑞典Vitrolife公司;CDX2(ab88129)、Bax(ab32503)、PSPC1(ab104238)和Bcl-2(ab117115)一抗購(gòu)自Abcam公司;二抗均購(gòu)自北京博奧森生物公司,微量細(xì)胞RNA提取、cDNA合成試劑盒購(gòu)自美國(guó)Invitrogen公司、SYBR GreenⅡ試劑盒購(gòu)自Takara生物公司,細(xì)胞蛋白提取試劑盒購(gòu)自北京英文特生物技術(shù)公司,試驗(yàn)中所用到的其他試劑均購(gòu)買于南京碧云天生物公司。
牦牛卵巢于2020年10—11月采集于甘肅省臨夏自治州牛羊屠宰場(chǎng),采集卵巢置于30—35℃含有雙抗的生理鹽水中,4 h內(nèi)帶回實(shí)驗(yàn)室,用預(yù)熱生理鹽水沖洗3—5遍,從直徑大小約為5—8 mm卵泡中抽取牦牛卵母細(xì)胞,體視顯微鏡下篩選形態(tài)完整的卵丘卵母細(xì)胞復(fù)合體(cumulus-oocyte complexes,COCs),清洗3遍,參照前期建立的牦牛卵母細(xì)胞成熟培養(yǎng)方法與體系進(jìn)行體外成熟培養(yǎng)[15]。24 h后取出成熟COCs生產(chǎn)體外受精胚胎。
取出2—4支牦牛凍精,37℃溫水快速水浴解凍,上浮法處理凍精并調(diào)整精子密度至約3×106個(gè)/mL,轉(zhuǎn)移到四孔板,每孔約400 μL,并用200 μL礦物油覆蓋。將成熟COCs用受精液清洗3—5次后,轉(zhuǎn)移到含有精子的四孔板,每孔約40枚COCs,培養(yǎng)箱中共孵育16 h。取出COCs至預(yù)熱DPBS液,吹打脫除卵丘細(xì)胞,將合子移入G1液,清洗3遍,每100 μL G1液微滴移入20枚合子,置于條件為38℃、5% CO2的細(xì)胞培養(yǎng)箱,96 h后移入G2液繼續(xù)培養(yǎng),分別在受精完成后12、36、48、96、168 h收集合子、2-細(xì)胞、4-細(xì)胞、桑椹胚和囊胚(圖1)用于后續(xù)試驗(yàn)。
根據(jù)Genbank 公布的牛mRNA序列(NM_001075277.1),利用siDirect version 2.0軟件設(shè)計(jì)篩選出3條干擾mRNA序列siRNA(表1),由上海吉瑪制藥生物技術(shù)公司合成。合子培養(yǎng)12 h,先后選取240枚形態(tài)完整合子(3條siRNA組+對(duì)照組,每組20枚胚胎,3個(gè)重復(fù)),置于含有7.5 μg·mL-1細(xì)胞松弛素B和5 %血清的D-PBS微滴,50枚/微滴,礦物油覆蓋后繼續(xù)37 ℃平衡10 min,利用顯微操作儀將約0.1 μL含有siRNA(100 pg)核酸溶液注射到合子內(nèi)。siRNA注射結(jié)束后將合子清洗3遍,按照每100 μL G1液20枚胚胎培養(yǎng)48 h,棄掉未卵裂胚胎,調(diào)整到20枚/100 μL后繼續(xù)培養(yǎng),96 h后檢測(cè)桑椹胚mRNA表達(dá)水平確定最優(yōu)siRNA,再設(shè)最優(yōu)siRNA處理組和對(duì)照組,每組200枚胚胎,3個(gè)重復(fù)繼續(xù)培養(yǎng),于96和168 h統(tǒng)計(jì)桑椹胚與囊胚發(fā)育率,囊胚繼續(xù)用于后續(xù)試驗(yàn)。
A:合子;B:2-4細(xì)胞胚胎(黑色箭頭);C:4細(xì)胞-桑椹胚階段細(xì)胞胚胎;黑色箭頭為4-細(xì)胞胚胎,藍(lán)色箭頭為桑葚胚;D:囊胚(黑色箭頭)
表1 干擾牦牛PSPC1 mRNA的siRNAs信息
對(duì)照組中收集不同發(fā)育時(shí)期胚胎各3枚,洗滌3遍后用熒光染色固定液25 ℃作用約1 h,清洗3遍,用含有0.25%TritonX-100熒光染色封閉液25 ℃作用1 h,清洗3遍,用含有2.5 ng·mL-1DAPI 的PBS避光25 ℃作用3 min,清洗3遍,將胚胎轉(zhuǎn)移到載玻片,GE DeltaVision Elite活細(xì)胞工作站檢測(cè)胚胎細(xì)胞核形態(tài)。在收集對(duì)照組胚胎時(shí),根據(jù)圖1形態(tài)學(xué)觀察,以處理后4-細(xì)胞胚胎數(shù)為基數(shù),統(tǒng)計(jì)最優(yōu)siRNA干擾mRNA組和對(duì)照組桑椹胚發(fā)育率,以桑椹胚為基數(shù)統(tǒng)計(jì)兩組囊胚率。
1.5.1 不同時(shí)期胚胎中、、和基因檢測(cè) 收集對(duì)照組各發(fā)育時(shí)期胚胎,每個(gè)時(shí)期10枚胚胎,根據(jù)微量細(xì)胞與胚胎RNA提取試劑盒(Invitrogen)說(shuō)明提取mRNA,按照cDNA合成試劑盒說(shuō)明合成cDNA,-20 ℃保存?zhèn)溆谩?/p>
參照Genbank公布的牛mRNA和、和序列設(shè)計(jì)引物,具體序列信息和qRT-PCR反應(yīng)條件見(jiàn)表2。反應(yīng)體系為cDNA 1.25 μL,上、下游引物各0.6 μL,使其終濃度為0.25 μmol·mL-1,SYBR GreenⅡ 熒光定量PCR Mix(2×)10 μL,用ddH2O調(diào)整最終體積為20 μL,放入Roche 480實(shí)時(shí)熒光定量RCR儀器。反應(yīng)條件為:95 ℃預(yù)變性20 s,95 ℃變性10 s,退火 10 s(反應(yīng)溫度見(jiàn)表2),72 ℃延伸10 s,共40個(gè)循環(huán),-actin作為參照基因,采用相對(duì)定量法計(jì)算基因表達(dá)水平,合子作為對(duì)照組[17]。
表2 試驗(yàn)所用引物信息表
1.5.2 不同時(shí)期胚胎中PSPC1蛋白檢測(cè) 根據(jù)表達(dá)水平檢測(cè)結(jié)果,采用熒光免疫檢測(cè)其高表達(dá)時(shí)期PSPC1蛋白表達(dá)與定位,每個(gè)時(shí)期取3枚胚胎,洗滌3遍后用熒光免疫染色固定液25 ℃固定約1 h,用含有0.25%TritonX-100的熒光染色封閉液25 ℃作用2 h,加入PSPC1一抗(1﹕400)4 ℃過(guò)夜孵育,清洗3遍,用AlexaFluor488標(biāo)記的二抗25 ℃孵育2 h,清洗3遍,用2.5 ng·mL-1DAPI 避光25 ℃作用3 min,清洗3遍,GE DeltaVision Elite活細(xì)胞工作站檢測(cè)胚胎中PSPC1蛋白表達(dá)。
1.6.1 囊胚細(xì)胞數(shù)統(tǒng)計(jì) 最優(yōu)siRNA干擾mRNA處理組和對(duì)照組中各選囊胚5枚,參照1.5.2 PSPC1蛋白染色方法,用CDX2(1﹕100)作為一抗標(biāo)記囊胚,AlexaFluor488標(biāo)記二抗與CDX2抗體反應(yīng),用2.5 ng·mL-1DAPI標(biāo)記囊胚中所有細(xì)胞的細(xì)胞核,將不同熒光標(biāo)記的囊胚置于GE DeltaVision Elite活細(xì)胞工作站成像,參照筆者前期研究方法分別計(jì)算囊胚中的內(nèi)細(xì)胞團(tuán)(inner cell mass,ICM)細(xì)胞數(shù)、滋養(yǎng)層細(xì)胞(trophectoderm,TE)數(shù)和總細(xì)胞數(shù)[15]。
1.6.2 不同處理組囊胚細(xì)胞凋亡相關(guān)因子檢測(cè) 最優(yōu)siRNA干擾mRNA處理組和對(duì)照組選取囊胚,每個(gè)重復(fù)選5枚,參照1.5.1方法提取囊胚mRNA,反轉(zhuǎn)錄合成第一鏈cDNA,利用qRT-PCR技術(shù)檢測(cè)不同處理組囊胚中和mRNA表達(dá)水平,采用相對(duì)定量法進(jìn)行比較兩組之間表達(dá)差異。
選取siRNA干擾mRNA處理組和對(duì)照組選取囊胚各20枚,參照細(xì)胞蛋白提取試劑盒(英文特,SD-001)說(shuō)明提取總蛋白,將蛋白與5×上樣緩沖液SDS混合,水浴變性10 min,加入蛋白樣品,利用十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳(Sodium dodecyl sulfate polyacrylamidegel electrophoresis,SDS-PAGE)分離蛋白,電轉(zhuǎn)膜至0.45 μmol·L-1的聚偏二氟乙烯膜(Polyvinylidene fluoride,PVDF)上,封閉2 h后在對(duì)應(yīng)的PVDF膜上加入Bax和Bcl抗體,4 ℃過(guò)夜孵育,清洗3遍,用辣根過(guò)氧化物酶(horse radish peroxidase,HRP)標(biāo)記二抗37 ℃作用1 h,清洗3遍,采用電化學(xué)發(fā)光(electrochemiluminescence,ECL)試劑在蛋白成像儀(Tanon 2500)內(nèi)曝光,拍攝清晰蛋白條帶,根據(jù)蛋白條帶光密度采用相對(duì)定量方法計(jì)算比較蛋白表達(dá)差異。
同時(shí)參照1.5.2 PSPC1蛋白染色方法,先后用Bax(1﹕500)和Bcl-2(1﹕800)抗體作為一抗孵育囊胚,在分別用AlexaFluor488和異硫氰酸熒光素(fluorescein isothiocyanate,F(xiàn)ITC)標(biāo)記二抗與Bax和Bcl-2抗體反應(yīng),用2.5 ng·mL-1DAPI標(biāo)記囊胚中所有細(xì)胞的細(xì)胞核,將不同熒光標(biāo)記囊胚置于GE DeltaVision Elite活細(xì)胞工作站成像,觀察凋亡相關(guān)因子表達(dá)水平與定位。
采用SPSS16.0數(shù)據(jù)分析軟件對(duì)試驗(yàn)結(jié)果進(jìn)行單因素方差分析,不同處理組桑椹胚發(fā)育率和囊胚率分別以合子數(shù)和桑椹胚數(shù)為基數(shù)進(jìn)行計(jì)算,每個(gè)處理組至少重復(fù)3遍,或至少選擇3個(gè)樣品。<0.05 表示差異顯著,所有數(shù)據(jù)結(jié)果以“Mean ± SE”表示。
DAPI標(biāo)記不同階段的胚胎細(xì)胞核,GE DeltaVision Elite活細(xì)胞工作站熒光成像如圖2所示:各階段胚胎細(xì)胞核均可見(jiàn)細(xì)胞核小體,但2-細(xì)胞和4-細(xì)胞時(shí)期胚胎細(xì)胞核中的核小體更為清晰(圖2-B、C)。
A:合子;B:2-細(xì)胞胚胎;C:4-細(xì)胞胚胎;D:桑椹胚;E:D圖中紅的區(qū)域;F:囊胚;紅色箭頭所指為核旁核斑
相對(duì)定量分析法比較不同發(fā)育階段牦牛胚胎中mRNA表達(dá)水平如圖3-A所示:牦牛胚胎發(fā)育2-細(xì)胞至桑椹胚階段mRNA呈現(xiàn)高水平表達(dá),顯著高于合子階段和囊胚階段,其中桑椹胚和4-細(xì)胞階段胚胎mRNA表達(dá)水平最高,其表達(dá)水平分別為合子時(shí)期的3.54 ± 0.62和3.52 ± 0.26倍,且兩者差異不顯著(>0.05),其次為2-細(xì)胞階段胚胎,表達(dá)水平為合子時(shí)期2.48 ± 0.08倍,囊胚mRNA表達(dá)水平略高于合子的表達(dá)水平,但兩者差異不顯著(>0.05)。
根據(jù)不同階段胚胎mRNA表達(dá)水平檢測(cè)結(jié)果,本研究采用免疫熒光技術(shù)檢測(cè)合子、2-細(xì)胞、4-細(xì)胞和桑椹胚各階段胚胎PSPC1蛋白表達(dá)水平,結(jié)果如圖4所示:各階段胚胎中均可檢測(cè)到PSPC1蛋白,但4-細(xì)胞和桑椹胚階段胚胎中熒光強(qiáng)度最強(qiáng),合子中僅呈現(xiàn)少量微弱熒光;在各階段胚胎中分裂細(xì)胞的整個(gè)細(xì)胞核和細(xì)胞質(zhì)均可表達(dá)PSPC1蛋白,但主要以細(xì)胞核中的強(qiáng)熒光為主。
A: PSPC1; B: NEAT1; C: CARM1; D: P54nrb;誤差線上不同的字母表示差異極顯著(P<0.05); 相同的字母表示差異不顯著(P>0.05)
參照2.1和2.2的結(jié)果,采用qRT-PCR技術(shù)檢測(cè)合子、2-細(xì)胞、4-細(xì)胞、桑椹胚和囊胚中與核旁斑點(diǎn)形成相關(guān)的LncRNAs、及mRNA表達(dá)水平,如圖3-B—D所示:、及mRNA均在2-細(xì)胞到桑椹胚階段呈現(xiàn)高水平表達(dá),其中在4細(xì)胞時(shí)期表達(dá)水平最高,顯著高于2-細(xì)胞和桑椹胚時(shí)期(<0.05),2-細(xì)胞和桑椹胚時(shí)期的表達(dá)水平差異不顯著(>0.05),合子和囊胚中的表達(dá)水平最低,兩者差異不顯著(>0.05)。在2-細(xì)胞到桑椹胚階段呈現(xiàn)高水平表達(dá),顯著高于囊胚和合子階段(<0.05),但其中2-細(xì)胞至桑椹胚3個(gè)階段表達(dá)差異并不顯著(>0.05)。4-細(xì)胞時(shí)期表達(dá)最高,其次為2細(xì)胞時(shí)期和桑椹胚時(shí)期,兩者差異不顯著(>0.05),囊胚時(shí)期表達(dá)水平顯著低于合子階段(<0.05)。
受精12 h后,分別用siRNA1、siRNA2、siRNA3干擾合子mRNA,qRT-PCR檢測(cè)桑椹胚中mRNA顯示,3條siRNAs序列均可降低mRNA水平,其中siRNA1處理組mRNA水平最低,約為對(duì)照組的0.23 ± 0.01倍(圖5),可作為干擾牦牛胚胎早期mRNA最佳siRNA。
根據(jù)2.4的研究結(jié)果,選取siRNA1處理組和對(duì)照組胚胎繼續(xù)培養(yǎng),比較后期胚胎發(fā)育能力。結(jié)果如表3所示,siRNA1處理組桑椹胚與囊胚發(fā)育率均顯著降低,桑椹胚發(fā)育率由對(duì)照組的(75.22±3.32)%降低到siRNA1處理組的(58.26±1.86)%,兩者之間差異顯著(<0.05),囊胚率由對(duì)照組(41.17±2.23)%降低到siRNA1處理組(32.83±1.54)%,差異顯著(<0.05),同時(shí)發(fā)現(xiàn)桑椹胚發(fā)育率降低幅度高于囊胚率降低幅度。
圖4 牦牛不同階段胚胎中PSPC1蛋白表達(dá)的免疫熒光檢測(cè)
通過(guò)對(duì)囊胚內(nèi)總細(xì)胞用DAPI標(biāo)記、TE細(xì)胞用CDX2熒光標(biāo)記,熒光顯微鏡下觀察siRNA1處理組和對(duì)照組囊胚如圖6所示,不同細(xì)胞計(jì)數(shù)比較見(jiàn)表4、圖7,結(jié)果顯示siRNA1處理組囊胚內(nèi)細(xì)胞總數(shù)低于對(duì)照組(<0.05),其中主要以ICM細(xì)胞數(shù)低于對(duì)照組(<0.05),TE細(xì)胞數(shù)在兩組之間的差異不顯著(>0.05)。
qRT-PCR檢測(cè)siRNA1處理組和對(duì)照組囊胚中、mRNA相對(duì)表達(dá)量,如圖8所示:mRNA表達(dá)水平在siRNA1處理組囊胚中顯著增加(<0.05),為對(duì)照組2.86 ± 0.16倍(圖 8-A),而相對(duì)表達(dá)顯著降低(<0.05),為對(duì)照組0.48 ± 0.106倍(圖 8-B)。Bax、Bcl-2蛋白相對(duì)表達(dá)水平,如圖9所示,siRNA1處理組囊胚中Bax 蛋白相對(duì)表達(dá)量增加,為對(duì)照組2.13 ± 0.24倍(圖 9-B),而Bcl-2蛋白相對(duì)表達(dá)量降低,為對(duì)照組0.54 ± 0.11倍(圖9-C)。
誤差線上不同的字母表示差異極顯著(p<0.05); 相同的字母表示差異不顯著(p>0.05)
不同處理組囊胚中Bax和Bcl-2蛋白免疫熒光檢測(cè)顯示如圖10,siRNA1處理組囊胚中促凋亡相關(guān)因子Bax的標(biāo)記熒光強(qiáng)度顯著高于對(duì)照組,抗凋亡蛋白Bcl-2熒光強(qiáng)度低于對(duì)照組,TE細(xì)胞和ICM細(xì)胞均可表達(dá)Bax和Bcl-2蛋白熒光,且Bcl-2熒光強(qiáng)度在siRNA1處理組囊胚ICM細(xì)胞顯著降低,而Bax熒光在siRNA1處理組囊胚ICM顯著增強(qiáng)。DAPI標(biāo)記細(xì)胞核顯示在siRNA1處理組囊胚內(nèi)細(xì)胞部分細(xì)胞核發(fā)生裂解,形成細(xì)胞凋亡碎片。
圖6 不同處理組牦牛囊胚的染色標(biāo)記
目前細(xì)胞核熒光標(biāo)記只能檢測(cè)到細(xì)胞核亞單位結(jié)構(gòu)[4],很多學(xué)者通過(guò)將其與核旁斑點(diǎn)主要組成蛋白熒光檢測(cè)PSPC1相結(jié)合來(lái)確認(rèn)核旁斑點(diǎn)是否形成[1,4]。附植前小鼠胚胎發(fā)育過(guò)程中核旁斑點(diǎn)與CARM1協(xié)同,主要聚集在2—4細(xì)胞時(shí)期胚胎細(xì)胞核中,敲除核旁斑點(diǎn)關(guān)鍵組成LncRNAs,胚胎發(fā)育在桑椹胚時(shí)期停止[18-19],表明哺乳動(dòng)物胚胎發(fā)育早期核旁斑點(diǎn)對(duì)其后續(xù)發(fā)育能力具有重要的調(diào)控作用。HeLa細(xì)胞中及任何一個(gè)的缺失都會(huì)影響細(xì)胞核核旁斑點(diǎn)的形成[20]。本研究發(fā)現(xiàn)牦牛早期胚胎核旁斑點(diǎn)形成關(guān)鍵時(shí)間為2-細(xì)胞至囊胚時(shí)期,其中以4-細(xì)胞時(shí)期最為顯著,該階段CARM1和主要組成NEAT1及p54nrb mRNA的動(dòng)態(tài)表達(dá)趨勢(shì)與PSPC1具有相似性(圖3),證實(shí)哺乳動(dòng)物胚胎中核旁斑點(diǎn)形式時(shí)間存在物種差異性,但主要形成機(jī)制和組成不存在動(dòng)物種屬和細(xì)胞種類的差異,有些特殊細(xì)胞核旁斑點(diǎn)的形成還需要其他特定蛋白,如B淋巴細(xì)胞中的BCL11A,可介導(dǎo)PSPC1和p54nrb之間的相互作用[21]。
表3 干擾合子PSPC1 mRNA后胚胎發(fā)育能力
數(shù)據(jù)表示為:mean ± S.E.M (n=3),同一列中不同字母表示組間差異顯著(<0.05),相同字母表示組間差異不顯著(>0.05)。桑葚胚率:桑葚胚胎數(shù)量/4-細(xì)胞胚胎數(shù)量;囊胚率:囊胚數(shù)量/桑椹胚胚胎數(shù)量
Data was presented mean ± S.E.M (n=3), the letters (a, b) within a row for a particular parameter differs significantly(<0.05). The morula rate: number of morula/number of 4-cell embryo; the blastocyst rate: number of blastocyst/number of morula
表4 不同處理組第7天囊胚特征
數(shù)據(jù)表示為:mean ± S.E.M,同一列中不同字母表示組間差異極顯著(<0.05),相同字母表示組間差異不顯著(>0.05)
Data was presented mean ± S.E.M (n=5), the letters (a, b) within a row for a particular parameter differs significantly (<0.05)
*表示差異顯著(P<0.05) Bars with * are significantly different (P<0.05)
A: Bax; B: Bcl-2;誤差線上不同的字母表示差異顯著(p<0.05) A: Bax; B: Bcl-2; Bars with different letters are significantly different (p<0.05)
A:Bax與Bcl蛋白的檢測(cè); B:Bax相對(duì)表達(dá)水平; C: Bcl-2蛋白相對(duì)表達(dá)水平;誤差線上不同的字母表示差異顯著(p<0.05)
圖10 不同處理組牦牛囊胚中Bax和Bcl-2蛋白免疫熒光標(biāo)記
動(dòng)物早期胚胎發(fā)育2細(xì)胞至桑椹胚時(shí)期是胚胎細(xì)胞定向分化和細(xì)胞命運(yùn)決定的關(guān)鍵時(shí)期,但具體作用時(shí)間點(diǎn)需依據(jù)不同動(dòng)物早期胚胎發(fā)育細(xì)胞命運(yùn)決定關(guān)鍵時(shí)期研究結(jié)果而確定。敲除核旁斑點(diǎn)關(guān)鍵形成調(diào)控因子,小鼠胚胎中的CDX2表達(dá)水平上升,導(dǎo)致細(xì)胞向胚外層分化,影響胚胎細(xì)胞命運(yùn)[22]。除此之外,發(fā)現(xiàn)癌細(xì)胞中核旁斑點(diǎn)組成因子受細(xì)胞多能性因子OCT4調(diào)控[23]。本研究干擾合子mRNA囊胚內(nèi)的ICM細(xì)胞數(shù)顯著減少(圖6、7),證實(shí)早期核旁斑點(diǎn)形成與后續(xù)胚胎的細(xì)胞命運(yùn)存在關(guān)聯(lián)。不同處理組間TE細(xì)胞數(shù)差異不顯著(圖7),而CDX2作為TE細(xì)胞的關(guān)鍵標(biāo)記因子[24],表明牦牛早期胚胎發(fā)育核旁斑點(diǎn)對(duì)TE細(xì)胞命運(yùn)調(diào)控較低,可見(jiàn)不同物種及不同靶細(xì)胞之間細(xì)胞分子調(diào)控機(jī)制存在差異。
相關(guān)研究證實(shí)核旁斑點(diǎn)可通過(guò)多種信號(hào)通路調(diào)節(jié)細(xì)胞凋亡,當(dāng)細(xì)胞凋亡啟動(dòng)時(shí)細(xì)胞核通過(guò)蛋白水解酶復(fù)合體抑制NEAT1位點(diǎn)成熟核旁斑點(diǎn)釋放,導(dǎo)致其在染色體上延伸,影響其組裝完成,占據(jù)了染色體上富含脯氨酸和谷氨酰胺的剪接因子(splicing factor proline and glutamine rich,SFPQ)和p54nrb的形成空間,進(jìn)而細(xì)胞核內(nèi)SFPQ和p54nrb水平顯著降低[25-26]。已有研究證明SFPQ可通過(guò)誘導(dǎo)細(xì)胞壞死信號(hào)通路關(guān)鍵蛋白促進(jìn)細(xì)胞凋亡,如干擾素刺激基因(interferon- stimulated genes,ISGs)、BCL-2結(jié)合元件[10, 26-27]。本研究中干擾牦牛mRNA,囊胚細(xì)胞凋亡水平顯著增加(圖8、9),導(dǎo)致該處理組ICM細(xì)胞數(shù)降低,Bax和Bcl-2蛋白的熒光定位證實(shí)囊胚中ICM和TE細(xì)胞凋亡均受早期胚胎核旁斑點(diǎn)影響,推測(cè)核旁斑點(diǎn)影響囊胚附植能力。癌細(xì)胞和神經(jīng)元細(xì)胞中NEAT1通過(guò)p53或調(diào)控胞內(nèi)miRNA表達(dá)影響細(xì)胞凋亡[28-29],miRNA上升時(shí)通過(guò)dsRNA反應(yīng)修飾介導(dǎo)細(xì)胞凋亡,miRNA下降時(shí),細(xì)胞凋亡的發(fā)生主要受ISG轉(zhuǎn)錄影響[30]。牦牛生殖調(diào)控中p53和miRNA介導(dǎo)多種信號(hào)影響精子生成和胚胎發(fā)育[31-33],但核旁斑點(diǎn)是否通過(guò)p53和miRNA調(diào)控其早期胚胎質(zhì)量仍需相關(guān)研究證實(shí)。
牦牛生長(zhǎng)環(huán)境和自身生理結(jié)構(gòu)具有獨(dú)特性,其生長(zhǎng)調(diào)控易受相關(guān)生理應(yīng)激影響,如牦牛胚胎早期胚胎發(fā)育由于HIF-1α介導(dǎo),使其具有較強(qiáng)的低氧適應(yīng)性,且會(huì)影響后續(xù)細(xì)胞多能性因子如NANOG、OCT4和SOX2表達(dá)[34]。除胚胎外,相關(guān)研究顯示HIF-1α在低氧應(yīng)激刺激牦牛肺動(dòng)脈平滑肌細(xì)胞時(shí)可促進(jìn)細(xì)胞增殖[35],進(jìn)一步證明HIF-1α對(duì)牦牛生理調(diào)控至關(guān)重要。核旁斑點(diǎn)作為新發(fā)現(xiàn)的調(diào)節(jié)機(jī)體和細(xì)胞適應(yīng)低氧等環(huán)境應(yīng)激的亞細(xì)胞核結(jié)構(gòu),主要通過(guò)HIF與NEAT1相互作用阻礙核內(nèi)蛋白,也可通過(guò)p54nrb介導(dǎo)其他因子調(diào)控細(xì)胞低氧適應(yīng)性,如細(xì)胞黏附分子F11R[36]。低氧條件下NEAT1參與核旁斑點(diǎn)形成調(diào)控[9],當(dāng)?shù)脱鯘舛然謴?fù)正常水平時(shí),核旁斑點(diǎn)消失[10],低氧又作為胚胎早期胚胎發(fā)育關(guān)鍵影響因素,參與后續(xù)胚胎細(xì)胞的分化[37]。證實(shí)哺乳動(dòng)物胚胎發(fā)育過(guò)程中核旁斑點(diǎn)與低氧應(yīng)激存在互相調(diào)控關(guān)系。本研究以牦牛的早期發(fā)育胚胎為試驗(yàn)材料,探索核旁斑點(diǎn)形成機(jī)制,有效的將低氧應(yīng)激和核旁斑點(diǎn)形成結(jié)合在一起,有助于揭示哺乳動(dòng)物早期胚胎發(fā)育核旁斑點(diǎn)與低氧調(diào)控的相互關(guān)系。
牦牛早期胚胎發(fā)育核旁斑點(diǎn)形成的關(guān)鍵時(shí)期為2-細(xì)胞至桑椹胚階段,其中主要集中在4-細(xì)胞時(shí)期,且PSPC1與、和在牦牛早期胚胎發(fā)育核旁斑點(diǎn)形成時(shí)期呈現(xiàn)高水平表達(dá)。干擾合子mRNA表達(dá)可降低后續(xù)胚胎發(fā)育能力,以4-細(xì)胞至桑椹胚發(fā)育率降低為主,同時(shí)其可降低囊胚中ICM細(xì)胞數(shù)及細(xì)胞凋亡水平,影響囊胚質(zhì)量(圖11)。研究結(jié)果為進(jìn)一步探索核旁斑點(diǎn)參與哺乳動(dòng)物早期胚胎發(fā)育的調(diào)控制提供了科學(xué)依據(jù),有助于以核旁斑點(diǎn)為靶點(diǎn),改善牦牛早期胚胎的發(fā)育能力和胚胎質(zhì)量,促進(jìn)牦牛體外胚胎生產(chǎn)技術(shù)的發(fā)展。
牦牛早期胚胎發(fā)育核旁斑點(diǎn)形成時(shí)期為2細(xì)胞至桑椹胚階段,且PSPC1與NEAT1、CRAM1和p54nrb呈高水平表達(dá);干擾PSPC1mRNA,降低桑椹胚發(fā)育率,增加囊胚細(xì)胞凋亡,降低ICM細(xì)胞數(shù)
[1] MAO Y S, ZHANG B, SPECTOR D L. Biogenesis and function of nuclear bodies. Trends in Genetics, 2011, 27(8): 295-306. doi:10. 1016/j.tig.2011.05.006.
[2] FOX A H, LAMOND A I. Paraspeckles. Cold Spring Harbor Perspectives in Biology, 2010, 2(7): a000687. doi:10.1101/cshperspect. a000687.
[3] FRANK S, AHUJA G, BARTSCH D, RUSS N, YAO W J, KUO J C C, DERKS J P, AKHADE V S, KARGAPOLOVA Y, GEORGOMANOLIS T, MESSLING J E, GRAMM M, BRANT L, REHIMI R, VARGAS N E, KUROCZIK A, YANG T P, SAHITO R G A, KURIAN L. yylncT defines a class of divergently transcribed lncRNAs and safeguards the T-mediated mesodermal commitment of human PSCs. Cell Stem Cell, 2019, 24(2): 318-327.e8. doi:10.1016/j.stem.2018.11.005.
[4] WANG Y, CHEN L L. Organization and function of paraspeckles. Essays in Biochemistry, 2020, 64(6): 875-882. doi:10.1042/EBC20200010.
[5] FOX A H, LAM Y W, LEUNG A K L, LYON C E, ANDERSEN J, MANN M, LAMOND A I. Paraspeckles: a novel nuclear domain. Current Biology, 2002, 12(1): 13-25. doi:10.1016/S0960-9822(01) 00632-7.
[6] MAO Y S, SUNWOO H, ZHANG B, SPECTOR D L. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nature Cell Biology, 2011, 13(1): 95-101. doi:10. 1038/ncb2140.
[7] CLEMSON C M, HUTCHINSON J N, SARA S A, ENSMINGER A W, FOX A H, CHESS A, LAWRENCE J B. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Molecular Cell, 2009, 33(6): 717-726. doi:10.1016/ j.molcel.2009.01.026.
[8] SUNWOO H, DINGER M E, WILUSZ J E, AMARAL P P, MATTICK J S, SPECTOR D L. MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Research, 2009, 19(3): 347-359. doi:10.1101/gr.087775.108.
[9] CHOUDHRY H, ALBUKHARI A, MOROTTI M, HAIDER S, MORALLI D, SMYTHIES J, SCH?DEL J, GREEN C M, CAMPS C, BUFFA F, RATCLIFFE P, RAGOUSSIS J, HARRIS A L, MOLE D R. Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene, 2015, 34(34): 4482-4490. doi:10.1038/onc.2014.378.
[10] PISANI G, BARON B. Nuclear paraspeckles function in mediating gene regulatory and apoptotic pathways. Non-Coding RNA Research, 2019, 4(4): 128-134. doi:10.1016/j.ncrna.2019.11.002.
[11] 張譯夫, 潘陽(yáng)陽(yáng), 溫澤星, 余四九. 表皮生長(zhǎng)因子對(duì)牦牛卵丘細(xì)胞低氧誘導(dǎo)因子-1α表達(dá)的影響及與凋亡的關(guān)聯(lián)性分析. 畜牧獸醫(yī)學(xué)報(bào), 2016, 47(6): 1154-1161. doi:10.11843/j.issn.0366-6964.2016.06. 010.
ZHANG Y F, PAN Y Y, WEN Z X, YU S J. The effect of epidermal growth factor on the expression of hypoxia inducible factor-1α in cumulus cells of yak () and its correlation analysis with apoptosis. Acta Veterinaria et Zootechnica Sinica, 2016, 47(6): 1154-1161. doi:10.11843/j.issn.0366-6964.2016.06.010. (in Chinese)
[12] 許濤, 潘陽(yáng)陽(yáng), 何翃閎, 李谷月, 張慧珠, 趙凌, 崔燕, 余四九. TNF-α對(duì)牦牛卵母細(xì)胞HIF-1α和HSP70的表達(dá)及后續(xù)胚胎發(fā)育能力的影響. 畜牧獸醫(yī)學(xué)報(bào), 2019, 50(6): 1198-1207. doi:10.11843/ j.issn.0366-6964.2019.06.010.
XU T, PAN Y Y, HE H H, LI G Y, ZHANG H Z, ZHAO L, CUI Y, YU S J. The effects of tumor necrosis factor-α (TNF-α) on the expression of HIF-1α and HSP70 in yak oocytes and the subsequent embryo development. Acta Veterinaria et Zootechnica Sinica, 2019, 50(6): 1198-1207. doi:10.11843/j.issn.0366-6964.2019. 06.010. (in Chinese)
[13] PAN Y Y, CUI Y, HE H H, BALOCH A R, FAN J F, XU G Q, HE J F, YANG K, LI G Y, YU S J. Developmental competence of mature yak vitrified-warmed oocytes is enhanced by IGF-I via modulation of CIRP duringmaturation. Cryobiology, 2015, 71(3): 493-498. doi:10.1016/j.cryobiol.2015.10.150.
[14] 潘陽(yáng)陽(yáng), 李秦, 崔燕, 樊江峰, 楊琨, 何俊峰, 余四九. EGF、EGFR在牦牛卵母細(xì)胞中的表達(dá)及對(duì)胚胎發(fā)育能力的作用. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(12): 2439-2448. doi:10.3864/j.issn.0578-1752.2015.12. 017.
PAN Y Y, LI Q, CUI Y, FAN J F, YANG K, HE J F, YU S J. The expression of EGF and EGFR in yak oocyte and its function on development competence of embryo. Scientia Agricultura Sinica, 2015, 48(12): 2439-2448. doi:10.3864/j.issn.0578-1752.2015.12.017. (in Chinese)
[15] PAN Y Y, CUI Y, BALOCH A R, HE H H, FAN J F, HE J F, LI Q, YANG K, ZHANG Q, YU S J. Epidermal growth factor enhances the developmental competence of yak () preimplantation embryos by modulating the expression of survivin and HSP70. Livestock Science, 2015, 182: 118-124. doi:10.1016/j.livsci.2015.11. 002.
[16] WEN Z X, PAN Y Y, CUI Y, PENG X M, CHEN P, FAN J F, LI G Y, ZHAO T, ZHANG J, QIN S J, YU S J. Colony-stimulating factor 2 enhances the developmental competence of yak (Poephagus grunniens) preimplantation embryos by modulating the expression of heat shock protein 70 kDa 1A. Theriogenology, 2017, 93: 16-23. doi:10.1016/ j.theriogenology.2017.01.034.
[17] PFAFFL M W, HORGAN G W, DEMPFLE L. Relative expression software tool (REST?) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 2002, 30(9): e36. doi:10.1093/nar/30.9.e36.
[18] HUPALOWSKA A, JEDRUSIK A, ZHU M, BEDFORD M T, GLOVER D M, ZERNICKA-GOETZ M. CARM1 and paraspeckles regulate pre-implantation mouse embryo development. Cell, 2018, 175(7): 1902-1916.e13. doi:10.1016/j.cell.2018.11.027.
[19] ZHANG Y, DUAN E K. LncRNAs and paraspeckles predict cell fate in early mouse embryo. Biology of Reproduction, 2019, 100(5): 1129-1131. doi:10.1093/biolre/ioz021.
[20] SASAKI Y F, IDEUE T, SANO M, MITUYAMA T, HIROSE T. MENε/β noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(8):2525-30. doi: 10.1073/pnas.0807899106.
[21] LIU H, IPPOLITO G C, WALL J K, NIU T, PROBST L, LEE B S, PULFORD K, BANHAM A H, STOCKWIN L, SHAFFER A L, STAUDT L M, DAS C, DYER M J S, TUCKER P W. Functional studies of BCL11A: characterization of the conserved BCL11A-XL splice variant and its interaction with BCL6 in nuclear paraspeckles of germinal center B cells. Molecular Cancer, 2006, 5: 18. doi:10.1186/ 1476-4598-5-18.
[22] MA C, KARWACKI-NEISIUS V, TANG H R, LI W J, SHI Z N, HU H L, XU W Q, WANG Z T, KONG L C, LV R T, FAN Z, ZHOU W H, YANG P Y, WU F Z, DIAO J B, TAN L, SHI Y G, LAN F, SHI Y. Nono, a bivalent domain factor, regulates erk signaling and mouse embryonic stem cell pluripotency. Cell Reports, 2016, 17(4): 997-1007. doi:10.1016/j.celrep.2016.09.078.
[23] JEN J, TANG Y N, LU Y H, LIN C C, LAI W W, WANG Y C. Oct4 transcriptionally regulates the expression of long non-coding RNAs NEAT1 and MALAT1 to promote lung cancer progression. Molecular Cancer, 2017, 16(1): 104. doi:10.1186/s12943-017-0674-z.
[24] TOYOOKA Y. Trophoblast lineage specification in the mammalian preimplantation embryo. Reproductive Medicine and Biology, 2020, 19(3): 209-221. doi:10.1002/rmb2.12333.
[25] HIROSE T, VIRNICCHI G, TANIGAWA A, NAGANUMA T, LI R H, KIMURA H, YOKOI T, NAKAGAWA S, BéNARD M, FOX A H, PIERRON G. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Molecular Biology of the Cell, 2014, 25(1): 169-183. doi:10.1091/mbc.E13-09-0558.
[26] IMAMURA K, IMAMACHI N, AKIZUKI G, KUMAKURA M, KAWAGUCHI A, NAGATA K, KATO A, KAWAGUCHI Y, SATO H, YONEDA M, KAI C, YADA T, SUZUKI Y, YAMADA T, OZAWA T, KANEKI K, INOUE T, KOBAYASHI M, AKIMITSU N. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Molecular Cell, 2014, 53(3): 393-406. doi:10.1016/j.molcel.2014.01. 009.
[27] ZENG C W, LIU S C, LU S, YU X B, LAI J, WU Y F, CHEN S H, WANG L, YU Z, LUO G X, LI Y Q. The c-myc-regulated lncRNA NEAT1 and paraspeckles modulate imatinib-induced apoptosis in CML cells. Molecular Cancer, 2018, 17(1): 130. doi:10.1186/s12943- 018-0884-z.
[28] ADRIAENS C, STANDAERT L, BARRA J, LATIL M, VERFAILLIE A, KALEV P, BOECKX B, WIJNHOVEN P W G, RADAELLI E, VERMI W, LEUCCI E, LAPOUGE G, BECK B, VAN DEN OORD J, NAKAGAWA S, HIROSE T, SABLINA A A, LAMBRECHTS D, AERTS S, BLANPAIN C, MARINE J C. p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nature Medicine, 2016, 22(8): 861-868. doi:10.1038/nm.4135.
[29] SHELKOVNIKOVA T A, KUKHARSKY M S, AN H Y, DIMASI P, ALEXEEVA S, SHABIR O, HEATH P R, BUCHMAN V L. Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2018, 13(1): 30. doi:10.1186/s13024-018-0263-7.
[30] SEO G J, KINCAID R P, PHANAKSRI T, BURKE J M, PARE J M, COX J E, HSIANG T Y, KRUG R M, SULLIVAN C S. Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell Host & Microbe, 2013, 14(4): 435-445. doi:10.1016/j.chom.2013.09.002.
[31] LIU P G, YU S J, CUI Y, HE J F, ZHANG Q, SUN J, HUANG Y F, YANG X Q, CAO M X, LIAO B, MA J X. Regulation by Hsp27/P53 in testis development and sperm apoptosis of male cattle (cattle-yak and yak). Journal of Cellular Physiology, 2018, 234(1): 650-660. doi:10.1002/jcp.26822.
[32] 鄭紅飛, 潘陽(yáng)陽(yáng), 李秦, 張譯夫, 呂鵬, 崔燕, 余四九. 腫瘤抑制蛋白基因Tp53在牦牛體外受精早期胚胎中的表達(dá). 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2015, 23(9): 1240-1245. doi:10.3969/j.issn.1674-7968.2015.09. 014.
ZHENG H F, PAN Y Y, LI Q, ZHANG Y F, Lü P, CUI Y, YU S J. The expression of tumor protein p53 gene (Tp53) in yak (grunneins)fertilization (IVF) early embryos during developmental process. Journal of Agricultural Biotechnology, 2015, 23(9): 1240-1245. doi:10.3969/j.issn.1674-7968.2015.09.014. (in Chinese)
[33] PRATIM DAS P, SULTANA BEGUM S, CHOUDHURY M, MEDHI D, PAUL V, JYOTI DAS P. Characterizing miRNA and mse-tsRNA in fertile and subfertile yak bull spermatozoa from Arunachal Pradesh. Journal of Genetics, 2020, 99: 88.
[34] HE H H, ZHANG H Z, LI Q, FAN J F, PAN Y Y, ZHANG T X, ROBERT N, ZHAO L, HU X Q, HAN X H, YANG S S, CUI Y, YU S J. Low oxygen concentrations improve yak oocyte maturation and enhance the developmental competence of preimplantation embryos. Theriogenology, 2020, 156: 46-58. doi:10.1016/j.theriogenology. 2020.06.022.
[35] ZHANG H Z, HE H H, CUI Y, YU S J, LI S J, AFEDO S Y, WANG Y L, BAI X F, HE J F. Regulatory effects of HIF-1α and HO-1 in hypoxia-induced proliferation of pulmonary arterial smooth muscle cells in yak. Cellular Signalling, 2021, 87: 110140. doi:10.1016/j. cellsig.2021.110140.
[36] BEN-ZVI M, AMARIGLIO N, PARET G, NEVO-CASPI Y. F11R expression upon hypoxia is regulated by RNA editing. PLoS ONE, 2013, 8(10): e77702. doi:10.1371/journal.pone.0077702.
[37] DUNWOODIE S L. The role of hypoxia in development of the mammalian embryo. Developmental Cell, 2009, 17(6): 755-773. doi:10.1016/j.devcel.2009.11.008.
Formation and Function of Paraspeckle During Pre-implantation Embryos Development in Yak
1College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070;2Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070
【Objective】The aim of present study was to identify of paraspeckle formation stages during the early embryonic development in yak (). Furthermore, the long non-coding RNAs (LncRNAs) involved in paraspeckle formation were determined, and the effects and regulatory mechanism of their formation on the subsequent developmental ability of yak embryos were studied. 【Method】The yak embryos were produced by(IVF), DAPI staining of embryonic nuclei combined with paraspeckle protein 1 () mRNA detection were done by quantitative real-time fluorescence PCR (qRT-PCR) at different stages in order to confirm paraspeckle formation. PSPC1 protein in embryos was verified by immunofluorescence technique. The levels of encoding nuclear paraspeckle assembly transcript 1 (NEAT1), coactivator associated arginine methyl transferase 1 (CARM1) and non-POU domain containing octamer-binding protein () mRNAs were also detected by qRT-PCR at different stages. The mRNA level of PSPC1 in zygote was inhibited by RNA interference technology, and the developmental rate of embryos in subsequent stages was compared. The blastocyst quality was evaluated by analyzing the number of total cells, trophoblast cells (TE) and inner cell mass (ICM). B-cell lymphoma/leukemia-2 (Bcl-2) and b-cell lymphoma/leukemia associated X protein (Bax) in blastocysts form in the control andmRNA interference groups was detected. 【Result】(1) Paraspeckle could be observed in the nuclei of embryos at all different stages; however, nuclei could be more clearly seen at 2-cell stage and 4-cell stage. ThemRNA was higher in yak embryos from 2-cell to morula stage, which was the highest in embryos at 4-cell embryos and morula. The fluorescence intensity ofprotein was the strongest in embryos from those stages. (2) The levels of,andmRNA were higher from 2-cell to morula stage than that from other stages.andwere found to be highest in embryos at 4-cell stage, while CARM1 was not significantly different from 2-cell to morula stage (>0.05). (3) The developmental rates of morula and blastocyst inmRNA interference group were reduced, which was more significantly reduced in morula rate. The total number of blastocyst cells inmRNA interference group was significantly lower than that in the control group, which was mainly caused by ICM reduction. There was no significant difference in number of TE between the two groups. (4) The levels ofmRNA and protein were enhanced in blastocyst forminterference group, while the levels ofmRNA and protein were reduced in blastocyst, and the cell lysis was observed in ICM.【Conclusion】The paraspeckle was formed at 2-cell to morula stage transition in the yak embryo, which was more prominent in 4-cell stage. The expression of PSPC1, NEAT1, CRAM1 and p54nrb in the stages of paraspeckle formation were on high levels. Interference withmRNA in yak zygotes resulted in decreased developmental ability of subsequent embryo. The blastocyst quality was also reduced by inducing apoptosis of inner cell mass, which was also involved in the regulation of cell fate determination in early embryo development.
yak; paraspeckle; cell fate; apoptosis; LncRNAs
10.3864/j.issn.0578-1752.2023.06.014
2021-11-23;
2022-04-28
國(guó)家自然科學(xué)基金(31972760、32160859)、甘肅省杰出青年基金(20JR10RA561)、甘肅省教育廳創(chuàng)新創(chuàng)業(yè)能力提升項(xiàng)目(2019B-081)、甘肅農(nóng)業(yè)大學(xué)伏羲青年英才基金(Gaufx-02Y10)、甘肅農(nóng)業(yè)大學(xué)博士科研啟動(dòng)基金(GSAU-RCZX201701)
潘陽(yáng)陽(yáng),E-mail:panyangyang_2007@126.com。通信作者余四九,E-mail:sjyu@163.com
(責(zé)任編輯 林鑒非)