汪月寧,代紅軍,賀琰,魏強(qiáng),郭學(xué)良,劉妍,殷夢(mèng)婷,王振平
基于轉(zhuǎn)錄組分析油菜素內(nèi)酯對(duì)高溫脅迫下釀酒葡萄花色苷合成及果實(shí)品質(zhì)的調(diào)控機(jī)制
汪月寧,代紅軍,賀琰,魏強(qiáng),郭學(xué)良,劉妍,殷夢(mèng)婷,王振平
寧夏大學(xué)農(nóng)學(xué)院,銀川 750021
【目的】分析高溫脅迫下參與油菜素內(nèi)酯調(diào)控葡萄花色苷及果實(shí)品質(zhì)合成的相關(guān)基因,探討油菜素內(nèi)酯調(diào)控果實(shí)花色苷及品質(zhì)合成的機(jī)制?!痉椒ā恳葬劸破咸选嘞贾椤癁樵嚥模D(zhuǎn)色前一周利用紅外輻射器模擬高溫環(huán)境,并全樹噴施0.6 mg?L-1的2,4-表油菜素內(nèi)酯(2,4-Epibrassinolide,EBR),測(cè)定花色苷、總糖及相關(guān)品質(zhì)指標(biāo),選擇轉(zhuǎn)色中期(花后70 d)的果實(shí)進(jìn)行轉(zhuǎn)錄組測(cè)序,從分子水平闡述EBR對(duì)高溫脅迫下花色苷合成的影響。【結(jié)果】從轉(zhuǎn)色開始,各處理花色苷含量逐漸升高;成熟時(shí),高溫組(HT)花色苷總量顯著低于對(duì)照組(CK),高溫油菜素內(nèi)酯組(HTE)花色苷含量高于HT組??偺?、還原糖、蔗糖變化規(guī)律與花色苷相似,HT組含量均在成熟期時(shí)低于CK組,成熟期各種糖含量為CK組>HTE組>HT組。分析3種處理下‘赤霞珠’果實(shí)基因水平的差異,通過(guò)GO和KEGG富集發(fā)現(xiàn)了14個(gè)與蔗糖和淀粉代謝途經(jīng)相關(guān)的差異基因,其中HT和HTE處理顯著上調(diào)了10個(gè)基因,顯著下調(diào)了4個(gè)基因;苯丙氨酸代謝途徑有11個(gè)差異基因,其中有7個(gè)參與花色苷合成的基因在HT處理中上調(diào),有4個(gè)參與木質(zhì)素合成的基因在HT處理下表達(dá)量顯著上調(diào),說(shuō)明高溫可能促進(jìn)了木質(zhì)素合成,從而降低了花色苷的積累量;內(nèi)源激素信號(hào)轉(zhuǎn)導(dǎo)途徑的差異表達(dá)基因11個(gè),其中ABA信號(hào)轉(zhuǎn)導(dǎo)受體基因及激酶的表達(dá)量在高溫脅迫下顯著提高,其可能與EBR共同參與調(diào)控高溫脅迫下葡萄花色苷的合成。對(duì)部分差異基因的表達(dá)模式進(jìn)行實(shí)時(shí)熒光定量(qRT-PCR)驗(yàn)證,證實(shí)了轉(zhuǎn)錄組數(shù)據(jù)的準(zhǔn)確性?!窘Y(jié)論】EBR通過(guò)改變糖代謝、花色苷合成及內(nèi)源激素信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中相關(guān)基因的表達(dá)模式,緩解了高溫脅迫對(duì)葡萄花色苷積累的抑制作用,提高了果實(shí)品質(zhì)。
釀酒葡萄‘赤霞珠’;2,4-表油菜素內(nèi)酯;高溫;花色苷;轉(zhuǎn)錄組
【研究意義】‘赤霞珠’(L.)是典型的歐亞種晚熟釀酒葡萄品種,果籽多且果皮厚,充足的酚類物質(zhì),賦予了它釀造頂級(jí)葡萄酒的潛力。近年來(lái),寧夏賀蘭山東麓葡萄酒產(chǎn)區(qū)發(fā)展迅速,‘赤霞珠’葡萄的栽培面積逐年增加,但隨著大氣CO2濃度的增加,極端高溫天氣頻繁出現(xiàn),抑制了葡萄生長(zhǎng)和發(fā)育,影響了果實(shí)著色及葡萄酒品質(zhì)[1]。外源油菜素內(nèi)酯(2,4-Epibrassinolide,EBR)能夠有效緩解高溫對(duì)植物造成的傷害[2],提高果實(shí)花色苷的含量,但對(duì)其分子機(jī)制尚不清楚。因此,探究高溫脅迫下,EBR促進(jìn)葡萄果實(shí)花色苷合成的機(jī)制,對(duì)提高釀酒葡萄品質(zhì)具有重要意義?!厩叭搜芯窟M(jìn)展】花色苷是葡萄酒中最重要的類黃酮化合物,是賦予葡萄與葡萄酒顏色的主要物質(zhì),并對(duì)其風(fēng)味[3]、口感和營(yíng)養(yǎng)價(jià)值等有重要影響[4]。葡萄中花色苷合成主要是苯丙氨酸代謝途徑,是多個(gè)酶促反應(yīng)聯(lián)合體,極易受到溫度的影響[5]。研究發(fā)現(xiàn),高溫導(dǎo)致有效次生代謝物積累不足,抑制花色苷的合成,阻礙葡萄的著色[6-7];黃敬寒等[8]研究發(fā)現(xiàn),高溫降低內(nèi)源ABA水平,從而調(diào)控花色苷生物合成的轉(zhuǎn)錄過(guò)程。油菜素內(nèi)酯(brassinosterids,BR)作為植物體特有的甾醇類激素,廣譜高效,在植物生長(zhǎng)發(fā)育及響應(yīng)生物和非生物脅迫中發(fā)揮著重要的作用[9-10]。DING等[11]和AGHDAM等[12]研究發(fā)現(xiàn),EBR通過(guò)提高抗氧化防御系統(tǒng)的活性,保持細(xì)胞膜的穩(wěn)定性,從而增強(qiáng)植物在高溫、低溫中的耐受性;楊藝琳等[13]研究結(jié)果表明,EBR改善了植物滲透調(diào)節(jié)、維持了細(xì)胞內(nèi)外離子的平衡,抗逆性提高。近年來(lái),EBR與其他激素互作共同提高植物抗逆性的研究越來(lái)越廣泛,Kagale等[14]發(fā)現(xiàn),EBR可通過(guò)上調(diào)脫落酸合成基因的表達(dá)量從而提高植株對(duì)干旱和低溫的忍耐力。在分子水平上,NIE等[15]發(fā)現(xiàn),促裂原蛋白激酶MAP1/2介導(dǎo)EBR提高植物對(duì)高溫的耐受性;ZHOU等[16]研究發(fā)現(xiàn),EBR協(xié)同ABA上調(diào)的表達(dá)、誘導(dǎo)H2O2的積累以及提高NADPH氧化酶的活性,增強(qiáng)番茄的高溫抗性;此外,YIN等[17]研究表明,BZR1通過(guò)FER(FERINIA)介導(dǎo)的ROS信號(hào)正調(diào)控番茄的高溫抗性。隨著對(duì)EBR研究的深入,YUAN等[18]發(fā)現(xiàn)EBR能夠促進(jìn)擬南芥幼苗中花青素的合成,此后,對(duì)于EBR提高植物類黃酮化合物的研究日益增多:馮曉雪[19]研究結(jié)果表明,對(duì)‘紅地球’葡萄噴施EBR能夠顯著增加總酚和類黃酮含量;王愛玲等[20]在葡萄不同發(fā)育時(shí)期噴施EBR,果實(shí)著色情況明顯得到提高,且總酚及花色苷含量顯著高于對(duì)照組;張睿佳等[21]研究發(fā)現(xiàn),噴施EBR有效緩解了高溫對(duì)葡萄花色苷積累的抑制作用,改善了果實(shí)品質(zhì)?!颈狙芯壳腥朦c(diǎn)】雖然已有研究表明外源噴施EBR能夠促進(jìn)高溫脅迫下‘赤霞珠’葡萄果實(shí)含糖量、糖酸比、花色苷的含量,改善果實(shí)品質(zhì),但花色苷合成是涉及大量基因的復(fù)雜過(guò)程,其相關(guān)的分子機(jī)制尚不明確。傳統(tǒng)分子生物學(xué)方法研究該過(guò)程效率低且難度大,高通量轉(zhuǎn)錄組測(cè)序(RNA-Seq)作為一種高效、快捷的轉(zhuǎn)錄組研究方法,能夠反映生物體在特定環(huán)境下的基因表達(dá)情況,通過(guò)差異基因的表達(dá)分析和功能富集分析,揭示EBR調(diào)控高溫脅迫下花色苷合成相關(guān)基因的網(wǎng)絡(luò)變化?!緮M解決的關(guān)鍵問(wèn)題】本研究以‘赤霞珠’葡萄為試材,轉(zhuǎn)色前進(jìn)行高溫處理并噴施EBR,選取關(guān)鍵時(shí)期進(jìn)行轉(zhuǎn)錄組測(cè)序。深入研究與花色苷和果實(shí)品質(zhì)合成相關(guān)基因的表達(dá)模式,并且分析激素信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中基因的表達(dá)量,揭示EBR調(diào)控高溫脅迫下葡萄果實(shí)花色苷積累及品質(zhì)形成的機(jī)理,為生產(chǎn)上使用EBR改善葡萄果實(shí)品質(zhì)及葡萄抗逆分子育種提供理論依據(jù)。
試驗(yàn)于2021年5—10月進(jìn)行,試驗(yàn)地位于寧夏賀蘭山東麓產(chǎn)區(qū),中溫帶干旱氣候,風(fēng)沙土,土層深為40—100 cm,土壤pH小于8.5,晝夜溫差大,光照充足,年活動(dòng)積溫3 400—3 800℃,年降水量180—200 mm,平均無(wú)霜期160—180 d。供試材料為寧夏玉泉營(yíng)蘭山驕子酒莊10年生‘赤霞珠’(Cabernet Sauvigon),“廠”字形整形,東西行向定植,株行距為0.5 m×3 m,灌溉方式為滴灌。
試驗(yàn)前選取長(zhǎng)勢(shì)一致的植株進(jìn)行掛牌標(biāo)記,于轉(zhuǎn)色期前一周(約花后49 d)對(duì)掛牌標(biāo)記的整株葡萄噴施0.6 mg?L-1的2,4-表油菜素內(nèi)酯,并使用MRM-2420型紅外輻射器(Kalglo electronics Inc, Pennsylvania, USA)對(duì)試驗(yàn)區(qū)進(jìn)行增溫,設(shè)定增加(5±0.5)℃,以自然環(huán)境溫度為對(duì)照組(CK),增溫為高溫組(HT),噴施油菜素內(nèi)酯并增溫為高溫油菜素內(nèi)酯組(HTE)。每個(gè)處理設(shè)3次重復(fù),每個(gè)重復(fù)4株葡萄。采樣時(shí)期為花后49、70、90和110 d。于8:00—10:00,隨機(jī)選取不同植株不同著生方向的果穗,在果穗上、中、下部位采集果粒共300粒,采后立即液氮速凍,整果放入-80℃冰箱備用。
采用pH示差法測(cè)定花色苷含量[22],蒽酮硫酸法測(cè)定葡萄果實(shí)可溶性總糖含量,間苯二酚閉塞法測(cè)定蔗糖含量[23],3,5-二硝基水楊酸法測(cè)定還原糖含量[24]。
取8月10日(約花后70 d)樣品進(jìn)行轉(zhuǎn)錄組測(cè)序,果實(shí)總RNA的提取及轉(zhuǎn)錄組測(cè)序委托上海歐易生物醫(yī)學(xué)科技有限公司完成,根據(jù)mirVanaTMmiRNA ISOlation Kit, Ambion-1561試劑盒說(shuō)明書提取果實(shí)總RNA,質(zhì)檢合格后,在Illumina平臺(tái)進(jìn)行測(cè)序,獲得原始數(shù)據(jù)(raw datas);用Trimmomatic進(jìn)行校正,去除低質(zhì)量的讀數(shù),獲得高質(zhì)量的序列數(shù)據(jù)(clean reads)。
利用HISAT2將clean reads與葡萄參考基因組(http://ftp.ensemblgenomes.org/pub/plants/release51/fasta/vitis_vinifera/dna/Vitis_vinifera.12X.dna.toplevel.fa.gz)、(http://ftp.ensemblgenomes.org/pub/plants/release- 51/gff3/vitis_vinifera/Vitis_vinifera.12X.51.gff3.gz)進(jìn)行序列比對(duì),獲取在參考基因組上的位置信息以及測(cè)序樣本特有的序列特征信息。計(jì)算每千個(gè)堿基的轉(zhuǎn)錄每百萬(wàn)映射讀取的fragments(FPKM值),用RSEM工具檢測(cè)基因和轉(zhuǎn)錄表達(dá)水平,使用Nbinom Test函數(shù)計(jì)算-value和fold change值,以-value≤0.05,|log2fold change|>1為篩選標(biāo)準(zhǔn),獲得不同處理下差異表達(dá)基因DEG。差異基因基于ensemblgPlants數(shù)據(jù)庫(kù)(http://ftp.ensemblgenomes.org/pub/plants/release-51/)、GO Database數(shù)據(jù)庫(kù)(http://geneontology.org/)、KEGG Database數(shù)據(jù)庫(kù)(http://www.genome.jp/kegg/)進(jìn)行基因功能注釋。
采用Goatools軟件對(duì)DEG進(jìn)行GO富集分析,使用Fisher精確檢驗(yàn);使用KOSAS對(duì)DEG進(jìn)行KEGG富集分析,計(jì)算原理同GO功能分析。為控制假陽(yáng)性率,采用Bonferroni方法進(jìn)行多重檢驗(yàn),以-value值≤0.05為閾值,滿足此條件的GO和KEGG通路定義為在差異基因中顯著富集的通路。
根據(jù)富集結(jié)果篩選出不同處理下參與淀粉-蔗糖轉(zhuǎn)化、苯丙氨酸代謝途徑以及激素信號(hào)轉(zhuǎn)導(dǎo)途徑的差異表達(dá)基因,并從中選取9個(gè)基因進(jìn)行qRT-PCR驗(yàn)證,以為內(nèi)參基因,Primer 5.0設(shè)計(jì)引物(表1),根據(jù)諾唯贊(南京)反轉(zhuǎn)錄試劑盒說(shuō)明書進(jìn)行cDNA第一條鏈的合成,采用全式金熒光定量PCR試劑盒進(jìn)行qRT-PCR試驗(yàn),2-ΔΔCT法計(jì)算差異基因的表達(dá)量。
表1 實(shí)時(shí)熒光定量PCR引物設(shè)計(jì)序列
將差異基因與轉(zhuǎn)錄因子數(shù)據(jù)庫(kù)(http://planttfdb.cbi. pku.edu.cn/index.php?sp=Vvi)進(jìn)行比對(duì),獲得差異表達(dá)的轉(zhuǎn)錄因子并進(jìn)行歸類。
顯著性分析采用SPSS 25.0軟件進(jìn)行,繪圖軟件為Origin 2019。
圖1為2021年轉(zhuǎn)色期間田間溫度記錄,每天8:00—20:00進(jìn)行高溫脅迫,并使用EL-USB-2+溫度記錄儀對(duì)高溫脅迫樣方進(jìn)行溫度監(jiān)測(cè)。數(shù)據(jù)顯示,增溫組整體溫度高于對(duì)照組的溫度。對(duì)照組的瞬時(shí)最低溫度為19.0℃,最高溫度達(dá)52.5℃;增溫組最低溫度為24.2℃,最高溫度達(dá)到57.3℃。CK組日平均溫度達(dá)到40℃以上日數(shù)為1 d,35—40℃日數(shù)為14 d,低于35℃日數(shù)為9 d。增溫處理日平均溫度達(dá)到40℃以上日數(shù)為15 d,35—40℃日數(shù)為5 d,低于35℃日數(shù)為4 d,且處理期間,增溫組的溫度整體高于對(duì)照組溫度,達(dá)到預(yù)期設(shè)定的高溫脅迫溫度。
圖1 轉(zhuǎn)色期溫度變化
如表2,從轉(zhuǎn)色期到成熟期,花色苷、總糖、還原糖以及蔗糖的含量均升高。剛開始轉(zhuǎn)色時(shí),HT組花色苷含量高于CK組,隨著轉(zhuǎn)色程度的增加,HT組花色苷含量開始低于CK組,HTE組花色苷含量略高于HT組,但低于CK組;成熟后,CK組花色苷總量顯著高于HT組,HTE組花色苷含量相較于HT組有明顯的上升;總糖含量在成熟時(shí)依次為CK>HTE>HT,且CK和HTE處理組與HE組存在顯著差異;高溫處理下,還原糖含量先快速積累,隨后變得緩慢,成熟時(shí)還原糖含量順序?yàn)镃K>HTE>HT;轉(zhuǎn)色過(guò)程中,不同處理對(duì)蔗糖含量影響不大,成熟后HTE組蔗糖含量最高。
經(jīng)Illumina平臺(tái)對(duì)8月10日(花后70 d)CK組、HT組和HTE組9個(gè)樣品進(jìn)行轉(zhuǎn)錄組測(cè)序,獲得轉(zhuǎn)錄組測(cè)序數(shù)據(jù)(表3)。不同處理下原始序列均高于47.30 M,質(zhì)控處理后序列長(zhǎng)度均大于6.80 G,Q30大于91.50%,GC含量在47.39%—47.94%,樣品clean reads與參考基因組比對(duì)率(total mapped)在89.02%— 92.46%;多個(gè)定位測(cè)序序列(multiple mapped)在3%左右,單一序列比對(duì)(uniquely mapped)在85%以上。表明轉(zhuǎn)錄組測(cè)序數(shù)據(jù)可信度高,能夠滿足后續(xù)分析。
對(duì)轉(zhuǎn)錄組差異基因表達(dá)情況進(jìn)行統(tǒng)計(jì)(圖2),HT與CK組檢測(cè)到上調(diào)基因1 229個(gè),下調(diào)基因492個(gè);HTE與CK組上調(diào)基因690個(gè),下調(diào)基因287個(gè);HT與HTE組上調(diào)基因4個(gè),下調(diào)基因80個(gè);3組共同差異基因28個(gè)。
GO注釋結(jié)果表明,DEG主要存在于生物過(guò)程、細(xì)胞組分和分子功能3大類,圖3展示了GO富集豐度前20的條目,不同處理?xiàng)l件下,差異基因富集的條目相同,但是DEG數(shù)目不同。代謝過(guò)程、刺激反應(yīng)、細(xì)胞膜、細(xì)胞器、綁定、催化活性等代謝通路上差異基因數(shù)目相差較大。
表2 不同處理下‘赤霞珠’葡萄花色苷、可溶性糖含量的變化
CK:對(duì)照組;HT:高溫組;HTE:高溫油菜素內(nèi)酯組。不同小寫字母表示處理間差異顯著(<0.05)。下同
CK: Control group; HT: The high temperature group; HTE: High temperature and brassinosteroid group. Different lowercase letters indicate significant difference (<0.05). The same as below
表3 轉(zhuǎn)錄組測(cè)序數(shù)據(jù)信息
A:不同處理中上調(diào)和下調(diào)的DEG數(shù)量;B:差異表達(dá)基因Venn圖
KEGG富集展示了差異基因的代謝通路以及生物信息學(xué)功能(圖4)。本研究中,HT vs CK兩組處理,共有4 622個(gè)差異基因富集到289個(gè)通路;HTE vs CK兩組處理中,共有4 622個(gè)差異基因富集到149個(gè)代謝通路中;HT vs HTE處理中,差異基因富集到19個(gè)代謝通路中。將不同處理之間KEGG富集前20的條目進(jìn)行展示,在HT vs CK組中,上調(diào)差異基因主要富集在光合作用-天線蛋白、光合作用、黃酮和類酮醇生物合成、類固醇生物合成、莨菪堿、哌啶和吡啶生物堿的生物合成以及類胡蘿卜素生物合成通路中,下調(diào)基因富集在二苯乙烯類、二芳基庚烷和姜酚的生物合成、色氨酸合成等通路中(圖4-A);HTE vs CK對(duì)比,上調(diào)基因顯著富集在類黃酮和黃酮醇生物合成、光合作用-天線蛋白、類固醇生物合成以及戊糖和葡萄糖苷酸相互轉(zhuǎn)化等代謝通路中,下調(diào)差異基因主要富集在半乳糖代謝、植物病原體互作等代謝過(guò)程中,與高溫處理不同的是,HTE vs CK對(duì)比,植物激素信號(hào)轉(zhuǎn)導(dǎo)通路中存在差異下調(diào)基因(圖4-B);HT vs HTE對(duì)比中,差異基因富集的通路均為下調(diào)基因,但富集的結(jié)果并不顯著(圖4-C)。
圖3 差異基因GO分析
糖是花色苷合成的重要物質(zhì),對(duì)葡萄果實(shí)品質(zhì)有極其重要的作用。在本研究中,共篩選出14個(gè)蔗糖-淀粉代謝途徑的差異表達(dá)基因(圖5)。與CK組相比,HT組-淀粉酶(alpha-amylase,AMY)表達(dá)量最低,HTE組表達(dá)量略微升高但低于對(duì)照組;蔗糖轉(zhuǎn)運(yùn)酶(sucrose synthase,SS)、呋喃果糖苷酶(fructofuranosidase,F(xiàn)F)、葡糖磷酸腺苷?;D(zhuǎn)移酶(glucose phosphate adenylytransferase,GP)及-葡萄糖苷酶(-glucosidase,BG)表達(dá)量在高溫脅迫下最高,對(duì)照組最低;海藻糖-6磷酸磷酸酶(trehalose- 6-phosphate,TPP)在高溫脅迫下表達(dá)量較低,噴施EBR后略有上升,但始終低于CK組。
苯丙氨酸是植物體內(nèi)最重要的次生代謝途徑之一,花色苷等物質(zhì)的合成均屬于該途徑的分支。為了了解高溫脅迫下外源噴施油菜素內(nèi)酯對(duì)果實(shí)花色苷的影響,根據(jù)差異基因KEGG Pathway數(shù)據(jù)庫(kù)中注釋分析,得到苯丙氨酸生物合成途徑(KEGG ID:vvi00941)的差異基因(圖6)。注釋后發(fā)現(xiàn),差異基因分別為木質(zhì)素合成途徑中的羥基肉桂酰CoA:莽草酸羥基肉桂酰轉(zhuǎn)移酶(hydroxyl-crnnamoyl CoA: shikimate hydroxy cinnamoyl transferase,)、香豆酸-3-羥化酶(coumarte-3-hydroxylase,)、肉桂酰CoA奎寧酸羥基肉桂酰轉(zhuǎn)移酶(hydroxycinnamoyl CoA: quinate hydroxyl-cinnamoy,)和咖啡酰CoA(cafeoyl-CoA-3-O-methyl transferase,);花色苷合成過(guò)程中差異基因主要為黃烷酮羥化酶類(flavanone hydroxylase,F(xiàn)3H,)、無(wú)色花色素還原酶(leucoanthocyanin reductase,)和無(wú)色花色素雙加氧酶(leucoanthocyanin dioxygenase,)。本研究發(fā)現(xiàn),HT組木質(zhì)素合成相關(guān)基因的表達(dá)量均高于CK組,HTE組木質(zhì)素合成的相關(guān)基因有所下降,但也高于CK組;花色苷合成過(guò)程中,高溫顯著提高了的表達(dá)量,噴施EBR增加了該基因的表達(dá)量;和的表達(dá)量受高溫處理的影響,噴施EBR后的表達(dá)量低于高溫處理。
圖5 淀粉和蔗糖代謝相關(guān)基因熱圖
為了進(jìn)一步了解EBR對(duì)‘赤霞珠’果實(shí)內(nèi)源激素信號(hào)轉(zhuǎn)導(dǎo)的影響,對(duì)差異基因在KEGG Pathway數(shù)據(jù)庫(kù)中注釋分析,獲得植物激素信號(hào)轉(zhuǎn)導(dǎo)途徑(KEGG ID:vvi04075)的差異基因,發(fā)現(xiàn)差異基因主要集中在生長(zhǎng)素(auxin)、脫落酸(abscisic acid,ABA)、油菜素內(nèi)酯(brassinosteroid,BR)和水楊酸(salicylic acid,SA)信號(hào)轉(zhuǎn)導(dǎo)過(guò)程,其中生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中注釋到編碼生長(zhǎng)素受體蛋白的基因1個(gè)和(auxin-responsive protein SAUR50-like)家族的基因3個(gè);脫落酸信號(hào)轉(zhuǎn)導(dǎo)過(guò)程注釋到2C型蛋白磷酸酶家族中蛋白磷酸酶基因(probable protein phosphatase,)1個(gè)和激酶家族中絲氨酸/蘇氨酸激酶基因(serine/threonine-protein kinase,)1個(gè);油菜素內(nèi)酯信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中注釋到1個(gè)關(guān)鍵轉(zhuǎn)錄因子和木聚糖基轉(zhuǎn)移酶/水解酶編碼基因(xyloglucan endotransglucosylase/hydrolase 2,)2個(gè);水楊酸信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中,注釋到一個(gè)。
紅色表示上調(diào)基因;綠色表示參與代謝的基因;虛線表示多步反應(yīng);實(shí)線表示一步反應(yīng)。熱圖表示不同處理間差異基因的FPKM值,顏色越紅,數(shù)值越高;從左到右樣本依次為CK、HT和HTE。下同
對(duì)植物激素信號(hào)轉(zhuǎn)導(dǎo)途徑中的差異基因進(jìn)行表達(dá)模式分析(圖7),與CK相比,HT和HTE處理均提高了、、、(吲哚-3-乙酸誘導(dǎo)蛋白,indole-3-acetic acid-induced protein,)和(吲哚-3-乙酸酰胺合成酶,putative indole-3-acetic acid-amido synthetase)的表達(dá)量;HT處理降低了生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中蛋白磷酸酶5的表達(dá)量,與HT相比,HTE處理下,該基因的表達(dá)量略高;SnKR2激酶家族中絲氨酸/蘇氨酸激酶相關(guān)基因的表達(dá)量在HT處理下最高,CK處理時(shí)最低;BR信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中,關(guān)鍵轉(zhuǎn)錄因子的表達(dá)量受高溫誘導(dǎo)增加,HTE處理降低了其表達(dá)量;的表達(dá)情況根據(jù)其家族成員的不同而改變;水楊酸信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中,的表達(dá)量在HT和HTE處理下顯著提高。
基于轉(zhuǎn)錄組測(cè)序數(shù)據(jù)中的轉(zhuǎn)錄因子,參考植物轉(zhuǎn)錄因子數(shù)據(jù)庫(kù)Plant TFDB(http://planttfdb.cbi.pku.edu. cn/)中的葡萄轉(zhuǎn)錄因子家族信息,初步篩選出59個(gè)家族的1 690個(gè)轉(zhuǎn)錄因子(表4),HT vs CK組差異轉(zhuǎn)錄因子95個(gè),其中74個(gè)上調(diào)及21個(gè)下調(diào),差異轉(zhuǎn)錄因子主要屬于AP2、bHLH、bZIP、C2H2、Dof、ERF、HD-ZIP、LBD、MIKC-MADS、MYB、NAC、WRKY轉(zhuǎn)錄因子家族;HTE vs CK組上調(diào)轉(zhuǎn)錄因子44個(gè),下調(diào)轉(zhuǎn)錄因子13個(gè),差異轉(zhuǎn)錄因子主要屬于bHLH、bZIP、Dof、ERF、HD-ZIP、LBD、MYB、NAC、WRKY等轉(zhuǎn)錄因子家族;HT vs HTE組中下調(diào)轉(zhuǎn)錄因子6個(gè),且都屬于MYB家族。
圖7 生長(zhǎng)素、脫落酸、油菜素內(nèi)酯、水楊酸信號(hào)轉(zhuǎn)導(dǎo)途徑
對(duì)果實(shí)苯丙氨酸代謝、淀粉和蔗糖代謝及激素信號(hào)轉(zhuǎn)導(dǎo)相關(guān)的9個(gè)差異基因(、、、、、、、2及)進(jìn)行qRT-PCR驗(yàn)證(圖8),qRT-PCR基因相對(duì)表達(dá)量變化趨勢(shì)與轉(zhuǎn)錄組測(cè)序結(jié)果一致,說(shuō)明轉(zhuǎn)錄組結(jié)果準(zhǔn)確可靠。
花色苷是葡萄果實(shí)品質(zhì)的重要指標(biāo)之一,內(nèi)在遺傳因素和外界環(huán)境因素都會(huì)影響其合成。高溫作為一種常見的非生物脅迫,會(huì)嚴(yán)重抑制花色苷的積累[25]。本研究發(fā)現(xiàn),從葡萄轉(zhuǎn)色開始,高溫對(duì)花色苷的影響呈現(xiàn)先促進(jìn)后抑制的規(guī)律,EBR緩解了成熟期高溫對(duì)花色苷積累的抑制作用,此結(jié)果與張睿佳等[21]和馬立娜[26]的研究結(jié)果一致。糖作為花色苷合成的重要物質(zhì),與花色苷的積累密切相關(guān)[27];本研究中,果實(shí)內(nèi)蔗糖及還原糖含量逐漸上升,HT組含量低于HTE組,表明EBR能夠提高葡萄果實(shí)中糖的含量,從而提高花色苷的合成。淀粉-蔗糖的轉(zhuǎn)化對(duì)于花色苷的積累有重要作用,蔗糖代謝相關(guān)酶能夠調(diào)節(jié)蔗糖含量,影響淀粉的合成[28-29]。前人研究表明編碼的蛋白酶是催化淀粉降解為可溶性糖的關(guān)鍵酶,蔗糖轉(zhuǎn)化為單糖則依賴于編碼的酶[30]。本研究中,HT組以及表達(dá)量最低,噴施EBR后的以及表達(dá)量上升,推測(cè)高溫脅迫抑制了淀粉轉(zhuǎn)化為蔗糖相關(guān)基因的表達(dá),從而降低了蔗糖含量,影響花色苷的合成。此外,海藻糖作為一種應(yīng)激代謝產(chǎn)物,當(dāng)植物處于逆境時(shí),會(huì)在細(xì)胞表面形成獨(dú)特的保護(hù)膜從而降低惡劣環(huán)境帶來(lái)的危害[31]。本研究中,EBR提高了高溫脅迫下的表達(dá)量,推測(cè)EBR能夠促進(jìn)高溫環(huán)境下葡萄海藻糖的合成,從而提高葡萄對(duì)高溫的耐受性。
圖8 差異基因qRT-PCR驗(yàn)證
花色苷的生物合成主要是通過(guò)類黃酮代謝途徑,在此過(guò)程中由結(jié)構(gòu)基因調(diào)節(jié)下游結(jié)構(gòu)酶形成多酶復(fù)合物,進(jìn)而催化花色苷的形成[32]。Luan等[33]在葡萄轉(zhuǎn)色期噴施EBR,發(fā)現(xiàn)花色苷代謝的結(jié)構(gòu)基因、、以及表達(dá)量顯著上升;Xi等[34]研究發(fā)現(xiàn),用EBR噴施葡萄果皮,PAL和DFR具有更高的酶活性。本研究發(fā)現(xiàn),在高溫脅迫下噴施EBR,花色苷結(jié)構(gòu)基因以及表達(dá)量提高,與前人研究結(jié)果一致,說(shuō)明EBR通過(guò)提高花色苷合成基因的表達(dá)量,從而提高花色苷的含量。此外,本研究還發(fā)現(xiàn),花色苷合成過(guò)程中表達(dá)量在高溫脅迫下顯著提高,其作用底物是各種原花色素,最終合成各種兒茶素,從而降低了花色苷的含量。木質(zhì)素是苯丙氨酸生物合成的一個(gè)分支,與花色苷競(jìng)爭(zhēng)同一個(gè)底物香豆酰CoA,最終在各種酶的催化下合成,從而影響花色苷的合成[35]。本研究中,高溫脅迫提高了、、以及等木質(zhì)素合成相關(guān)基因的表達(dá)量,推測(cè)高溫脅迫促進(jìn)了葡萄果皮木質(zhì)素的合成,從而提高葡萄的高溫抗性,而EBR則通過(guò)阻止葡萄未成熟時(shí)果皮木質(zhì)素生成,保證花色苷的生物合成。
植物自身能夠形成一套復(fù)雜的防御機(jī)制來(lái)增加對(duì)逆境的耐受性,植物激素作為信號(hào)分子,其信號(hào)轉(zhuǎn)導(dǎo)機(jī)制能夠參與到高溫脅迫響應(yīng)過(guò)程中[36]。近年來(lái),研究發(fā)現(xiàn)BR與植物激素相互作用,通過(guò)激活植物體內(nèi)抗氧化酶活性、調(diào)控植物滲透物質(zhì)的平衡、清除自由基等途徑參與植物逆境應(yīng)答過(guò)程[37]。本研究發(fā)現(xiàn),高溫脅迫下,‘赤霞珠’葡萄果實(shí)體內(nèi)生長(zhǎng)素、ABA、BR以及SA等多種激素轉(zhuǎn)導(dǎo)途徑基因表達(dá)量下降,噴施EBR則能夠提高相關(guān)基因的表達(dá)量。前人研究表明BR與ABA相互作用,提高ABA合成基因的表達(dá)從而提高植株對(duì)逆境的耐受性[38],ABA可促進(jìn)葡萄果皮總花色苷和花色苷單體的含量[39]。本研究發(fā)現(xiàn),噴施EBR后,ABA信號(hào)受體及表達(dá)量上升,推測(cè)EBR通過(guò)調(diào)節(jié)內(nèi)源ABA信號(hào)轉(zhuǎn)導(dǎo),間接影響花色苷單體的合成,從而緩解高溫對(duì)葡萄花色苷積累的抑制。此外,BR信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中,是BR信號(hào)通路的正調(diào)節(jié)劑,介導(dǎo)BR的生理效應(yīng)和生物合成反饋調(diào)節(jié)[40]。本研究中,噴施EBR,其信號(hào)轉(zhuǎn)導(dǎo)關(guān)鍵基因表達(dá)量升高,推測(cè)該基因表達(dá)量的變化,與EBR介導(dǎo)的內(nèi)源ABA含量增加具有密切關(guān)系,關(guān)于在BR信號(hào)轉(zhuǎn)導(dǎo)過(guò)程發(fā)揮的作用,還需通過(guò)進(jìn)一步試驗(yàn)驗(yàn)證,BR介導(dǎo)高溫脅迫下花色苷積累的機(jī)制有待通過(guò)過(guò)表達(dá)技術(shù)和基因沉默技術(shù)的驗(yàn)證。
2,4-表油菜素內(nèi)酯能夠緩解高溫對(duì)葡萄花色苷積累的抑制作用。通過(guò)轉(zhuǎn)錄組測(cè)序發(fā)現(xiàn),該過(guò)程涉及淀粉、蔗糖轉(zhuǎn)化相關(guān)基因14個(gè)、花色苷合成結(jié)構(gòu)基因7個(gè)、木質(zhì)素合成相關(guān)基因4個(gè);此外,高溫脅迫下,ABA信號(hào)轉(zhuǎn)導(dǎo)的受體及激酶表達(dá)量上升,這些基因表達(dá)量的改變可能與BR信號(hào)轉(zhuǎn)導(dǎo)關(guān)鍵基因表達(dá)量變化相關(guān)。
[1] Stocker T F, Qin D, Plattner G K, Tignor M M B, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, M. M. P. Climate Change 2013: The physical science basis. contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change. 2014.
[2] 吳久赟, 廉葦佳, 曾曉燕, 劉志剛, 毛亮, 劉勇翔, 姜建福. 不同品種葡萄對(duì)高溫的生理響應(yīng)及耐熱性評(píng)價(jià). 西北植物學(xué)報(bào), 2019, 39(6): 1075-1084.
WU J Y, LIAN W J, ZENG X Y, LIU Z G, MAO L, LIU Y X, JIANG J F. Physiological response to high temperature and heat tolerance evaluation of different grape cultivars. Acta Botanica Boreali- Occidentalia Sinica, 2019, 39(6): 1075-1084. (in Chinese)
[3] CORTELL J M, HALBLEIB M, GALLAGHER A V, RIGHETTI T L, KENNEDY J A. Influence of vine vigor on grape (L. cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine. Journal of Agricultural and Food Chemistry, 2007, 55(16): 6585-6595.
[4] Wang H, Cao G H, Prior R L. Oxygen radical absorbing capacity of anthocyanins. Journal of Agricultural and Food Chemistry, 1997, 45(2): 304-309.
[5] ZHANG J L, NIU J P, DUAN Y, ZHANG M X, LIU J Y, LI P M, MA F W. Photoprotection mechanism in the ‘Fuji’ apple peel at different levels of photooxidative sunburn. Physiologia Plantarum, 2015, 154(1): 54-65.
[6] 鐘海霞. 葡萄果實(shí)糖分積累機(jī)制及關(guān)鍵基因挖掘[D]. 烏魯木齊: 新疆農(nóng)業(yè)大學(xué), 2021.
ZHONG H X. Sugar accumulation mechanism and key gene mining in grape fruit [D]. Urumqi: Xinjiang Agricultural University, 2021. (in Chinese)
[7] CARBONELL-BEJERANO P, SANTA MARíA E, TORRES-PéREZ R, ROYO C, LIJAVETZKY D, BRAVO G, AGUIRREOLEA J, SáNCHEZ-DíAZ M, ANTOLíN M C, MARTíNEZ-ZAPATER J M. Thermotolerance responses in ripening berries ofL. cv Muscat hamburg. Plant and Cell Physiology, 2013, 54(7): 1200-1216.
[8] 黃敬寒, 溫可睿, 潘秋紅, 段長(zhǎng)青, 王軍. 環(huán)境條件和栽培技術(shù)對(duì)葡萄花色苷生物合成的影響(上): 環(huán)境條件對(duì)葡萄花色苷生物合成的影響. 中外葡萄與葡萄酒, 2011(9): 71-76.
HUANG J H, WEN K R, PAN Q H, DUAN C Q, WANG J. Effects of environmental conditions and cultivation techniques on anthocyanin biosynthesis in grape (Ⅰ)-Effects of environmental conditions on anthocyanin biosynthesis in grape. Sino-Overseas Grapevine and Wine, 2011(9): 71-76. (in Chinese)
[9] BAJGUZ A, HAYAT S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry: PPB, 2009, 47(1): 1-8.
[10] JIN S H, LI X Q, WANG G G, ZHU X T. Brassinosteroids alleviate high-temperature injury inseedlings via maintaining higher antioxidant defence and glyoxalase systems. AoB Plants, 2015, 7: plv009.
[11] Ding H D, Zhu X H, Zhu Z W, Yang S J, Zha D S, Wu X X. Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biologia Plantarum, 2012, 56(4): 767-770.
[12] Aghdam M S, Mohammadkhani N. Enhancement of chilling stress tolerance of tomato fruit by postharvest brassinolide treatment. Food and Bioprocess Technology, 2014, 7(3): 909-914.
[13] 楊藝琳, 張正敏, 李美琳, 趙立艷, 金鵬, 鄭永華. 2, 4-表油菜素內(nèi)酯對(duì)葡萄果實(shí)采后灰霉病的抑制作用機(jī)理. 食品科學(xué), 2019, 40(15): 231-238.
YANG Y L, ZHANG Z M, LI M L, ZHAO L Y, JIN P, ZHENG Y H. Modes of action of 2, 4-epibrassionolide against postharvest gray mold decay of grapes. Food Science, 2019, 40(15): 231-238. (in Chinese)
[14] KAGALE S, DIVI U K, KROCHKO J E, KELLER W A, KRISHNA P. Brassinosteroid confers tolerance inandto a range of abiotic stresses. Planta, 2007, 225(2): 353-364.
[15] NIE W F, WANG M M, XIA X J, ZHOU Y H, SHI K, CHEN Z X, YU J Q. Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H2O2generation and stress tolerance. Plant, Cell & Environment, 2013, 36(4): 789-803.
[16] ZHOU J, WANG J, LI X, XIA X J, ZHOU Y H, SHI K, CHEN Z X, YU J Q. H2O2mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. Journal of Experimental Botany, 2014, 65(15): 4371-4383.
[17] YIN Y L, QIN K Z, SONG X W, ZHANG Q H, ZHOU Y H, XIA X J, YU J Q. BZR1 transcription factor regulates heat stress tolerance throughreceptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant and Cell Physiology, 2018, 59(11): 2239-2254.
[18] Yuan L b, Peng Z h, Zhi T t, Zho Z, Liu Y, Zhu Q, Xiong X y, Ren C m. Brassinosteroid enhances cytokinin-induced anthocyanin biosynthesis inseedlings. Biologia Plantarum, 2015, 59(1): 99-105.
[19] 馮曉雪. 油菜素內(nèi)酯對(duì)紅地球葡萄生理生化特性和品質(zhì)的影響[D]. 蘭州: 甘肅農(nóng)業(yè)大學(xué), 2014.
FENG X X. Effects of brassinolide on physiological and biochemical characteristics and quality of Red Globe grape [D]. Lanzhou: Gansu Agricultural University, 2014. (in Chinese)
[20] 王愛玲, 白世踐, 趙榮華, 蔡軍社. 油菜素內(nèi)酯對(duì)火焰無(wú)核葡萄著色的影響. 天津農(nóng)業(yè)科學(xué), 2019, 25(1): 34-35, 42.
WANG A L, BAI S J, ZHAO R H, CAI J S. Effects of brassinolide on colour of flame seedless grape. Tianjin Agricultural Sciences, 2019, 25(1): 34-35, 42. (in Chinese)
[21] 張睿佳, 李瑛, 虞秀明, 婁玉穗, 許文平, 張才喜, 趙麗萍, 王世平. 高溫脅迫與外源油菜素內(nèi)酯對(duì)‘巨峰’葡萄葉片光合生理和果實(shí)品質(zhì)的影響. 果樹學(xué)報(bào), 2015, 32(4): 590-596.
ZHANG R J, LI Y, YU X M, LOU Y S, XU W P, ZHANG C X, ZHAO L P, WANG S P. Effects of heat stress and exogenous brassinolide on photosynthesis of leaves and berry quality of ‘Kyoho’ grapevine. Journal of Fruit Science, 2015, 32(4): 590-596. (in Chinese)
[22] 欒麗英, 張振文, 惠竹梅, 房玉林, 霍珊珊. 脫落酸處理對(duì)赤霞珠和煙73葡萄果皮花色苷組分的影響. 食品科學(xué), 2014, 35(18): 110-114.
LUAN L Y, ZHANG Z W, XI Z M, FANG Y L, HUO S S. Effect of abscisic acid on anthocyanin composition of grape skins from73 and cabernet sauvignon. Food Science, 2014, 35(18): 110-114. (in Chinese)
[23] 李璐, 徐玉娟, 吳繼軍, 余元善, 鄒波, 彭健. 華中地區(qū)不同品種樹莓果實(shí)成熟過(guò)程中特征活性物質(zhì)的變化. 現(xiàn)代食品科技, 2021, 37(10): 145-152.
LI L, XU Y J, WU J J, YU Y S, ZOU B, PENG J. Ripening-induced changes in characteristic active compounds of different raspberry () cultivars sourced from central China. Modern Food Science & Technology, 2021, 37(10): 145-152. (in Chinese)
[24] 李利梅, 王秀芹, 楊培培, 黃衛(wèi)東, 戰(zhàn)吉宬. 赤霞珠葡萄果實(shí)糖積累與糖代謝相關(guān)酶的關(guān)系. 中外葡萄與葡萄酒, 2011(7): 24-27.
LI L M, WANG X Q, YANG P P, HUANG W D, ZHAN J C. Relationship between sugar accumulation and sugar metabolism related enzymes during Cabernet Sauvignon berries development. Sino-Overseas Grapevine & Wine, 2011(7): 24-27. (in Chinese)
[25] COHEN S D, TARARA J M, KENNEDY J A. Assessing the impact of temperature on grape phenolic metabolism. Analytica Chimica Acta, 2008, 621(1): 57-67.
[26] 馬立娜. 油菜素內(nèi)酯和脫落酸調(diào)控葡萄果實(shí)成熟與花色苷合成的研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2012.
MA L N. Study on brassinolide and abscisic acid regulating grape fruit ripening and anthocyanin synthesis [D]. Yangling: Northwest A & F University, 2012. (in Chinese)
[27] GAMBETTA G A, MATTHEWS M A, SHAGHASI T H, MCELRONE A J, CASTELLARIN S D. Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta, 2010, 232(1): 219-234.
[28] ZHANG K, WU Z D, TANG D B, LUO K, LU H X, LIU Y Y, DONG J, WANG X, LV C W, WANG J C, LU K. Comparative transcriptome analysis reveals critical function of sucrose metabolism related-enzymes in starch accumulation in the storage root of sweet potato. Frontiers in Plant Science, 2017, 8: 914.
[29] Winter H, Huber S C. Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. Critical Reviews in Plant Sciences, 2000, 19(1): 31-67.
[30] 林雪茜, 彭淼, 吳少平, 易干軍, 董濤, 鐘曉紅, 高慧君. ‘中蕉9號(hào)’與‘巴西蕉’果實(shí)后熟過(guò)程中可溶性糖積累差異的原因分析. 果樹學(xué)報(bào), 2019, 36(11): 1524-1539.
LIN X Q, PENG M, WU S P, YI G J, DONG T, ZHONG X H, GAO H J. A comparative analysis of the differences in starch degradation and soluble sugar accumulation between ‘Zhongjiao No.9’ and ‘Baxijiao’ during fruit ripening. Journal of Fruit Science, 2019, 36(11): 1524-1539. (in Chinese)
[31] 靳文斌, 李克文, 胥九兵, 張友亮, 肖兆玲, 張倩, 劉開昌, 龔魁杰. 海藻糖的特性、功能及應(yīng)用. 精細(xì)與專用化學(xué)品, 2015, 23(1): 30-33.
JIN W B, LI K W, XU J B, ZHANG Y L, XIAO Z L, ZHANG Q, LIU K C, GONG K J. The character and function of trehalose and its application. Fine and Specialty Chemicals, 2015, 23(1): 30-33. (in Chinese)
[32] SPARVOLI F, MARTIN C, SCIENZA A, GAVAZZI G, TONELLI C. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (L.). Plant Molecular Biology, 1994, 24(5): 743-755.
[33] Luan L Y, Zhang Z W, Xi Z M, Huo S S, Ma L N. Brassinosteroids regulate anthocyanin biosynthesis in the ripening of grape berries. South African Journal of Enology and Viticulture, 2013, 34(2): 196-203.
[34] XI Z M, ZHANG Z W, HUO S S, LUAN L Y, GAO X, MA L N, FANG Y L. Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity. Food Chemistry, 2013, 141(3): 3056-3065.
[35] 陳素麗, 彭瑜, 周華, 于波, 董彥君, 滕勝. 植物海藻糖代謝及海藻糖-6-磷酸信號(hào)研究進(jìn)展. 植物生理學(xué)報(bào), 2014, 50(3): 233-242.
CHEN S L, PENG Y, ZHOU H, YU B, DONG Y J, TENG S. Research advances in trehalose metabolism and trehalose-6-phosphate signaling in plants. Plant Physiology Journal, 2014, 50(3): 233-242. (in Chinese)
[36] 陳乃鈺, 張國(guó)香, 張力爽, 安逸民, 杜家歡, 王丹, 郭長(zhǎng)虹. ABF轉(zhuǎn)錄因子在植物響應(yīng)非生物脅迫中的作用. 植物遺傳資源學(xué)報(bào), 2021, 22(4): 930-938.
CHEN N Y, ZHANG G X, ZHANG L S, AN Y M, DU J H, WANG D, GUO C H. The role of ABF transcription factors in response to abiotic stress in plant. Journal of Plant Genetic Resources, 2021, 22(4): 930-938. (in Chinese)
[37] HU Y X, BAO F, LI J Y. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in. The Plant Journal: for Cell and Molecular Biology, 2000, 24(5): 693-701.
[38] 林樹欽. 脫落酸和表油菜素內(nèi)酯對(duì)月季切花葉片氣孔開放和水孔蛋白基因表達(dá)的影響[D]. 廣州: 仲愷農(nóng)業(yè)工程學(xué)院, 2019.
LIN S Q. Effects of abscisic acid and epibrassinolide on stomatal opening and aquaporin gene expression in cut rose leaves [D]. Guangzhou: Zhongkai University of Agriculture and Engineering, 2019. (in Chinese)
[39] CRUPI P, ALBA V, MASI G, CAPUTO A R, TARRICONE L. Effect of two exogenous plant growth regulators on the color and quality parameters of seedless table grape berries. Food Research International, 2019, 126: 108667.
[40] Babal?k Z, Demirci T, A?c? ? A, Baydar N G. Brassinosteroids modify yield, quality, and antioxidant components in grapes (cv. Alphonse Lavallée). Journal of Plant Growth Regulation, 2020, 39(1): 147-156.
Regulation Mechanism of Brassinolide on Anthocyanins Synthesis and Fruit Quality in Wine Grapes Under High Temperature Stress Based on Transcriptome Analysis
WANG YueNing, DAI HongJun, HE Yan, WEI Qiang, GUO XueLiang, LIU Yan, YIN MengTing, WANG ZhenPing
College of Agriculture, Ningxia University, Yinchuan 750021
【Objective】 The aims of the study were to analyze the genes involved in the regulation of grape anthocyanin accumulation and fruit quality by 2,4-Epibrassinolide (EBR) under high-temperature stress, and to explore the molecular mechanism of EBR regulation anthocyanin accumulation in grapes under high-temperature stress. 【Method】 Cabernet Sauvignon grapes were treated with high-temperature stress using infrared emitter, and sprayed 0.6 mg?L-1of EBR before the veraison. The content of total anthocyanins, total sugar, reducing sugar and sucrose were quantified using the ultraviolet visible spectrophotometer. The mechanism of EBR-mediated accumulation of anthocyanin under high-temperature stress was analyzed by transcriptome sequencing. 【Result】 Starting from veraison, the anthocyanin content increased gradually under various treatments. At maturity, the total anthocyanin content in the high temperature group (HT) was significantly lower than that in the control group (CK), and the anthocyanin content in the high temperature and EBR group (HTE) was higher than that in the HT group, but lower than CK group. Under HT treatment, the accumulation pattern of total sugar, reducing sugar and sucrose was similar to that of anthocyanins and lower than those of CK group at maturity stage. Compared with HT group, the contents of various sugars in HTE group were increased. The differences in transcriptome levels of Cabernet Sauvignon fruits under the three treatments were analyzed. Through GO and KEGG enrichment, 14 differential genes related to sucrose and starch metabolic pathways, among which 10 genes were significantly up-regulated and 4 genes were significantly down-regulated under HT and HTE treatments. The expressions of 11 genes were different in the phenylpropane metabolic pathway. Seven genes involved in anthocyanin synthesis were up-regulated under the HT treatment, and 4 genes involved in lignin synthesis were significantly up-regulated under the HT treatment, indicating that high temperature might promote lignin synthesis and reduce the accumulation of anthocyanins. In the endogenous hormone signaling pathway, the expression of the ABA signaling receptor genesandwas significantly increased under high-temperature stress, and might be involved in regulating the synthesis of grape anthocyanin under high-temperature stress together with EBR. The expression patterns of some differential genes were verified by qRT-PCR, which confirmed the accuracy of transcriptome data. 【Conclusion】 EBR alleviated the inhibitory effect of high temperature stress on grapevine anthocyanin accumulation, probably due to the fact that EBR reduced the expression of lignin-related genes and changed the expression pattern of grape endogenous hormone signal transduction genes.
L. cv Cabernet Sauvignon; 2,4-Epibrassinolide; high-temperature; anthocyanin; RNA-seq
10.3864/j.issn.0578-1752.2023.06.010
2022-05-09;
2022-08-08
寧夏自然科學(xué)基金(2022AAC03009)、國(guó)家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(G2021107490019)
汪月寧,E-mail:yuening2419@163.com。通信作者代紅軍,E-mail:dai_hj@nxu.edu.cn
(責(zé)任編輯 趙伶俐)