• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transition-edge sensors using Mo/Au/Au tri-layer films

    2023-03-13 09:20:16HubingWang王滬兵YueLv呂越DongxueLi李冬雪YueZhao趙越BoGao高波andZhenWang王鎮(zhèn)
    Chinese Physics B 2023年2期
    關(guān)鍵詞:高波冬雪

    Hubing Wang(王滬兵) Yue Lv(呂越) Dongxue Li(李冬雪)Yue Zhao(趙越) Bo Gao(高波) and Zhen Wang(王鎮(zhèn))

    1State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China

    2CAS Center for Excellence in Superconducting Electronics(CENSE),Shanghai 200050,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: transition-edge sensors,proximity effect,electroplating

    1.Introduction

    Transition edge sensors(TESs)are highly sensitive photon detectors that rely on the sharp resistance variation at the superconducting-transition edge to detect incident photons.[1]TES x-ray microcalorimeters with high energy resolving power have been implemented widely in x-ray astronomy and synchrotron radiation light sources.[2-5]The energy resolution of a TES depends strongly on the transition temperature (Tc)of the superconducting film.A TES-based microcalorimeter is usually made from a superconducting film withTc&lt;100 mK.The proximity effect between a superconducting and a normal metal film is an effective method to grow a low-Tcsuperconducting film.[6]Mo/Au and Mo/Cu are typical material combinations for TESs because both bilayer systems are robust with regard to diffusion and the formation of an intermetallic phase.[7-9]A TES microcalorimeter usually requires a low normal-state resistance to reduce internal thermal fluctuation noise.It is straightforward to grow a Cu film with low resistivity via sputtering.However,to reduce its resistivity,an Au film must be prepared using evaporation methods instead of sputtering, which usually requires a separate deposition system and increases costs.Cu films suffer from oxidation,while Au films do not,which ensures a long-time stability of an Mo/Au TES.[10]To prepare Mo/Au bilayer films,one can deposit the Mo film first using evaporation or sputtering, and then transfer the sample to another chamber to evaporate gold without breaking vacuum.The interface between the Mo and the Au layer can therefore be kept clean.[11]An alternative way is to deposit the Au layer in a separate evaporator, which requires careful ion cleaning before the deposition to obtain a transparent and uniform Mo-Au interface.[12]A third method involves using Mo/Au/Au tri-layer films,in which a thin protective Au layer is sputtered on top of the Mo film before breaking vacuum, and the second Au layer is then deposited via evaporation.The protective Au layer improves the transparency of the Mo-Au interface,makes the ion-cleaning process less critical,and increases the uniformity of the tri-layer.[13]In this work,we use Mo/Au/Au tri-layer films and improve the fabrication process by integrating the patterning of the TES sensors while forming the tri-layer films.This reduces the complexity of detector fabrication.We report the electrical characterization of the detectors and demonstrate their energy-resolving capability using a55Fe radioactive x-ray light source.

    2.Device fabrication

    2.1.Mo film preparation and the first layer of gold

    In experiment,the Mo film and the first layer of Au were deposited successively via direct-current magnetron sputtering(CMS 18, Kurt J.Lesker, US)on a four-inch Si wafer with a 300-nm-thick SiO2layer and a 500-nm-thick SiNxlayer.The Si substrate was cleaned with Ar+ion bombardment before the deposition to improve film adherence.Because the thickness of the Mo was comparable to the electron mean free path,the resistivity andTcwould be affected by a reduced thickness.Hence,the Mo film thickness was approximately 45 nm to ensure stability.[14]After the Mo deposition, the 30-nm protective Au layer was immediately sputter-deposited in the same chamber.The Mo and Au deposition parameters are listed in Table 1.

    Table 1.Deposition parameters for Mo and Au layers.

    2.2.Patterning the Mo/Au layer and depositing the second Au layer

    The Mo/Au bilayer was patterned into a square form with connecting leads using photoresist (LC100A) as an etching mask.The thickness of the photoresist was 1.8μm,and the bilayer was chemically wet-etched using gold etchant GE-8148 at 20°C and etching rates of 5 nm/s for Au and 10 nm/s for Mo.The wafer was then rinsed with deionized water and dried under N2.

    The second Au layer was thermally evaporated at 1.5 °A/s(PVD75,Kurt J.Lesker)at a base pressure of 1.5×10-7Torr.The wafer was cooled during evaporation and the Au film was deposited after Ar+ion cleaning.The process flow chart is shown in Fig.1.To prevent the formation of a superconducting short cut at the edge of the Mo-Au film,the top gold layer is slightly wider than the bottom Mo-Au layer.

    Fig.1.Schematic of Mo/Au/Au tri-layer fabrication: (a) ion-cleaning SiNx/SiO2/Si substrate,(b)sputtering Mo/Au(protective)film,(c)wetetching Mo/Au film,(d)depositing the second Au layer.

    2.3.Fabrication of overhanging photon absorber and SiNx window

    For a TES designed to detect soft x-rays with an efficiency being not less than 70%at 5.9 keV,we used pure gold as the absorber material,several-micrometers-thick gold was needed to have sufficient stopping power.Theoretical calculations shown in Fig.2 indicate that a 2.5-μm-thick Au film had a more than 89%quantum efficiency for 5.9-keV photons.[15]To make such thick gold films,we used an electro-plating system(JDY-3,CETC)that accommodated a four-inch wafer.To accelerate the thermalization of the absorber,it was necessary to increase the thermal conductivity, which increased with electrical conductivity.A 346 nm/min deposition rate helped to reduce the resistivity of the gold film to 1.3×10-9Ω·m, and the residual resistance ratio was 13.4.

    Fig.2.Quantum efficiency of 2.5-μm Au absorber.The green dashed line is the 5.9-keV line of Mn Kα.

    To increase the photon-sensitive area of the detector and to reduce the electrical coupling between the absorber and the Mo-Au-Au film,we fabricated an overhanging gold absorber supported by Au stems contacting the superconducting film and the SiNxmembrane.The overhanging structure was fabricated using a two-layer photoresist lift-off and electro-plating process.[16]In the first step, a photoresist evaporation mask was patterned to define the 2-μm-high supporting stems and to form the electroplating seed layer,as shown in Fig.3(a).After the metallization,the second photoresist layer was spin-coated and patterned without removing the first resist layer.The main body of the absorber and the supporting stems were electroplated to a thickness of approximately 2.5 μm.Both resist layers were then removed with acetone and a plasma process.A mushroom-like overhanging absorber was thus formed.Figure 3(b) shows a close-packed overhanging absorber array,

    where the inset shows a magnified scanning electron microscope image of the edge of the absorbers.

    The final step of the detector fabrication was to define the SiNxmembrane substrate to reduce the thermal conductance between the detector and the thermal bath.A deep siliconetching process (DSiE) was used (Estrelas 100, Oxford instruments, GB).[17]Before the process, the entire front side of the wafer was protected with 6 μm-thick photoresist.The DSiE process uses 8μm-thick photoresist as the etching mask.The exposed Si was etched with an SF6plasma and passivated with a C4F8plasma in sequence.The etching depth and sidewall steepness were controlled by fine-tuning the durations of the etching and passivation.Three hundreds of etchingpassivation cycles were used to obtain a 400 μm depth over 30 min.After the DSiE process,the photoresist was removed with acetone.

    Fig.3.(a) Schematic depiction of a transition-edge sensor with absorber,the corresponding material is listed below.(b)Scanning electron microscope image of electro-plating mushroom Au absorber array.The inset shows the magnified view of the gap between two absorbers.

    3.Characterizations of the sensors

    The fabricated sensor arrays contained 4×4 Mo/Au TES pixels with the integrated Au absorber.Detailed geometric parameters are listed in Table 2.We characterized these devices by acquiring small-current resistance-temperature (RT) curves and current-voltage (I-V) curves in an adiabatic demagnetization refrigerator.The latter were acquired with a two-stage SQUID readout system from STAR cryo-electronics LLC.Figure 4(a)shows theR-Tcurve obtained by measuring the resistance using a small excitation current while sweeping the bath temperature in 1-mK steps.The normal-state resistance and the superconducting transition temperature were approximately 16 mΩ and 90 mK, respectively.Figure 4(b)shows a variety ofI-Vcurves measured at various bath temperatures.For clarity,onlyI-Vcurves from a single pixel are shown.By calculating the Joule heating power at 80%Rn,

    where the current dependence of the detector resistance was negligible, and the resistance was assumed to be only dependent on the temperature,[18]we plotted the power vs.bath temperature curves (P-Tbath) shown in Fig.4(c), and determined the thermal conductanceGto the heat bath using the following first equation.[19]T0is the detector temperature at the working point(80%Rn),G(T0)is the thermal conductance at that temperature, andnis the exponent of the power flow to the heat bath.The three parameters can be fitted from the curves plotted in Fig.4(c).We have

    Using the thermal conductance, we calculated the nonequilibriumR-Tcurves by translating the Joule-heating power into the temperature variation.Figure 4(d) plots theR-Tcurves deduced from theI-Vcurves measured at the 65-mK bath temperature.TheseR-Tcurves indicated how the detector resistance evolved with current heating.The inset of Fig.4(d)shows a 4×4-pixels Mo/Au/Au TES array.

    Table 2.TES electro-thermal parameters.

    We summarized the geometric and electro-thermal detector parameters in Table 2.The heat capacityCwas roughly estimated from the absorber size and the bulk value of the materials

    whereρ/Ais the ratio of density to atomic weight,γis molar specific heat,Vis the volume of Au absorber,andTis the temperature at the working point.

    The natural time constant could be calculated from the heat capacityCand the thermal conductanceG,τ=C/G.The theoretical energy resolution in the small-signal limit and effective time constant is given by

    where the loop gainLI=PJ0α/GT0, andPJ0is the power of working point.

    Fig.4.(a) The R-T curves with small excitation current of an Mo/Au/Au transition-edge sensor (TES).(b) Typical I-V curves of a TES pixel 3.The red dashed line is 80% Rn.(c) The measured and fitted P-Tbath curves of three sensors on the same chip with identical design.(d)Non-equilibrium R-T curves of three Mo/Au/Au TESs on the same chip.

    Fig.5.(a)Typical pulse of an Mo/Au/Au transition-edge sensor(TES).The black line was the measured pulse,the red line was the double-exponent fit to V =A(e-(t-t0)/τel-e-(t-t0)/τeff)+Voffset.(b)Energy spectrum of 5.9-keV Mn Kα x-ray.The red dots are the original spectrum.The black line is the fitting curve using the convolution of the detector Gaussian response function with the natural line profile of the incident x-ray photons.The blue dash-dotted line and the green dashed line are the convolution of the fitted Gaussian detector response function with the natural line profile of the Mn Kα1 and Kα2 emission lines,respectively.The inset shows the pulse amplitude-photon energy calibration curve.

    The detector performance was characterized by using a55Fe radioactive source.The activity of the source is approximately 27μCi.The source was placed inside the cryostat,and the average measured count rate for a single TES pixel was approximately 1 count/s which is limited by the x-ray source.The detector bias current was supplied by a signal generator in series with a 1-kΩ resistor.

    The bath temperature was set to 50 mK and the TES was biased at 15%Rn.A typical signal pulse is shown in Fig.5(a).The whole pulse duration time is approximately 2 ms and the effective decay timeτeffwas only 268 μs because of strong electro-thermal feedback, from which we could deduceα.From the pulse duration,we estimate that the maximum count rate of a single-pixel detector can reach up to 500 Hz assuming no pulse pile-up.The pipeline to deduce the energy resolution of the TES, named as the instrumental energy resolution, involves three steps.First, an optimal filter is built to digitally filter the raw signal pulses and extract the pulse height of each individual pulse.[20]Then the pulse height data(in units of V)is translated into the photon energy using the calibration curve shown in the inset of Fig.5(b).The voltage-photon energy calibration curve is built using the characteristic emission lines(KαandKβ)of Mn.The energy spectrum histogram is plotted as red dots in Fig.5(b).To deduce the instrumental energy resolution,we need to exclude the contribution of the natural line profile of the incident x-ray photons.[21]The black solid line in Fig.5(b)is the fitting curve by convolving the detector response function(assumed to be a Gaussian function)with the natural line profiles.The deduced instrumental energy resolution is 6.66 eV.The blue dotted and the green dashed lines in Fig.5(b)show the convolution of the fitted Gaussian detector response function with the natural line profile of theKα1andKα2emission lines.

    4.Discussion

    The instrumental energy resolution calculated above is 6.66 eV,which was worse than the theoretical value of 1.6 eV shown in Table 2 calculated from the electro-thermal parameters of the sensor.The discrepancy between the measured and calculated energy resolutions could be attributed to several factors.First,the deduction of the electro-thermal parameters was not very accurate,especially for the calculated heat capacity.Complex impedance measurements could better characterize the electro-thermal parameters of the sensors.[22]Secondly,we did not include the contribution of excess noise in the theoretical calculation of the energy resolution.Characterization of the excess sensor noise will be reported elsewhere.By adjusting the sensor size and adding certain metal structures we could reduce degradation of the energy resolution caused by the excess noise.[23]Lastly, the instrumental energy resolution discussed above still contains the noise contribution of the SQUID amplifier and its readout electronics.For the moment the SQUID noise is not negligible compared to the TES detector noise.A SQUID readout system with lower current noise would also help to improve the measured energy resolution.These studies are still on-going.

    Acknowledgements

    Project was supported by the National Key Research and Development Program of China (Grant No.2017YFA0304000), the Shanghai Municipal Science and Technology Major Project(Grant No.2017SHZDZX02),China National Space Administration (CNSA) (Grant No.D050104), and the grant for low energy gamma-ray detection research based on SQUID technique.The nanofabrication work was supported by the Superconducting Electronics Facility(SELF)of Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.We thank Liwen Bianji(Edanz)(www.liwenbianji.cn)for editing the language of a draft of this manuscript.

    猜你喜歡
    高波冬雪
    Increasing linear flux range of SQUID amplifier using self-feedback effect
    辭寒去冬雪 暖帶入春風
    貓和狗的和諧時光
    高波作品
    香自冬雪來(中國畫)
    海燕(2021年2期)2021-01-29 08:18:44
    薛冬雪教授簡介
    冬雪
    凌?!ご鋷r冬雪
    僑園(2015年7期)2015-12-28 08:33:48
    211369 Expression of Nanog in brain tumor stem cells
    走在法網(wǎng)邊緣的作家
    男人狂女人下面高潮的视频| 国产真实乱freesex| 欧美性猛交╳xxx乱大交人| 国产一区二区亚洲精品在线观看| 99热网站在线观看| 亚洲欧美日韩无卡精品| 亚洲精品,欧美精品| av在线蜜桃| 国产免费一级a男人的天堂| 免费观看在线日韩| 永久免费av网站大全| 成年女人看的毛片在线观看| 日本黄大片高清| 高清午夜精品一区二区三区| 亚洲第一区二区三区不卡| 精品国产露脸久久av麻豆 | 久久久久网色| 午夜福利视频1000在线观看| 国产精品熟女久久久久浪| 三级毛片av免费| 乱系列少妇在线播放| 欧美xxxx性猛交bbbb| 国产精品美女特级片免费视频播放器| 午夜激情欧美在线| 成年免费大片在线观看| 成人亚洲精品av一区二区| 精品久久久久久成人av| 直男gayav资源| 在线播放国产精品三级| 亚洲天堂国产精品一区在线| 男女那种视频在线观看| 天堂网av新在线| 国产伦精品一区二区三区四那| 99热这里只有是精品50| 国产亚洲av片在线观看秒播厂 | 嫩草影院入口| 女人十人毛片免费观看3o分钟| 国产高潮美女av| 亚洲av熟女| 免费看av在线观看网站| 啦啦啦观看免费观看视频高清| 国内精品美女久久久久久| 精品99又大又爽又粗少妇毛片| 麻豆精品久久久久久蜜桃| 99久国产av精品| 亚洲国产成人一精品久久久| 中文字幕制服av| 久久久国产成人精品二区| 嘟嘟电影网在线观看| 女人被狂操c到高潮| 国产精品一二三区在线看| 免费看av在线观看网站| 热99re8久久精品国产| 最近2019中文字幕mv第一页| 一本一本综合久久| 日韩欧美精品免费久久| 一本久久精品| 午夜精品在线福利| av女优亚洲男人天堂| 成人av在线播放网站| 久久久色成人| 男人和女人高潮做爰伦理| 亚洲国产精品成人久久小说| 国产亚洲精品久久久com| 能在线免费看毛片的网站| 一级毛片我不卡| 成人无遮挡网站| 国产亚洲精品久久久com| 在线免费十八禁| 国产成人aa在线观看| 精品无人区乱码1区二区| 免费在线观看成人毛片| 非洲黑人性xxxx精品又粗又长| 国产乱来视频区| 99久国产av精品| 亚洲国产精品久久男人天堂| av线在线观看网站| 国产成人a区在线观看| 国产又黄又爽又无遮挡在线| 啦啦啦观看免费观看视频高清| 大又大粗又爽又黄少妇毛片口| 日韩成人伦理影院| 国内精品一区二区在线观看| .国产精品久久| 日本免费在线观看一区| 神马国产精品三级电影在线观看| 久久国产乱子免费精品| 少妇人妻一区二区三区视频| 亚洲欧洲国产日韩| 免费播放大片免费观看视频在线观看 | 国产成人a区在线观看| 啦啦啦韩国在线观看视频| 久久久久国产网址| 插逼视频在线观看| 久久精品人妻少妇| 美女大奶头视频| 少妇的逼好多水| 麻豆国产97在线/欧美| 综合色丁香网| 一二三四中文在线观看免费高清| 最近手机中文字幕大全| 日本黄色片子视频| 中文字幕免费在线视频6| av黄色大香蕉| 看片在线看免费视频| 国产伦在线观看视频一区| 人妻制服诱惑在线中文字幕| 免费观看在线日韩| 日本免费在线观看一区| 国产三级中文精品| 91aial.com中文字幕在线观看| 在线观看一区二区三区| 亚洲av成人精品一二三区| 国产一区二区亚洲精品在线观看| 日本爱情动作片www.在线观看| 禁无遮挡网站| 免费黄色在线免费观看| 超碰97精品在线观看| 亚洲国产精品国产精品| 99热这里只有是精品50| 亚洲人成网站在线观看播放| www.av在线官网国产| 国产极品精品免费视频能看的| 人人妻人人澡欧美一区二区| 亚洲国产精品专区欧美| 综合色av麻豆| 天天躁日日操中文字幕| 国产真实乱freesex| 国产69精品久久久久777片| 天堂影院成人在线观看| a级一级毛片免费在线观看| 国产精品99久久久久久久久| 亚洲成人av在线免费| 日日啪夜夜撸| 午夜a级毛片| 高清日韩中文字幕在线| 欧美一区二区国产精品久久精品| 91久久精品国产一区二区成人| 国产人妻一区二区三区在| 国产一级毛片在线| 成人二区视频| 天堂网av新在线| 亚洲最大成人中文| 中文字幕av成人在线电影| 国产一区二区在线观看日韩| 国产国拍精品亚洲av在线观看| 搡老妇女老女人老熟妇| 精品欧美国产一区二区三| 国产中年淑女户外野战色| 色尼玛亚洲综合影院| 久久这里有精品视频免费| 看免费成人av毛片| 22中文网久久字幕| 亚洲怡红院男人天堂| 听说在线观看完整版免费高清| 成人无遮挡网站| 国产69精品久久久久777片| 久久久久久久久久久丰满| 精品久久久噜噜| 日韩国内少妇激情av| 亚洲精品,欧美精品| 日本免费在线观看一区| 91aial.com中文字幕在线观看| 日本wwww免费看| 亚洲av成人av| av在线播放精品| 99久久无色码亚洲精品果冻| 国产成人aa在线观看| 亚洲国产精品国产精品| 国产伦理片在线播放av一区| 亚洲成色77777| 国产av在哪里看| 亚洲综合色惰| 听说在线观看完整版免费高清| av卡一久久| 美女内射精品一级片tv| 水蜜桃什么品种好| 级片在线观看| 国产成人午夜福利电影在线观看| 色综合色国产| 国产精品综合久久久久久久免费| 亚洲成人精品中文字幕电影| 亚洲av免费在线观看| 久久综合国产亚洲精品| 国产精品久久久久久av不卡| 99热6这里只有精品| 国产av一区在线观看免费| 少妇的逼水好多| 网址你懂的国产日韩在线| 午夜福利网站1000一区二区三区| 日日啪夜夜撸| 精品久久久久久电影网 | av线在线观看网站| 麻豆一二三区av精品| 国产精品1区2区在线观看.| 亚洲国产高清在线一区二区三| 成人毛片60女人毛片免费| 亚洲欧美精品专区久久| 久久久久久伊人网av| 麻豆国产97在线/欧美| 国产黄色小视频在线观看| 97热精品久久久久久| 久久国内精品自在自线图片| 中文字幕免费在线视频6| 黄色欧美视频在线观看| 伊人久久精品亚洲午夜| av在线蜜桃| 哪个播放器可以免费观看大片| 国产一区亚洲一区在线观看| 欧美激情在线99| 桃色一区二区三区在线观看| 国产亚洲av片在线观看秒播厂 | 国产精品久久久久久精品电影小说 | 美女xxoo啪啪120秒动态图| 国产淫片久久久久久久久| 高清毛片免费看| 欧美+日韩+精品| 国内精品美女久久久久久| 亚洲美女视频黄频| 超碰av人人做人人爽久久| 亚洲国产色片| 99久久成人亚洲精品观看| 日韩成人伦理影院| 天堂中文最新版在线下载 | 又粗又硬又长又爽又黄的视频| 深爱激情五月婷婷| 久久国内精品自在自线图片| 女的被弄到高潮叫床怎么办| 看黄色毛片网站| 全区人妻精品视频| 亚洲美女视频黄频| 午夜亚洲福利在线播放| 一级黄片播放器| av专区在线播放| 国产一级毛片七仙女欲春2| 国产精品久久久久久精品电影| 嫩草影院新地址| 人妻系列 视频| kizo精华| 日本免费一区二区三区高清不卡| 久久久久久久久久黄片| av国产久精品久网站免费入址| av线在线观看网站| 一个人看视频在线观看www免费| 亚洲精品久久久久久婷婷小说 | 18禁裸乳无遮挡免费网站照片| 日本黄色片子视频| 国产午夜精品一二区理论片| 国产成人精品久久久久久| 3wmmmm亚洲av在线观看| 嫩草影院精品99| 又爽又黄无遮挡网站| 日韩欧美在线乱码| 久久热精品热| 有码 亚洲区| 麻豆成人午夜福利视频| 真实男女啪啪啪动态图| 日本免费在线观看一区| 黄片wwwwww| 搡老妇女老女人老熟妇| 韩国av在线不卡| a级一级毛片免费在线观看| 又粗又爽又猛毛片免费看| 国产成人福利小说| 亚洲va在线va天堂va国产| 久久久久久久久久久丰满| 色综合色国产| 最新中文字幕久久久久| 久久韩国三级中文字幕| 欧美极品一区二区三区四区| 亚洲欧美日韩东京热| www日本黄色视频网| 国产探花在线观看一区二区| 亚洲国产精品合色在线| 欧美日韩在线观看h| 日本爱情动作片www.在线观看| 成人亚洲精品av一区二区| 久久精品夜夜夜夜夜久久蜜豆| 免费观看a级毛片全部| 嫩草影院精品99| 免费在线观看成人毛片| 国产又色又爽无遮挡免| 久久精品人妻少妇| 嫩草影院精品99| 久久精品久久久久久久性| 日韩,欧美,国产一区二区三区 | 性色avwww在线观看| 久久草成人影院| 色综合色国产| 久久久久久久久久黄片| 精品欧美国产一区二区三| 精品久久久久久久人妻蜜臀av| 91aial.com中文字幕在线观看| 国产精品久久久久久av不卡| 亚洲精品一区蜜桃| 精品熟女少妇av免费看| 中文精品一卡2卡3卡4更新| 在现免费观看毛片| 欧美变态另类bdsm刘玥| 久久99精品国语久久久| 嫩草影院新地址| 亚洲图色成人| 久久精品91蜜桃| 天堂√8在线中文| 色视频www国产| 精品少妇黑人巨大在线播放 | 超碰97精品在线观看| 伊人久久精品亚洲午夜| 看非洲黑人一级黄片| 岛国在线免费视频观看| 国产精品久久电影中文字幕| 免费无遮挡裸体视频| 亚洲av.av天堂| 一本久久精品| 青春草视频在线免费观看| 日韩av在线免费看完整版不卡| 我要搜黄色片| 嘟嘟电影网在线观看| 国内精品一区二区在线观看| 少妇人妻一区二区三区视频| 日日摸夜夜添夜夜爱| av黄色大香蕉| 国产精品综合久久久久久久免费| 非洲黑人性xxxx精品又粗又长| 免费av观看视频| 3wmmmm亚洲av在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲天堂国产精品一区在线| 人妻夜夜爽99麻豆av| 久久久久久久午夜电影| 一级av片app| 亚洲电影在线观看av| 国产精品三级大全| 女人被狂操c到高潮| 亚洲最大成人中文| 亚洲综合色惰| 亚洲国产精品成人久久小说| 91精品一卡2卡3卡4卡| 久久精品国产自在天天线| 能在线免费看毛片的网站| 久久精品熟女亚洲av麻豆精品 | 国产精品99久久久久久久久| 亚洲欧美成人综合另类久久久 | 亚洲av日韩在线播放| 舔av片在线| 国产乱人偷精品视频| 91午夜精品亚洲一区二区三区| 欧美激情在线99| 乱码一卡2卡4卡精品| 男人舔奶头视频| 性插视频无遮挡在线免费观看| 久久久久久久久久久丰满| 97人妻精品一区二区三区麻豆| av国产久精品久网站免费入址| 久久精品熟女亚洲av麻豆精品 | 欧美不卡视频在线免费观看| 色吧在线观看| a级毛色黄片| 国语自产精品视频在线第100页| 国国产精品蜜臀av免费| 人妻系列 视频| 日本熟妇午夜| 免费电影在线观看免费观看| 国产精品一区www在线观看| 日日摸夜夜添夜夜添av毛片| 黄片wwwwww| 久久久国产成人免费| 久久久久久久久久成人| 久久精品国产自在天天线| 国产老妇伦熟女老妇高清| 亚洲,欧美,日韩| 久久这里只有精品中国| 午夜爱爱视频在线播放| 精品酒店卫生间| 色综合亚洲欧美另类图片| 亚洲国产精品成人久久小说| 国产免费男女视频| 爱豆传媒免费全集在线观看| 久久久久性生活片| 麻豆成人av视频| 久久这里只有精品中国| 丝袜美腿在线中文| 亚洲在线自拍视频| 欧美一区二区精品小视频在线| 国产黄色小视频在线观看| 国产一区有黄有色的免费视频 | 国产精品人妻久久久久久| 九九久久精品国产亚洲av麻豆| 亚洲成人久久爱视频| 欧美不卡视频在线免费观看| 亚洲熟妇中文字幕五十中出| 色视频www国产| 日本黄大片高清| 欧美性感艳星| 亚洲精品一区蜜桃| 边亲边吃奶的免费视频| 校园人妻丝袜中文字幕| 免费观看精品视频网站| 亚洲精品成人久久久久久| 国产亚洲av嫩草精品影院| 日韩在线高清观看一区二区三区| eeuss影院久久| 欧美色视频一区免费| 成人一区二区视频在线观看| 日韩精品青青久久久久久| 2021少妇久久久久久久久久久| 日日摸夜夜添夜夜添av毛片| 国产成年人精品一区二区| 久久精品国产99精品国产亚洲性色| 午夜福利在线观看免费完整高清在| 久久综合国产亚洲精品| 欧美97在线视频| 国产精品av视频在线免费观看| 亚洲成人久久爱视频| 欧美区成人在线视频| 欧美性感艳星| 亚洲av成人精品一区久久| 日韩中字成人| 日韩 亚洲 欧美在线| 国产白丝娇喘喷水9色精品| 麻豆国产97在线/欧美| 成年av动漫网址| 久久99蜜桃精品久久| 老司机影院成人| 插逼视频在线观看| 少妇裸体淫交视频免费看高清| 99热这里只有是精品50| 国产不卡一卡二| 99热6这里只有精品| 成年女人看的毛片在线观看| 99久久无色码亚洲精品果冻| 久久亚洲国产成人精品v| 亚洲国产欧美在线一区| 欧美高清性xxxxhd video| 国内少妇人妻偷人精品xxx网站| 嫩草影院入口| 日韩欧美在线乱码| 在线免费观看的www视频| 久热久热在线精品观看| 三级国产精品欧美在线观看| 精品久久久久久久末码| 高清视频免费观看一区二区 | 亚洲一级一片aⅴ在线观看| 建设人人有责人人尽责人人享有的 | 乱系列少妇在线播放| 国产高清不卡午夜福利| 亚洲av熟女| 国产伦理片在线播放av一区| 国产高清视频在线观看网站| 亚洲人成网站在线播| 2022亚洲国产成人精品| 男人和女人高潮做爰伦理| 亚洲av二区三区四区| 听说在线观看完整版免费高清| 国产高清三级在线| 国产伦精品一区二区三区视频9| 婷婷色av中文字幕| 中文字幕av成人在线电影| 亚洲四区av| 一级黄色大片毛片| av在线播放精品| 亚洲欧美成人精品一区二区| 精品久久久久久久久av| 亚洲国产日韩欧美精品在线观看| 久久久久久久久久久免费av| av免费在线看不卡| 中文字幕熟女人妻在线| 99热这里只有是精品50| 国产精品无大码| 噜噜噜噜噜久久久久久91| 国产美女午夜福利| 亚洲成人av在线免费| 两个人视频免费观看高清| 久久久久久久久久成人| 国国产精品蜜臀av免费| 国产单亲对白刺激| 蜜臀久久99精品久久宅男| 精品人妻熟女av久视频| 一区二区三区高清视频在线| 国内精品宾馆在线| 亚洲三级黄色毛片| 国产成年人精品一区二区| 久99久视频精品免费| 久久这里只有精品中国| 日日干狠狠操夜夜爽| 天天一区二区日本电影三级| 一个人免费在线观看电影| 亚洲最大成人中文| 精品免费久久久久久久清纯| 色5月婷婷丁香| 成年女人永久免费观看视频| 超碰97精品在线观看| 国内精品美女久久久久久| 亚洲高清免费不卡视频| 少妇的逼水好多| 国产精品日韩av在线免费观看| 久久久久久久亚洲中文字幕| 赤兔流量卡办理| 变态另类丝袜制服| 成人美女网站在线观看视频| 2022亚洲国产成人精品| 热99re8久久精品国产| 麻豆久久精品国产亚洲av| 日韩成人av中文字幕在线观看| 小蜜桃在线观看免费完整版高清| 国产真实伦视频高清在线观看| 国产中年淑女户外野战色| 国产一区有黄有色的免费视频 | 一级av片app| 国产一区二区三区av在线| 能在线免费观看的黄片| 中国美白少妇内射xxxbb| 91久久精品国产一区二区三区| 桃色一区二区三区在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国产极品精品免费视频能看的| 一区二区三区免费毛片| 亚洲三级黄色毛片| 超碰av人人做人人爽久久| 亚洲人成网站在线播| 91av网一区二区| 国内精品宾馆在线| 欧美三级亚洲精品| 国产亚洲91精品色在线| 国产高清三级在线| 婷婷色综合大香蕉| 国内精品宾馆在线| av在线蜜桃| 国产精品熟女久久久久浪| 欧美日韩国产亚洲二区| 成人特级av手机在线观看| 青春草国产在线视频| 日本五十路高清| videossex国产| 亚洲第一区二区三区不卡| 亚洲国产最新在线播放| 高清视频免费观看一区二区 | 国产精品国产三级专区第一集| 国产黄色视频一区二区在线观看 | 国产乱来视频区| 久久99精品国语久久久| 亚洲一区高清亚洲精品| 亚洲国产精品sss在线观看| 国产精品蜜桃在线观看| 五月伊人婷婷丁香| 国产91av在线免费观看| 国产精品av视频在线免费观看| 尤物成人国产欧美一区二区三区| eeuss影院久久| 人妻系列 视频| 国产精品不卡视频一区二区| 一级二级三级毛片免费看| 国产伦一二天堂av在线观看| 欧美性感艳星| 欧美激情久久久久久爽电影| av卡一久久| 欧美区成人在线视频| 久久久色成人| 少妇熟女aⅴ在线视频| 听说在线观看完整版免费高清| 国产伦理片在线播放av一区| 激情 狠狠 欧美| 国产成人精品一,二区| 亚洲国产欧美人成| 日日摸夜夜添夜夜添av毛片| 嫩草影院精品99| 两性午夜刺激爽爽歪歪视频在线观看| 69av精品久久久久久| 不卡视频在线观看欧美| 久久6这里有精品| 不卡视频在线观看欧美| 女人十人毛片免费观看3o分钟| 久久久久国产网址| 日本猛色少妇xxxxx猛交久久| 国产午夜精品一二区理论片| 日本免费a在线| 国产精品.久久久| 丝袜美腿在线中文| 国产av码专区亚洲av| 日韩亚洲欧美综合| 精品国产一区二区三区久久久樱花 | 亚洲内射少妇av| 国产在线一区二区三区精 | 又粗又硬又长又爽又黄的视频| 国产又黄又爽又无遮挡在线| 亚洲一级一片aⅴ在线观看| 成年av动漫网址| 九九久久精品国产亚洲av麻豆| 国产av一区在线观看免费| 婷婷色综合大香蕉| 久久久久久久久久久丰满| 高清日韩中文字幕在线| 久久草成人影院| 婷婷六月久久综合丁香| 成年免费大片在线观看| 亚洲自拍偷在线| 精品99又大又爽又粗少妇毛片| 蜜臀久久99精品久久宅男| 亚洲国产成人一精品久久久| 精品久久久久久电影网 | 国产午夜福利久久久久久| 综合色av麻豆| 亚洲在线自拍视频| 午夜日本视频在线| 99久久无色码亚洲精品果冻| 成人亚洲精品av一区二区| 日本-黄色视频高清免费观看| 色综合亚洲欧美另类图片| 国产成人a∨麻豆精品| 国产免费又黄又爽又色| 亚洲成人中文字幕在线播放| 中文乱码字字幕精品一区二区三区 | 变态另类丝袜制服| 欧美变态另类bdsm刘玥| 91av网一区二区|