• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet

    2023-03-13 09:20:10TaoLin藺濤ChengxiangWang王承祥ZhiyongQiu邱志勇ChaoChen陳超TaoXing邢弢LuSun孫璐JianhuiLiang梁建輝YizhengWu吳義政ZhongShi時(shí)鐘andNaLei雷娜
    Chinese Physics B 2023年2期
    關(guān)鍵詞:陳超時(shí)鐘

    Tao Lin(藺濤) Chengxiang Wang(王承祥) Zhiyong Qiu(邱志勇) Chao Chen(陳超) Tao Xing(邢弢)Lu Sun(孫璐) Jianhui Liang(梁建輝) Yizheng Wu(吳義政) Zhong Shi(時(shí)鐘) and Na Lei(雷娜)

    1Fert Beijing Institute,MIIT Key Laboratory of Spintronics,School of Integrated Circuit Science and Engineering,Beihang University,Beijing,100191,China

    2Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams(Ministry of Education),School of Materials Science and Engineering,Dalian University of Technology,Dalian 116024,China

    3Key Laboratory of Energy Materials and Devices(Liaoning Province),School of Materials Science and Engineering,Dalian University of Technology,Dalian 116024,China

    4Department of Physics and State Key Laboratory of Surface Physics,Fudan University,Shanghai 200433,China

    5School of Information Science and Technology,Shanghai Technology University,Shanghai 201210,China

    6Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology&Pohl Institute of Solid State Physics,School of Physics Science and Engineering,Tongji University,Shanghai 200092,China

    Keywords: magnetic bubble,yttrium iron garnet,Kerr microscopy,spintronics

    1.Introduction

    Spin textures are ideal information carriers in spintronicsbased devices.Magnetic bubbles are one of the most classical textures that have been studied intensely for non-volatile bubble memories for decades.[1-5]In recent years, progress has been made in skyrmion-based studies, which has led to magnetic bubbles regaining attention.[6-13]Both the magnetic textures form as a result of competition between magnetic energies, including magnetic exchange, anisotropy, demagnetization,and so on.[11,14]The spin textures can differ in topological charge,and in some cases,skyrmions can be equivalent to bubbles without Bloch lines at the domain wall.[12,15,16]In addition,in terms of dynamics,magnetic bubbles and skyrmions exhibit common features.[12]Thus, studies of magnetic bubbles may offer alternatives for understanding the physical features and benefit their future development in applications.

    Very recently, the morphologies of skyrmions have attracted significant attention.Heart-shaped and polygonal magnetic skyrmions are proposed for improving the dynamic performances of skyrmion-based devices,[17,18]and elliptical skyrmions are experimentally realized in Pt/Co/Ta multilayers.[19]Moreover,skyrmion lattices with elliptical and square shapes are reported in bulk MnPtPdSn and GdRuSi magnets,[20-22]where their evolutions show similarities with the trivial bubbles reported in garnet materials.[23,24]Skyrmion bubbles have also been observed in thulium iron garnet(TmIG)based garnet materials,[25-28]indicating that the study of magnetic bubbles in YIG may offer alternatives for future skyrmion-based applications.

    YIG takes advantage of the low damping and insulating character, and is therefore useful for spintronic applications.[29,30]In this work, we focus on the triangular bubbles observed in Bi-YIG material systems using magnetooptical Kerr microscopy.Bi-YIG is an outstanding magnetooptical material.[31,32]Therefore,we have selected Bi-YIG to study the magnetic structures using magneto-optical Kerr microscopy.We examine the evolution of magnetic textures,including circular, triangular, and hexagonal bubbles, and demonstrate that the orientation of the triangular bubbles can be flipped by changing the magnetic fields.Our work provides a prototype of bubble morphologies in garnets, which offers alternatives for spintronic applications.

    2.Experimental details

    The single crystal Bi-YIG studied in this work was prepared using a liquid phase epitaxy (LPE) technique on (111)orientated gadolinium gallium garnet(GGG)substrate.Additional Bi2O3was added in normal PbO-B2O3-Fe2O3-Y2O3flux to dope bismuth into YIG.The ratio of bismuth to yttrium in the Bi-YIG was approximately 1:5,and the thickness was fixed at approximately 3 μm.To measure the magnetic hysteresis loops of the samples, magneto-optical Kerr effect(MOKE)measurements with longitudinal and polar configurations were taken.Rotating-of-field MOKE(Rot-MOKE)evaluation was performed to analyze the magnetic anisotropy for the YIG sample.[33-35]The applied field sweeped polar angles

    where the magnetic anisotropy between in-plane and out-ofplane directions can be evaluated.To observe magnetic textures in the Bi-YIG sample, a commercial Kerr microscope and electromagnets (Evico Magnetics) were used.In the observation,a polar sensitivity setup with out-of-plane magnetic fields was applied.Fast Fourier transform(FFT)was applied to the Kerr microscopy images to analyze the symmetry of the bubble lattices.To examine the underlying physics of the bubble domain morphologies in the Bi-YIG sample,vector vibrating sample magnetometer (VSM) measurement was conducted to evaluate the in-plane magnetic anisotropy.[36]Note that,unlike the Rot-MOKE measurement,the anisotropy measured by vector VSM is in-plane, where the applied field rotating angles are azimuthal.

    3.Results and discussion

    3.1.Magnetic properties of the samples

    The magnetic hysteresis loops of the sample are shown in Fig.1(a).The magnetic easy axis of the sample is in-plane,as seen from the red loops.A zoomed-in image of the in-plane loop is shown as an inset,where the coercive field and saturation field are 18 Oe and 50 Oe,respectively.The out-of-plane hysteresis loop(the blue curve)shows almost zero remanence magnetization and higher saturation field ofHS=1800 Oe,which is the typical anisotropy field of the YIG film.

    Figure 1(b)shows the results of the Rot-MOKE measurement.The rotating magnetic field applied to the Bi-YIG samples is set to 3000 Oe, which is far above the saturation fieldHSeven along the hard axis.Due to the competition between the magnetic anisotropy and applied fields, the magnetic moments align in equilibrium orientation,as illustrated in the inset.When the applied field rotates, orientation deviation occurs between the magnetization and the applied field.In addition, the energy density of unit volume in this case can be written as[34,35,37]

    whereMsis the saturation magnetization,His the applied field,Kuis the uniaxial anisotropy constant, andK4is the fourfold anisotropy constant.The angles of the applied field and magnetic moment correlating with the easy axis(in-plane directionx) are defined asαandθ, as seen in the inset of Fig.1(b).

    Fig.1.(a) In-plane and out-of-plane magnetic hysteresis loops of the YIG sample.The figure presents a schematic drawing of the sample structure.A zoomed-in image of the in-plane loop is shown as an inset.(b)The magnetic torque l(θ)as a function of the angle of the in-plane magnetic field.The red line indicates the fitting for the torque.Inset:illustration of the magnetic field and magnetization directions in the Rot-MOKE measurement.

    Through minimizing the magnetic energy densityE, the torquel(θ) on magnetization can be obtained from Eq.(1)as[34,35,37]

    whereθuis the easy axis angle correlated with thexaxis,andHkuandHk4are the uniaxial and fourfold anisotropy fields,respectively.Based on Eq.(2) with free parameter fitting,Hkuis-1839 Oe,Hk4is 18 Oe, andθuis 0.3°.The fitting curve is shown in red in Fig.1(b).It is clear that the fourfold anisotropy fieldHk4is relatively small.This result is not considered in the following discussion.The value of the uniaxial anisotropy fieldHkuis consistent with the saturation field in the hard axis loop shown in Fig.1(a).The negativeHkurepresents an in-plane magnetic easy axis,which aligns with the hysteresis loop measurements.The smallθuof 0.3°indicates precise control of the angles of the sample and magnetic field in the measurements.Taking the saturation magnetization as 139 emu/cm3intoHku=2Ku/Ms,[38]the uniaxial anisotropy constantKuis approximately-1.28×105erg/cm3.

    3.2.Evolution of magnetic structures under out-of-plane magnetic fields

    The results of the Kerr microscopy observation of the magnetic textures in the Bi-YIG samples are presented in Fig.2.Note that the same area of the sample is observed continuously by sweeping the out-of-plane magnetic fieldHz.Before varying the fields, a background image is taken when the sample is in the positive saturation state atHz=3000 Oe.Subsequently,the applied magnetic field is swept,each image is recorded and subtracted by the saturation background, and the contrast of the magnetic structure is shown in Fig.2.In addition to the Kerr microscopy images, FFT is applied to each image to check the asymmetries of the magnetic patterns.

    When the applied perpendicular field decreases from saturation, isolated magnetic bubbles start to nucleate (Hz=1810 Oe).Since the bubble density is low, no obvious symmetrical information can be distinguished in the FFT result,as shown by the insets in the upper-right corner.Then,the bubble density continues to increase,a hexagonal symmetry gradually occurs(Hz=1633 Oe and 1457 Oe).The hexagonal symmetry of the magnetic bubbles is clearer whenHz=1291 Oe is applied.Considering the results of the magnetic anisotropy evaluation in this work, the generation of magnetic bubbles should be a result of competition between the applied magnetic field and magnetic anisotropic energies, such as crystal and shape anisotropies.

    From saturation to the formation of a magnetic bubble lattice,the density and size of the bubbles gradually increase.The number of bubbles reaches its maximum when the hexagonal bubble lattice is well formed.With further decrease of the magnetic field,the bubbles expand in size,and some of them deform into stripe domains to compensate for the reduction of Zeeman energy.The generation of stripe domains obscures the hexagonal symmetry in the FFT image.In the whole process of sweeping magnetic fields,the magnetic bubbles remain several microns in size,despite their expansion with fields.

    Another interesting observation is that at a certain range of magnetic fields,the magnetic bubbles do not present circular shapes.For example,whenHz=1291 Oe,the bubbles are triangular,and they are hexagonal whenHz=48 Oe.The triangular bubble shape in garnet was reported decades ago,[24]but its transformation under magnetic fields was not investigated.Because the morphology of spin textures is important in spintronic applications, we further increase the magnification of the Kerr microscopy imaging to study the morphologies of the bubbles with respect to magnetic fields.

    Fig.2.Magnetic structures of the Bi-YIG sample when applying various out-of-plane magnetic fields Hz(indicated in each image).FFT results are shown as insets in the top-right corner of each image.

    3.3.Magnetic bubble morphologies

    We further observed the shapes of the magnetic bubbles at higher magnifications.A fixed area of the sample was subjected to Kerr microscopy imaging with varyingHz.The results are shown in Fig.3.AtHz=1681 Oe, the bubbles are nucleated, and the magnetic bubbles are circular in shape, as illustrated by the white circles in the images.AtHz=246 Oe,the magnetization is near the remanence state; the magnetic bubbles tend to transform into stripe domains,and the bubbles present a hexagonal shape.However, when the bubbles are in lattice states(Hz=1340 Oe, 1291 Oe, and 1242 Oe), they are clearly triangular in the highly magnified view.The triangle overlays are provided to show the shape and orientation of the triangular bubbles and make it possible to investigate the evolution of the magnetic bubbles when varying the magnetic fieldHz.

    Interestingly,we find that the direction to which the bubbles point can be changed by changing the out-of-plane magnetic field.For example, whenHzdecreases from 1340 Oe to 1291 Oe,a magnetic bubble in the yellow frame flips from pointing up to pointing down, while the bubble in the green frame flips in the opposite direction.Then, whenHzreaches 1242 Oe, the flip of bubbles happens again.In this process,it seems that the bubbles can flip randomly once or twice,although some bubbles do not flip.

    For topologically nontrivial skyrmions, the Dzyaloshinskii-Moriya interaction (DMI) and magnetic anisotropy in the materials determine the size, shape, and stabilization of the magnetic structures, which, according to recent studies on the morphologies of skyrmions, are not circular.[17-20]For instance,it is shown that in Pt/Co/Ta multilayers,anisotropic DMI and in-plane anisotropy deform magnetic skyrmions to elliptical shapes.[19]Although bismuth is a remarkable material with strong spin-orbit coupling,[39]the DMI is considered weak in our Bi-YIG sample.The lattice structure of YIG is centrosymmetric, where bulk DMI is not significant.Our Bi-YIG has a thickness in micrometers, and the interfacial DMI should also be negligible.In addition, it is reported that no DMI is shown in GSGG/Bi-YIG/Pt material structure.[40]Therefore, except for DMI, we assume that the generation of triangular bubbles could be attributed to the sixfold in-plane magnetic anisotropy.

    To study the in-plane magnetic anisotropy, vector VSM measurement was conducted.[36]An illustration of the measurement is shown in Fig.4(a).A constant in-plane field(Hi)of 50 Oe is applied to saturate the magnetization and is rotated in the sample film plane to drive the moments.Magnetization parallel/perpendicular to the applied in-plane field(mx/my) is measured simultaneously.As a result of the inplane anisotropy, the magnetization cannot remain parallel to the applied field.Since the angle between the applied field and the starting direction (φH) is known, the angle between the magnetization and the starting direction (φm) can be calculated asφm=φH-arctan(my/mx).Further, the magnetic torquelican be calculated asli=m×Hi/V ≈myHi/V,wheremis the magnetization andVis the volume of the magnetic layer.liversusφmis shown in Fig.4(b),where the trend of the data is significantly different from that observed for the uniaxial and fourfold anisotropies.Considering the sixfold in-plane anisotropy,we fit theliaccording to[36,41]

    whereKiu,Ki4, andKi6represent the uniaxial, fourfold, and sixfold in-plane anisotropies,respectively,andφ2,φ4,andφ6are easy axis angles related to the starting direction of the rotating fields.A well-fitting result is shown in Fig.4(b), and the absolute values ofKiu,Ki4, andKi6are approximately 395 erg/cm3, 138 erg/cm3, and 1179 erg/cm3, respectively.Therefore,through the dominance ofKi6,we confirm the sixfold in-plane anisotropy in the Bi-YIG sample.The magnetic bubbles result from the competition of energies,including anisotropy energies in different directions.It has been shown that in-plane magnetic anisotropy can induce the elliptical deformation of magnetic skyrmions.[19]In our Bi-YIG,the sixfold in-plane magnetic anisotropy can induce triangular and hexagonal bubble morphologies.At low magnetic fields, the bubbles are hexagonal, and the sixfold in-plane anisotropy may be the primary cause of this morphology.For the triangular bubbles,it is shown that their orientation can be flipped randomly by varying the magnetic field in the experiment observation.In the presence of sixfold in-plane magnetic anisotropy,anisotropic energies can be equivalent for the bubbles in two orientations.With disturbance, the bubbles may flip randomly.Besides the sixfold in-plane anisotropy, other underlying physics might contribute to the formation of the bubble morphologies.This possibility requires further study.The analysis of the relation between in-plane anisotropy and bubble shape could offer alternatives to potential morphologybased manipulation methods in spintronic applications in garnets.

    Fig.4.(a)Illustration of field and magnetization directions in the vector VSM anisotropy measurement.(b)Solid points: the magnetic torque li versus φm.The red line indicates the fitting for the torque.

    Fig.5.Statistics for the magnetic structures in the YIG sample with varying Hz.(a) Area of single bubble.(b) Distance between bubbles.Colored parts indicate the dominant magnetic structures in the observed area: hexagonal bubbles and stripe domains (orange), triangular bubbles (green), and isolated bubbles (yellow).A dashed line is included in the lower scheme of the figure to clarify the distances between the triangular bubbles arranged in a hexagonal lattice.

    Based on the high-magnification view of the magnetic structures, the statics of the magnetic bubbles are analyzed,as shown in Fig.5.A fixed view of 55×42μm2is observed with various perpendicular fieldsHz.Since the bubbles take different shapes with the transformation of the domain structures,the evaluation of the bubble diameters is not sufficiently meaningful for the bubble size.Therefore,the area of a single bubble underHzis analyzed, as shown in the upper panel in Fig.5.In addition to the bubble size, the distances between two neighboring bubbles are measured.The borders of bubbles are first selected in order to determine their centers.The distances, as shown in the bottom panel in Fig.5, are measured between the centers of two neighboring bubbles.The external field decreases from saturation to near zero.Hence,the evolution of the magnetic structures is similar to that in Fig.2, and the dominant magnetic texture changes with variousHz.WhenHzdecreases from saturation, isolated bubbles gradually nucleate and expand, causing drastic change in the distance between bubbles.Then,triangular bubbles arrange in a hexagonal lattice form.In this case,the area of a single bubble continues to increase as a result of the continuously changing Zeeman energy.However, the distance between bubble centers remains almost unchanged, indicating that the bubble lattice structure is stable.WhenHzis small, large hexagonal bubbles and stripe domains are shown, and the sizes of and distances between bubbles continue to change due to the deformation of the bubble lattices and external fields.

    4.Conclusion

    In this work, we experimentally realize magnetic bubble lattices in Bi-YIG/GGG (111) samples.Magnetic structures are observed using Kerr microscopy.The evolution of magnetic textures in the Bi-YIG samples under varying perpendicular magnetic fields is investigated.Using the FFT of the imaging results, the symmetries of the spin textures are evaluated and three different phases of the bubbles are defined.Magnetic properties such as hysteresis loops and anisotropies are measured.These properties may explain the phenomena observed in this work.For the magnetic bubble lattice phase,triangular bubbles are found.In addition,the orientation of the triangular bubbles can be changed by changing the magnetic field, which may offer an opportunity to manipulate and utilize spin textures.Since the morphologies of skyrmions have potential for applications and magnetic bubbles are closely related to topologically nontrivial magnetic skyrmions, this work provides alternatives to skyrmions and bubbles in magnetic garnets,which may be feasible for spintronics based devices and logics.

    Acknowledgements

    N.L.acknowledges support by the National Natural Science Foundation of China (Grant Nos.52061135105 and 12074025).Y.W.acknowledges support by the National Natural Science Foundation of China (Grant Nos.11974079,12274083, and 12221004), and the Shanghai Municipal Science and Technology Basic Research Project (Grant No.22JC1400200).

    猜你喜歡
    陳超時(shí)鐘
    別樣的“時(shí)鐘”
    古代的時(shí)鐘
    求距求值方程建模
    和我一起去廣西
    歌海(2019年1期)2019-06-11 07:02:15
    Dipole Polarizabilities of the Ground States for Berylliumlike Ions?
    這個(gè)時(shí)鐘一根針
    有趣的時(shí)鐘
    時(shí)鐘會(huì)開(kāi)“花”
    江城子·悼詩(shī)人陳超先生
    詩(shī)選刊(2015年1期)2015-12-20 06:47:54
    向日葵時(shí)鐘
    亚洲国产精品久久男人天堂| 女人被狂操c到高潮| 久久久精品大字幕| 757午夜福利合集在线观看| 国产精品98久久久久久宅男小说| 国产高清视频在线播放一区| 搡老岳熟女国产| 免费电影在线观看免费观看| 搡女人真爽免费视频火全软件 | 亚洲av五月六月丁香网| 白带黄色成豆腐渣| 18+在线观看网站| 1024手机看黄色片| 精品一区二区三区视频在线 | 女同久久另类99精品国产91| 亚洲av五月六月丁香网| a级一级毛片免费在线观看| 国产在线精品亚洲第一网站| 少妇人妻精品综合一区二区 | 无遮挡黄片免费观看| 男人舔奶头视频| 18禁黄网站禁片免费观看直播| 成人三级黄色视频| 一区福利在线观看| www.色视频.com| 国产国拍精品亚洲av在线观看 | 夜夜夜夜夜久久久久| 怎么达到女性高潮| 欧美乱色亚洲激情| 搡女人真爽免费视频火全软件 | 操出白浆在线播放| 亚洲五月婷婷丁香| 亚洲欧美精品综合久久99| 国内精品久久久久精免费| 国产亚洲精品av在线| 一本综合久久免费| 国产亚洲精品一区二区www| 香蕉久久夜色| 国产精品1区2区在线观看.| 亚洲精品在线观看二区| 久久久成人免费电影| 99国产综合亚洲精品| 亚洲欧美一区二区三区黑人| 精品免费久久久久久久清纯| 老鸭窝网址在线观看| 国产一区二区激情短视频| 国产黄a三级三级三级人| 淫秽高清视频在线观看| 亚洲性夜色夜夜综合| 亚洲aⅴ乱码一区二区在线播放| 俺也久久电影网| 麻豆国产av国片精品| 国产成人aa在线观看| 亚洲av不卡在线观看| 内地一区二区视频在线| 高清在线国产一区| 成人欧美大片| 91九色精品人成在线观看| 亚洲av五月六月丁香网| 麻豆久久精品国产亚洲av| 亚洲国产精品sss在线观看| 草草在线视频免费看| 亚洲美女黄片视频| 午夜福利在线在线| 亚洲国产高清在线一区二区三| 国产99白浆流出| 亚洲电影在线观看av| 亚洲av成人不卡在线观看播放网| 美女大奶头视频| 国产精品一区二区三区四区久久| 九色成人免费人妻av| 欧美性猛交黑人性爽| 免费看美女性在线毛片视频| 夜夜爽天天搞| 男插女下体视频免费在线播放| 国产麻豆成人av免费视频| 精品无人区乱码1区二区| 又爽又黄无遮挡网站| 亚洲不卡免费看| 天堂√8在线中文| 久久久久久久精品吃奶| 法律面前人人平等表现在哪些方面| 少妇熟女aⅴ在线视频| 久久国产乱子伦精品免费另类| 少妇裸体淫交视频免费看高清| 美女高潮的动态| 国产精品久久电影中文字幕| 国产精品亚洲美女久久久| 亚洲欧美日韩无卡精品| 久久久久久久精品吃奶| 欧美国产日韩亚洲一区| 小说图片视频综合网站| 国产欧美日韩一区二区三| 在线观看午夜福利视频| 国产综合懂色| 亚洲精品在线美女| АⅤ资源中文在线天堂| 国产精品美女特级片免费视频播放器| 国产激情偷乱视频一区二区| 大型黄色视频在线免费观看| 久久久国产精品麻豆| 国产日本99.免费观看| netflix在线观看网站| 久久人人精品亚洲av| 69人妻影院| 校园春色视频在线观看| 激情在线观看视频在线高清| 久久久成人免费电影| 美女cb高潮喷水在线观看| 午夜精品一区二区三区免费看| 我的老师免费观看完整版| 国产精品三级大全| 亚洲人与动物交配视频| 在线播放无遮挡| 亚洲自拍偷在线| 狠狠狠狠99中文字幕| 欧美日韩亚洲国产一区二区在线观看| 小说图片视频综合网站| 亚洲18禁久久av| 成人av在线播放网站| 99久久99久久久精品蜜桃| 97人妻精品一区二区三区麻豆| 久久6这里有精品| 欧美国产日韩亚洲一区| 成人特级黄色片久久久久久久| 岛国视频午夜一区免费看| 好男人在线观看高清免费视频| 窝窝影院91人妻| 网址你懂的国产日韩在线| 欧美一级a爱片免费观看看| 日本一二三区视频观看| 青草久久国产| 99久久精品国产亚洲精品| 国产单亲对白刺激| 国产色爽女视频免费观看| 国产精品亚洲美女久久久| av福利片在线观看| 亚洲精品亚洲一区二区| 国产主播在线观看一区二区| 国产成年人精品一区二区| 久久久精品欧美日韩精品| a在线观看视频网站| 欧美成狂野欧美在线观看| 18禁黄网站禁片午夜丰满| 欧美中文综合在线视频| 看免费av毛片| 婷婷精品国产亚洲av在线| 51午夜福利影视在线观看| 成人18禁在线播放| 国产高潮美女av| 听说在线观看完整版免费高清| 国产单亲对白刺激| 在线观看免费视频日本深夜| 99在线人妻在线中文字幕| 亚洲成a人片在线一区二区| 搞女人的毛片| 亚洲美女视频黄频| 一级作爱视频免费观看| 久久久久免费精品人妻一区二区| 国产不卡一卡二| 俺也久久电影网| 国内精品久久久久精免费| 午夜福利高清视频| 最近最新中文字幕大全免费视频| 精品人妻一区二区三区麻豆 | 亚洲国产欧洲综合997久久,| e午夜精品久久久久久久| 一个人看的www免费观看视频| 99热只有精品国产| 国内精品久久久久久久电影| 亚洲色图av天堂| 中文字幕人妻丝袜一区二区| xxxwww97欧美| 三级男女做爰猛烈吃奶摸视频| 一二三四社区在线视频社区8| x7x7x7水蜜桃| 亚洲色图av天堂| 天堂√8在线中文| 欧美中文日本在线观看视频| 国产精品久久久久久久电影 | 国内精品一区二区在线观看| 国产成年人精品一区二区| xxxwww97欧美| 久久国产精品影院| 久久久久久久午夜电影| 精品99又大又爽又粗少妇毛片 | 欧美日韩瑟瑟在线播放| 日本精品一区二区三区蜜桃| av片东京热男人的天堂| 国产视频一区二区在线看| 琪琪午夜伦伦电影理论片6080| 成熟少妇高潮喷水视频| 身体一侧抽搐| 欧美日韩乱码在线| 真实男女啪啪啪动态图| 99久久久亚洲精品蜜臀av| 国产av不卡久久| 久久香蕉精品热| 小说图片视频综合网站| 日韩免费av在线播放| 男人舔女人下体高潮全视频| 久久久久久久午夜电影| 中国美女看黄片| 欧美日韩一级在线毛片| 99久久成人亚洲精品观看| 天天一区二区日本电影三级| 日本五十路高清| 美女高潮喷水抽搐中文字幕| 中国美女看黄片| 亚洲精品乱码久久久v下载方式 | 久久精品夜夜夜夜夜久久蜜豆| 香蕉丝袜av| 国产单亲对白刺激| 免费看光身美女| 国产成人系列免费观看| 一夜夜www| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产爱豆传媒在线观看| 丝袜美腿在线中文| 一级毛片高清免费大全| 国产免费av片在线观看野外av| 在线免费观看不下载黄p国产 | 亚洲av中文字字幕乱码综合| 一区福利在线观看| 无人区码免费观看不卡| 亚洲专区国产一区二区| 亚洲狠狠婷婷综合久久图片| 国产久久久一区二区三区| 久久精品人妻少妇| 国产精品 国内视频| 亚洲欧美日韩高清在线视频| 亚洲精品成人久久久久久| 欧美色视频一区免费| 天天一区二区日本电影三级| 床上黄色一级片| 内地一区二区视频在线| 99国产极品粉嫩在线观看| 午夜免费激情av| 搞女人的毛片| 麻豆国产97在线/欧美| 日本在线视频免费播放| 99国产极品粉嫩在线观看| 一本久久中文字幕| 看黄色毛片网站| 国内揄拍国产精品人妻在线| 国内精品久久久久久久电影| 精品一区二区三区视频在线观看免费| 狠狠狠狠99中文字幕| 美女被艹到高潮喷水动态| 草草在线视频免费看| 97超级碰碰碰精品色视频在线观看| 精品不卡国产一区二区三区| 在线观看美女被高潮喷水网站 | 亚洲国产欧美网| 欧美午夜高清在线| 夜夜夜夜夜久久久久| 欧美日韩黄片免| 欧美在线一区亚洲| 色综合婷婷激情| 欧美黄色片欧美黄色片| 校园春色视频在线观看| av中文乱码字幕在线| 男插女下体视频免费在线播放| 伊人久久精品亚洲午夜| 国产三级黄色录像| 亚洲天堂国产精品一区在线| 国产成人系列免费观看| 51国产日韩欧美| 亚洲国产精品合色在线| 国产乱人视频| 无限看片的www在线观看| 老汉色∧v一级毛片| 国产精品免费一区二区三区在线| 性色avwww在线观看| 午夜久久久久精精品| 又紧又爽又黄一区二区| 国产精品久久久人人做人人爽| 啪啪无遮挡十八禁网站| 成熟少妇高潮喷水视频| 国产精品一区二区三区四区免费观看 | 欧美一级毛片孕妇| 午夜日韩欧美国产| 国产真实伦视频高清在线观看 | 99国产综合亚洲精品| 人妻丰满熟妇av一区二区三区| 国产主播在线观看一区二区| 免费看日本二区| 色哟哟哟哟哟哟| 母亲3免费完整高清在线观看| 午夜日韩欧美国产| 老汉色av国产亚洲站长工具| 级片在线观看| 欧美bdsm另类| e午夜精品久久久久久久| 久久久久久人人人人人| 午夜福利视频1000在线观看| 国产精品国产高清国产av| 欧美性猛交╳xxx乱大交人| 中文字幕久久专区| 国产私拍福利视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产av在哪里看| 最近在线观看免费完整版| 欧美最新免费一区二区三区 | 国产精品久久视频播放| 国产探花极品一区二区| 国产黄a三级三级三级人| 观看免费一级毛片| 久久精品国产亚洲av香蕉五月| e午夜精品久久久久久久| 日韩免费av在线播放| 青草久久国产| 国产精品亚洲一级av第二区| 天天躁日日操中文字幕| 成人永久免费在线观看视频| 露出奶头的视频| 日日夜夜操网爽| 18禁国产床啪视频网站| 亚洲精品乱码久久久v下载方式 | 亚洲av成人精品一区久久| 国产免费av片在线观看野外av| 老司机福利观看| 日本免费一区二区三区高清不卡| 久久久久九九精品影院| 成年版毛片免费区| 国产高清有码在线观看视频| 亚洲成av人片在线播放无| 麻豆国产97在线/欧美| 国产成人av激情在线播放| 久久精品国产清高在天天线| 亚洲久久久久久中文字幕| 精品久久久久久,| aaaaa片日本免费| 国产精品综合久久久久久久免费| 亚洲成av人片免费观看| 熟女电影av网| 亚洲精华国产精华精| 色老头精品视频在线观看| 黄色视频,在线免费观看| 窝窝影院91人妻| 欧美黑人欧美精品刺激| 最近最新中文字幕大全电影3| 男女下面进入的视频免费午夜| 最新在线观看一区二区三区| 嫩草影视91久久| av女优亚洲男人天堂| 夜夜看夜夜爽夜夜摸| 久久精品91无色码中文字幕| 免费看光身美女| 久久精品综合一区二区三区| 一本精品99久久精品77| 一a级毛片在线观看| 国产美女午夜福利| 色尼玛亚洲综合影院| 三级毛片av免费| 免费在线观看日本一区| 日韩人妻高清精品专区| 亚洲成人久久爱视频| 高潮久久久久久久久久久不卡| 97碰自拍视频| 日本a在线网址| 高清在线国产一区| 久久久久久九九精品二区国产| 男女之事视频高清在线观看| 国产成人a区在线观看| 亚洲自拍偷在线| tocl精华| 国产成+人综合+亚洲专区| 美女黄网站色视频| 成年免费大片在线观看| 中文亚洲av片在线观看爽| 舔av片在线| 最新美女视频免费是黄的| 欧美日本亚洲视频在线播放| 桃红色精品国产亚洲av| 特级一级黄色大片| 老汉色av国产亚洲站长工具| 99热这里只有精品一区| 精品人妻偷拍中文字幕| 一夜夜www| 一本综合久久免费| 51午夜福利影视在线观看| 亚洲欧美日韩东京热| 欧美成人性av电影在线观看| 99久久九九国产精品国产免费| 免费人成视频x8x8入口观看| 成年版毛片免费区| 免费看十八禁软件| 熟女电影av网| 久久久色成人| 国内少妇人妻偷人精品xxx网站| 国产美女午夜福利| 99国产极品粉嫩在线观看| e午夜精品久久久久久久| 嫩草影视91久久| 狂野欧美白嫩少妇大欣赏| 日韩人妻高清精品专区| 在线看三级毛片| 亚洲真实伦在线观看| 免费在线观看亚洲国产| 日韩欧美精品v在线| 婷婷丁香在线五月| 精品国产三级普通话版| 高清在线国产一区| 88av欧美| 亚洲人成网站高清观看| 国产一区二区在线av高清观看| 亚洲在线观看片| 国产成人福利小说| 波多野结衣巨乳人妻| 露出奶头的视频| 久久久久免费精品人妻一区二区| 免费观看人在逋| 欧美日韩瑟瑟在线播放| 国产精品久久视频播放| 国产午夜福利久久久久久| 99在线视频只有这里精品首页| 在线观看av片永久免费下载| 在线免费观看不下载黄p国产 | 搡老熟女国产l中国老女人| 亚洲av一区综合| 99国产精品一区二区三区| 国产精品日韩av在线免费观看| 一本久久中文字幕| 国模一区二区三区四区视频| 久久人妻av系列| 日韩欧美精品v在线| 日韩有码中文字幕| 亚洲中文字幕日韩| av视频在线观看入口| 欧美日本视频| 国产av不卡久久| 午夜久久久久精精品| 久久精品国产自在天天线| 很黄的视频免费| 国产午夜福利久久久久久| 男女视频在线观看网站免费| 欧美乱色亚洲激情| 色综合站精品国产| 精品一区二区三区av网在线观看| 国产高清激情床上av| 久久久国产成人精品二区| 亚洲av成人不卡在线观看播放网| 久久午夜亚洲精品久久| 精品福利观看| 国产精品自产拍在线观看55亚洲| 亚洲无线观看免费| 一个人观看的视频www高清免费观看| 在线观看免费视频日本深夜| 国产精品女同一区二区软件 | 欧美日韩福利视频一区二区| 村上凉子中文字幕在线| 亚洲欧美日韩高清专用| 精品人妻1区二区| 精品日产1卡2卡| 国产精品av视频在线免费观看| 成人18禁在线播放| 国产黄a三级三级三级人| 搡老熟女国产l中国老女人| 亚洲国产精品成人综合色| h日本视频在线播放| 欧美乱妇无乱码| 国产三级中文精品| 一卡2卡三卡四卡精品乱码亚洲| 国产精品免费一区二区三区在线| 真人做人爱边吃奶动态| 国产黄色小视频在线观看| 国产乱人伦免费视频| 午夜免费激情av| 激情在线观看视频在线高清| 嫩草影院精品99| 午夜视频国产福利| 日本与韩国留学比较| www.色视频.com| 精品日产1卡2卡| 欧美又色又爽又黄视频| 给我免费播放毛片高清在线观看| 免费av观看视频| 欧美黄色片欧美黄色片| 亚洲第一电影网av| 久久亚洲精品不卡| 女人被狂操c到高潮| 99国产极品粉嫩在线观看| 亚洲人与动物交配视频| 99久久久亚洲精品蜜臀av| 亚洲av免费高清在线观看| 亚洲 欧美 日韩 在线 免费| 精品久久久久久久末码| 国产精品一区二区三区四区免费观看 | 亚洲成人精品中文字幕电影| 夜夜夜夜夜久久久久| 精品人妻1区二区| 很黄的视频免费| 波多野结衣高清无吗| x7x7x7水蜜桃| 99国产极品粉嫩在线观看| 免费在线观看亚洲国产| 99国产极品粉嫩在线观看| 夜夜夜夜夜久久久久| 亚洲精品一区av在线观看| 欧美色欧美亚洲另类二区| 成人国产一区最新在线观看| 国产成人aa在线观看| 欧美+亚洲+日韩+国产| 久久久久性生活片| 亚洲真实伦在线观看| 桃色一区二区三区在线观看| 日本与韩国留学比较| 国产97色在线日韩免费| 欧美午夜高清在线| 在线播放无遮挡| 久久天躁狠狠躁夜夜2o2o| 午夜福利高清视频| 亚洲久久久久久中文字幕| 天堂√8在线中文| 免费看光身美女| 亚洲精品久久国产高清桃花| 国产精品影院久久| 久久久久精品国产欧美久久久| 九色成人免费人妻av| 欧美日韩国产亚洲二区| 桃红色精品国产亚洲av| 欧美日本亚洲视频在线播放| 最新美女视频免费是黄的| 最近视频中文字幕2019在线8| av天堂中文字幕网| 中文字幕精品亚洲无线码一区| 69av精品久久久久久| 我的老师免费观看完整版| 久久草成人影院| 天堂动漫精品| 熟妇人妻久久中文字幕3abv| 亚洲av免费高清在线观看| 日韩欧美精品v在线| xxx96com| 免费大片18禁| 国产午夜福利久久久久久| 久久久国产成人精品二区| 岛国视频午夜一区免费看| 无限看片的www在线观看| 青草久久国产| 一级a爱片免费观看的视频| 国产色爽女视频免费观看| 日韩欧美免费精品| 国产一级毛片七仙女欲春2| 国产单亲对白刺激| 波多野结衣高清作品| 欧美绝顶高潮抽搐喷水| 美女cb高潮喷水在线观看| 亚洲自拍偷在线| 亚洲在线自拍视频| 狠狠狠狠99中文字幕| 日韩欧美 国产精品| 校园春色视频在线观看| 国产精品日韩av在线免费观看| 国语自产精品视频在线第100页| 成人性生交大片免费视频hd| 国产主播在线观看一区二区| 18+在线观看网站| 久久精品91无色码中文字幕| 亚洲真实伦在线观看| 最近最新中文字幕大全电影3| 免费大片18禁| 色哟哟哟哟哟哟| 校园春色视频在线观看| 国产亚洲欧美在线一区二区| 在线a可以看的网站| 两人在一起打扑克的视频| 国产精品一及| 好看av亚洲va欧美ⅴa在| 亚洲成av人片免费观看| 国产一区二区在线观看日韩 | 91麻豆精品激情在线观看国产| 91九色精品人成在线观看| 久久性视频一级片| av国产免费在线观看| 国产伦精品一区二区三区四那| 免费搜索国产男女视频| 男人舔奶头视频| 最近最新中文字幕大全电影3| 一个人免费在线观看电影| 国产亚洲精品久久久久久毛片| 欧美中文日本在线观看视频| 床上黄色一级片| 黄色成人免费大全| 桃色一区二区三区在线观看| 亚洲熟妇中文字幕五十中出| 免费无遮挡裸体视频| 国产日本99.免费观看| 亚洲精品色激情综合| 色老头精品视频在线观看| 午夜激情欧美在线| 亚洲,欧美精品.| 亚洲va日本ⅴa欧美va伊人久久| 久99久视频精品免费| 免费av毛片视频| 国产午夜精品论理片| 久久久国产成人免费| 99久久精品热视频| 国产成+人综合+亚洲专区| 国产淫片久久久久久久久 | 日韩欧美三级三区| 757午夜福利合集在线观看| 少妇人妻精品综合一区二区 | 五月玫瑰六月丁香| 欧美激情久久久久久爽电影| 免费在线观看亚洲国产| 亚洲18禁久久av| 国产乱人伦免费视频| 免费在线观看成人毛片| 岛国视频午夜一区免费看| 欧美不卡视频在线免费观看| 国产欧美日韩一区二区精品| 亚洲精品一区av在线观看| 欧美另类亚洲清纯唯美|