• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of magnetic field on power deposition in high magnetic field helicon experiment

    2023-03-13 09:19:36YanZhou周巖PeiyuJi季佩宇MaoyangLi李茂洋LanjianZhuge諸葛蘭劍andXuemeiWu吳雪梅
    Chinese Physics B 2023年2期
    關(guān)鍵詞:諸葛

    Yan Zhou(周巖) Peiyu Ji(季佩宇) Maoyang Li(李茂洋)Lanjian Zhuge(諸葛蘭劍) and Xuemei Wu(吳雪梅)

    1School of Physical Science and Technology,Soochow University,Suzhou 215006,China

    2Collaborative Innovation Center of Suzhou Nano Science and Technology,Soochow University,Suzhou 215006,China

    3The Key Laboratory of Thin Films of Jiangsu,Soochow University,Suzhou 215006,China

    4School of Optoelectronic Engineering and Technology,Soochow University,Suzhou 215006,China

    5Analysis and Testing Center,Soochow University,Suzhou 215123,China

    Keywords: high magnetic field helicon experiment(HMHX),HELIC code,magnetic field,power deposition

    1.Introduction

    Helicon wave (H wave) is a kind of low-frequency electromagnetic wave that propagates in the high-conductivity medium excited by radio frequency (RF) antenna, and high-density plasma can be generated by using H wave ionization.[1]At a low pressure of 0.1 Pa,the density of HWP can reach 1013cm-3-1014cm-3,which is the maximum density that can be obtained by artificial methods so far under low pressure.[2]Compared with inductively coupled plasma(ICP)and capacitively coupled plasma (CCP), HWP can generate higher plasma density.[3]In the discharge of HWP,an external magnetic field is essential,which makes the ionization mechanism of HWP more complicated.[4]

    Due to the external magnetic field, the ionization mechanism of HWP is more than complex, and the wave-particle energy coupling mechanism has not been fully appreciated up to now.[5]Since Aigrain[6]first proposed the concept of the H wave and Boswell[7]first realized the discharge of HWP,Chen,[8]Blackwell,[9]Shamrai,[10]and others had been dedicated to studying the power deposition mechanism of HWP.Although the current hypothesis of the Trivelpiece-Gould wave(TG wave)energy deposition mechanism has gradually become the mainstream consensus,[11,12]the research on the influence of magnetic field on the power deposition needs further discussion.In this regard,this article has launched a study on the effect of magnetic field on the power deposition based on HMHX.[13]

    HELIC code is frequently used in the design of RF plasma sources,[14,15]Compared with other codes(such as ANTENA2 code,[16]SPIREs code,[17]ANAMANT code[18]), HELIC code calculates the energy deposition of H wave and TG wave and the distribution of electric field,magnetic field and current through electromagnetic field theory analysis.This code uses specific boundary conditions to solve 6 radially coupled differential equations to obtain two independent waves(H wave and TG wave).It is much faster than dividing the non-uniform plasma into layers and matching boundary conditions on each interface.In this paper, HELIC code is used to simulate the discharge in HMHX.Numerical simulations and discharge experiments are carried out by changing the magnitude of different magnetic fields to explore the influence of magnetic field on the power deposition.The results in this paper have certain guiding significance for the HWP discharge experiments in HMHX.

    2.Theoretical formula and calculation model

    2.1.Theoretical formula

    HELIC code is composed of Maxwell’s equations for a radially non-uniform plasma with the standard cold-plasma dielectric elementsS,D,P(=εxx,iεxy,εzz).These equations can be manipulated to give the following set of coupled differential equations for the Fourier transformed variables:[19-21]

    Here, a cylindrical coordinate system (r,φ,z) and first-order perturbation form of exp[i(mφ+kzωt)] have been chosen,withmazimuthal mode number,kaxial mode number andωwave frequency.The variablesEandBare wave electric field and wave magnetic field, respectively, andk0=ω/cwithcthe speed of light.S,D,Pare the three constituent elements of the cold plasma dielectric tensor.The dielectric tensor is expressed as follows:[19]

    Among them, the three constituent elementsS,D,Pare expressed as follows:[20]

    whereαis the type of particles(such as electrons,ions,etc.),ωpαis the plasma frequency,ωcαis the plasma cyclotron frequency, respectively, andvαis the effective collision frequency between particles.

    For the value of each wave, the Eqs.(1)-(4) are programmed to solve, and four basic functions are generated,namelybr,bz,er, andez.In the cylindrical coordinate system,if the plasma is uniform,the basis functionb1,2;z(r)is the Bessel functionJm(T1,2r),where[21]

    HereR,L=(S±D)/2.Equation(9)has one high root and one low root for the value ofT2.The lower valueT1is H wave located on the axis,and the higher valueT2is TG wave located at the edge of the plasma.The other componentsbandeand the imaginary number j can be easily found in Maxwell’s equations.When the plasma is not uniform,the wave that appears as a Bessel functionJm(T1r) near the origin is recognized as H wave,and the other root is recognized as TG wave.

    Assuming that the antenna is an infinitesimal thin sheet carrying the thin layer currentJof ?·J=0 atr=b(bis the radius of the antenna), its thickness is negligible.Thus, the power transmitted to the antenna by each wave numberkis

    Since the energy flow is averaged according to time,the power on the antenna(Pant)is mainly composed of the resistance loss of the antenna material(Pcopper),the absorbed power of plasma(Pabs)and the power loss radiated to the vacuum by the antenna(Pspace),where

    When HELIC code is used to study HWP discharge, it is in a closed vacuum space, and relevant boundary conditions are set for the computational domain.Any particles moving to the boundary of the reaction chamber will be reflected back because of this boundary condition, soPspace=0.In addition,in the process of calculation, the antenna is regarded as the ideal conductor by default, there is no resistance loss of the antenna material,soPcopper=0.Due to the above conditions,the power on the antenna is equal to the absorbed power of plasma,soPant=Pabs.

    As for the absorbed power of plasma,the specific plasma power spectrum functionS(k)is defined as[5]

    Here,Jplasmais the current density of plasma, which can be expressed in terms of the cold plasma tensor[5]

    The electric fieldEand current densityJin real space are excited by an antenna whose spectrum isKφ(k')=δ(k'-k).SinceS(k)is even,it can be used to simplify the calculation

    Therefore,the absorbed power fromkto(k+dk)and from-kto-(k+dk)is

    Then the total absorbed power is

    2.2.Calculation model

    HMHX is independently designed and constructed by Plasma Technology Research Center of Soochow University.The schematic diagram of the device is shown in Fig.1.The device can be divided into a source area and a plasmamaterial interaction(PMI)area.The source area has an internal diameter of 22 cm and a length of 80 cm; the PMI area has an internal diameter of 40 cm and a length of 40 cm.The discharge experiment is carried out under low pressure(5×10-3Pa-10×10-3Pa).The RF source has a frequency of 13.56 MHz and a maximum power of 2 kW.The antenna is a right-handed helicon antenna (inner diameter is 3.5 cm;length is 18 cm).[22]There are some supporting diagnostic equipments, such as Langmuir probe (Hiden ESPION RE/DC), optical emission spectra (OES, AvaSpec-2048FT-8-RM) and electrostatic quadrupole plasma (EQP, Electrostatic Quadrupole Plasma-Hiden Analytical 1000).[23]Twelve water-cooled magnetic field coils are surround the source area to provide a stable axial magnetic field.The axial magnetic field is generated by an electric current flowing through a magnet coil via.The current controls the strength of the magnetic field.The simulation diagram of magnetic field configuration and magnetic field intensity in this experimental device are shown in Fig.2.The current level is 400 A, and the maximum magnetic field at the central antenna position can reach 6700 Gs.[24]The plasma parameters and boundary conditions are shown in Table 1.

    Table 1.Plasma parameters and boundary conditions.

    The magnetic field density is uniform along the axial direction,and the density distribution of the particles is also uniform along the axial direction.The radial density can be determined by the following function:[5]

    wheresandtare constants,farepresents the relative density atr=Ra,andne0is the density at the center of plasma.Iffa=0,thenω=Ra,the density function has only two parameters.Iffa/=0,the density function can be set to various density forms,such as parabolic functions[25]and Gaussian functions.

    Fig.1.The schematic diagram of the device.[23]

    Fig.2.Magnetic field configuration and magnetic field intensity.[24]

    3.Results and discussion

    3.1.Numerical simulation analysis

    Based on the above theoretical formula and calculation model, this paper carries out a numerical simulation of HMHX.Construct two radial density structures:parabolic distribution (s= 2,t= 1,fa= 0.1) and Gaussian distribution(s=2,t=6,fa=0.01),[26]as shown in Fig.3.Although these two density distributions have the same peak in the axial direction,they have different density gradients in the radial direction.This has a more than important influence on the nonresonant mode conversion and energy absorption of H wave and TG wave.The total loading resistance for parabolic distribution drops quickly and is well below that of Gaussian distribution when the density increases overne0=1.8×1013cm-3.Therefore,forne0=1×1013cm-3in this study,parabolic distribution is better than Gaussian distribution in terms of power deposition effect.[15]Because of these, this article mainly takes the parabolic distribution as the research object.

    First, the change of the magnetic field from 200 Gs to 800 Gs is studied with a sampling interval of 200 Gs, and the relative radial absorption power of plasma is calculated,as shown in Fig.4.

    Fig.3.Plasma radial density distribution.(a) Parabolic distribution,(b)Gaussian distribution.

    Fig.4.Relative absorption power of plasma under 200 Gs-800 Gs.

    It can be seen from Fig.4 that between 200 Gs and 800 Gs,the relative absorption power corresponding to different magnetic fields is much larger at boundary than at center.This shows that when the magnetic field changes in this interval, it will not have much influence on the power deposition.The weaker relative absorption power at the center indicates that when the magnetic field is between 200 Gs and 800 Gs,a better effect of power deposition may not be produced,so the magnetic field still requires increasing.So choose to increase the magnetic field to 1000 Gs, and the relative absorption power is shown in Fig.5.It can be seen that, compared with 800 Gs, the relative absorption power at boundary is greatly increased, but at the same time the relative absorption power at center is also much larger than that at 800 Gs.This shows that when the magnetic field increases to 1000 Gs, the effect of power deposition changes significantly,and the increase of the relative absorption power at center indicates that the effect of power deposition is gradually getting better.The above analysis shows that for the discharge experiment in HMHX,a smaller magnetic field strength cannot produce a better deposition effect,so a magnetic field above 1000 Gs is selected for the experiment.

    In order to further appreciate the influence of the magnetic field on the deposition effect in HMHX.Again the magnetic field range 1000 Gs-1800 Gs is selected for calculation and analysis, and the relative absorption power is shown in Fig.6.It can be seen from Fig.6(a) that when the magnetic field continues to increase from 1000 Gs to 1200 Gs, the relative absorption power at boundary is almost unchanged, but there is a significant addition at the center, which shows that the addition of magnetic field will make the deposition effect better.In addition, it is found that when the magnetic field strength continues to increase to 1400 Gs,the relative absorption power at center does not increase but decreases.This shows that in HWP discharge experiment,the magnetic field is not as large as possible.It is necessary to select the appropriate magnetic field according to different discharge conditions.As shown in Fig.6(b), when the magnetic field increased to 1600 Gs,the absorption power at center did not change significantly, but which at boundary showed an extremely obvious change.This may be because TG wave received a relatively high damping under a strong magnetic field.The short radial wavelength makes it difficult for TG wave to propagate in the plasma column,so influence range of TG wave is reduced from the radial full field to a very small range of the boundary.At the same time, the absorption of energy is gradually concentrated at boundary, indicating that a large magnetic field will lead to a serious uneven distribution of radial energy.[27]This situation will not affect the generation of HWP, but will reduce the deposition effect between antenna and plasma.

    Fig.5.Relative absorption power of plasma under 1000 Gs.

    Fig.6.Relative absorption power of plasma under 1000 Gs-1800 Gs:(a)1000 Gs-1400 Gs,(b)1600 Gs-1800 Gs.

    Through calculation and analysis of the magnetic field range of 200 Gs-1800 Gs,it can be obtained that a small magnetic field cannot produce high relative absorption power at center,and thus cannot achieve a good power deposition effect.A large magnetic field will cause the absorption of energy concentrating on boundary.At this point,the distribution of radial energy is severely uneven,which reduces the deposition effect between antenna and plasma.Finally, it can be obtained by comparing the relative absorption power under different magnetic fields that the best deposition effect can be get when the magnetic field is 1200 Gs.

    3.2.Experimental result

    In order to verify the influence of the magnetic field on the deposition effect between antenna and plasma in HMHX which is obtained by the simulation analysis.Different magnetic field strengths were selected for the discharge experiment, and the discharge results under each parameter were used for diagnostic analysis with Langmuir probe.[28-30]

    In HMHX, the magnitude of the magnetic field is controlled by the direct-current(DC)power supply.After calculation,it is found that the magnetic field strength is proportional to the current, and the proportional relationship satisfies the following relationship:[31]

    In the experiment,RF power was selected as 1500 W,the current of the DC power supply was selected as 60 A, 80 A,100 A, 120 A, 140 A, and the corresponding magnetic field strengths were 889 Gs,1185 Gs,1481 Gs,1777 Gs,2074 Gs.Argon gas was used as the gas source for the generation of HWP,and the gas flow rate was 50 sccm.

    The discharge images under five different magnetic fields are shown in Fig.7.In laboratory experiments,it is found that pure argon discharge is blue,[23]but when the current is 60 A,the discharge image does not show the blue image.As the current increased to 80 A, the discharge image began to appear as a blue slender light column,and when the current increased further, the blue gradually deepened.But comparing the discharge image after 100 A, it is found that the change of the discharge image is not obvious.In the discharge process, it was discovered that when the current was 60 A,the discharge mode only had one jump,but there was no second jump,so it was speculated that the discharge did not reach H wave mode at this time.As the current increases, the antenna discharge mode jumps to the H wave mode.Due to the change of the discharge image is not obvious, the best discharge magnetic field needs to be determined by further diagnosis and simulation.

    Fig.7.Discharge images at five different magnetic field strengths.

    Table 2.Plasma densities of discharges at five different magnetic field strengths.

    Langmuir probe was used to diagnose the discharge under these five magnetic fields.Through the analysis of the diagnostic data,the plasma density of the discharge was obtained,and the density is shown in Table 2.

    In order to further explore the influence of the magnetic field on the power deposition in the experiment, the corresponding magnetic field and plasma density were resubstituted into HELIC code for calculation, and the calculation result was shown in Fig.8.Figure 8(a)shows that when the magnetic field is 889 Gs, the relative absorption power at center is much smaller than that at boundary.It indicates that the deposition effect is not good, and the discharge mode at this time cannot reach H wave mode.The result of calculation is similar to the result of preliminary calculation shown in Fig.4 and the discharge image shown in Fig.7.As shown in Fig.8(b), as the magnetic field increases to 1185 Gs, the relative absorption power at boundary increases rapidly, but the absorption power at center also increases rapidly.At this time, the difference of the relative absorption power between center and boundary becomes smaller, the distribution of the radial energy is relatively uniform,and a better deposition effect can be produced.As can be seen from Figs.8(c)and 8(d),when the magnetic field continues to increase to 1481 Gs and 1777 Gs, there is also a high absorption power in the center of antenna,but the corresponding absorption power at boundary is much larger than that at center.Although this does not affect the generation of HWP,it cannot achieve the best deposition effect.Finally,figure 8(e)shows that the radial relative absorption power changes significantly as the magnetic field increases to 2074 Gs.The absorption power at boundary increases rapidly and is much larger than that at center.This is because the absorption of energy is gradually concentrated at boundary under the strong magnetic field,resulting in serious uneven distribution of radial energy.Although this will not affect the generation of HWP,it will make the power deposition effect worse.It is similar to the result of preliminary calculation in Fig.6(b).

    The results of discharge and further calculation show that the change of the magnetic field strength will indeed result in the power deposition effect between antenna and plasma.A small magnetic field will result in too low absorption power at center to generate HWP, while an excessively large magnetic field will result in a severely uneven energy distribution, and the best deposition effect cannot be achieved.Comparing the results of discharge and calculation under five different magnetic fields,it is concluded that the deposition effect between antenna and plasma can be best when the magnetic field is 1185 Gs.

    Fig.8.Relative absorbed power of plasma at five different magnetic field strengths: (a)889 Gs,(b)1185 Gs,(c)1481 Gs,(d)1777 Gs,(e)2074 Gs.

    4.Conclusions and perspectives

    In this paper, HELIC code is used to calculate the influence of different magnetic field strengths on the power deposition of H wave under the parabolic density distribution for HMHX.

    The results of preliminary calculation show that it impossible to produce a good power deposition effect when the magnetic field strength is too small or too high.Comparing all the calculations,a better power deposition effect can be produced when the magnetic field is 1200 Gs.

    In order to further verify the accuracy of the calculation results,a simple discharge experiment was carried out on HMHX.Under the condition that the parameters(such as discharge power, gas, and gas flow) were kept unchanged, five different magnetic field intensities were selected for discharge.A Langmuir probe diagnosis was carried out for five groups of experiments, and the plasma densities were obtained through the diagnosis.The different magnetic fields and plasma densities were substituted into HELIC code to obtain results of verification calculation.The results show that the best deposition effect can be obtained when the magnetic field is 1185 Gs,which is consistent with the results of preliminary calculation.

    Through the research in this paper, it can be concluded that in the H wave discharge experiment, the change of the magnetic field will indeed have a greater impact on the power deposition between the antenna and the plasma.This article provides a reference for the selection of the magnetic field in the discharge experiment of HMHX,it can also provide certain technical support for the research on the discharge mechanism of HWP.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.11975163 and 12175160)and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).

    猜你喜歡
    諸葛
    小諸葛漫“話”天氣之逆溫
    小諸葛漫“話”天氣之雷電
    小諸葛漫“話”天氣之寒潮
    Design of Creative Incentive Contract of Cultural and Creative Industry Chain from Dual Perspective
    諸葛羽扇
    小讀者(2021年4期)2021-06-11 05:42:26
    諸葛?。喝嗣茸焯稹靶C(jī)靈”
    少兒科技(2021年4期)2021-01-11 16:54:50
    諸葛古村的人間煙火
    高速超級(jí)壓光機(jī)的成功研發(fā)
    造紙信息(2019年7期)2019-09-10 11:33:18
    諸葛南征
    諸葛八卦村的“妙”
    亚洲精品中文字幕一二三四区| 校园春色视频在线观看| 麻豆成人午夜福利视频| 99riav亚洲国产免费| 欧美成狂野欧美在线观看| 午夜精品久久久久久毛片777| 国产精品美女特级片免费视频播放器 | 亚洲欧美激情综合另类| 午夜激情福利司机影院| 久久久久性生活片| 少妇的丰满在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av电影不卡..在线观看| 99久久成人亚洲精品观看| 亚洲人成网站高清观看| 亚洲在线自拍视频| 淫妇啪啪啪对白视频| 一级毛片高清免费大全| 成人永久免费在线观看视频| 一个人看视频在线观看www免费 | 国产精品99久久99久久久不卡| av福利片在线观看| 精品国产亚洲在线| 精品电影一区二区在线| 97碰自拍视频| 亚洲乱码一区二区免费版| 亚洲国产精品sss在线观看| 国产蜜桃级精品一区二区三区| 宅男免费午夜| 国产欧美日韩精品亚洲av| 一个人免费在线观看的高清视频| 日韩欧美免费精品| 男女之事视频高清在线观看| 男女视频在线观看网站免费| 男插女下体视频免费在线播放| 欧美日韩一级在线毛片| 欧美色欧美亚洲另类二区| 午夜福利成人在线免费观看| 99久久成人亚洲精品观看| 精品久久久久久久久久久久久| 国产在线精品亚洲第一网站| 人妻丰满熟妇av一区二区三区| 天堂av国产一区二区熟女人妻| 亚洲午夜理论影院| 欧美乱色亚洲激情| 白带黄色成豆腐渣| 在线观看免费视频日本深夜| 国产极品精品免费视频能看的| 亚洲自拍偷在线| 人人妻,人人澡人人爽秒播| 亚洲乱码一区二区免费版| 最新中文字幕久久久久 | 国内揄拍国产精品人妻在线| 最好的美女福利视频网| www日本黄色视频网| 少妇人妻一区二区三区视频| 国产真人三级小视频在线观看| 久久精品aⅴ一区二区三区四区| 欧美黑人欧美精品刺激| 亚洲国产欧美人成| 嫩草影院精品99| 观看美女的网站| 欧美xxxx黑人xx丫x性爽| 毛片女人毛片| 可以在线观看的亚洲视频| 中文字幕精品亚洲无线码一区| 亚洲欧美激情综合另类| 又爽又黄无遮挡网站| 国产人伦9x9x在线观看| 一级毛片精品| 国产精品亚洲美女久久久| 成年版毛片免费区| 欧美三级亚洲精品| 999久久久国产精品视频| 18禁黄网站禁片免费观看直播| 男女做爰动态图高潮gif福利片| 日本精品一区二区三区蜜桃| 黄色视频,在线免费观看| 日本 欧美在线| 禁无遮挡网站| 国产麻豆成人av免费视频| 欧美丝袜亚洲另类 | 日日摸夜夜添夜夜添小说| 中文字幕高清在线视频| 久久久久国产精品人妻aⅴ院| 国语自产精品视频在线第100页| 变态另类成人亚洲欧美熟女| 日韩人妻高清精品专区| 好看av亚洲va欧美ⅴa在| 欧美激情久久久久久爽电影| 国产极品精品免费视频能看的| 国产三级在线视频| 日韩三级视频一区二区三区| 久久久久久久久久黄片| 亚洲精品美女久久av网站| 性色av乱码一区二区三区2| а√天堂www在线а√下载| 日韩av在线大香蕉| 免费观看的影片在线观看| 18禁黄网站禁片午夜丰满| 很黄的视频免费| e午夜精品久久久久久久| www国产在线视频色| 真实男女啪啪啪动态图| 熟妇人妻久久中文字幕3abv| 美女大奶头视频| 天天躁日日操中文字幕| 天堂av国产一区二区熟女人妻| 人人妻,人人澡人人爽秒播| 黄频高清免费视频| 国产又黄又爽又无遮挡在线| 午夜免费成人在线视频| 国模一区二区三区四区视频 | or卡值多少钱| 亚洲欧美精品综合久久99| 黄色成人免费大全| 淫秽高清视频在线观看| www.熟女人妻精品国产| 国产精品影院久久| 亚洲av熟女| av黄色大香蕉| 免费看a级黄色片| 亚洲aⅴ乱码一区二区在线播放| 欧美大码av| 老熟妇仑乱视频hdxx| 极品教师在线免费播放| 观看免费一级毛片| 天天躁狠狠躁夜夜躁狠狠躁| 成年人黄色毛片网站| 一级毛片精品| 男女做爰动态图高潮gif福利片| 国产亚洲精品久久久com| 日日夜夜操网爽| 欧美日本亚洲视频在线播放| 黄片大片在线免费观看| 免费在线观看视频国产中文字幕亚洲| www.999成人在线观看| 午夜激情福利司机影院| 精品不卡国产一区二区三区| av在线天堂中文字幕| 国产激情久久老熟女| 国产亚洲精品久久久久久毛片| 国产成人福利小说| 日本三级黄在线观看| 我的老师免费观看完整版| 俄罗斯特黄特色一大片| 精品久久久久久久久久免费视频| 18禁黄网站禁片免费观看直播| 又大又爽又粗| 成人永久免费在线观看视频| 国产精品,欧美在线| 99久久国产精品久久久| 黑人巨大精品欧美一区二区mp4| 国产成人福利小说| 一卡2卡三卡四卡精品乱码亚洲| 日韩中文字幕欧美一区二区| 性色av乱码一区二区三区2| 亚洲欧洲精品一区二区精品久久久| 午夜福利高清视频| 免费人成视频x8x8入口观看| 人人妻人人看人人澡| 色噜噜av男人的天堂激情| 久久九九热精品免费| 色综合婷婷激情| 国产不卡一卡二| 一边摸一边抽搐一进一小说| 又黄又粗又硬又大视频| 18禁国产床啪视频网站| 精品久久蜜臀av无| 伊人久久大香线蕉亚洲五| 欧美zozozo另类| 亚洲欧美日韩高清在线视频| 男人舔女人下体高潮全视频| x7x7x7水蜜桃| 夜夜看夜夜爽夜夜摸| 国产精品自产拍在线观看55亚洲| 99热这里只有是精品50| 日本五十路高清| 91av网站免费观看| 国产精品电影一区二区三区| 日本 av在线| 一级作爱视频免费观看| 又紧又爽又黄一区二区| 欧美日韩乱码在线| 看片在线看免费视频| 在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 日本成人三级电影网站| 一夜夜www| 久久久久久久久免费视频了| avwww免费| 在线观看日韩欧美| 精品不卡国产一区二区三区| 国产黄色小视频在线观看| 亚洲人成网站高清观看| 丁香欧美五月| 午夜激情福利司机影院| 国产一级毛片七仙女欲春2| 少妇裸体淫交视频免费看高清| 黑人欧美特级aaaaaa片| 午夜福利欧美成人| e午夜精品久久久久久久| 在线观看免费视频日本深夜| 黄频高清免费视频| 亚洲中文日韩欧美视频| 97超视频在线观看视频| 蜜桃久久精品国产亚洲av| 国内少妇人妻偷人精品xxx网站 | 日韩免费av在线播放| 亚洲aⅴ乱码一区二区在线播放| 亚洲 欧美一区二区三区| av国产免费在线观看| 久久久国产成人免费| 婷婷亚洲欧美| 日韩欧美免费精品| 中文字幕av在线有码专区| 日韩欧美一区二区三区在线观看| 欧美一级毛片孕妇| 久久久久久九九精品二区国产| 啪啪无遮挡十八禁网站| 欧美乱色亚洲激情| 国产精品爽爽va在线观看网站| 黄色丝袜av网址大全| 精品人妻1区二区| 午夜福利视频1000在线观看| 国产精品99久久99久久久不卡| 午夜福利免费观看在线| 免费观看精品视频网站| 黄片小视频在线播放| 成人鲁丝片一二三区免费| 国产极品精品免费视频能看的| 亚洲精品中文字幕一二三四区| 成人一区二区视频在线观看| 亚洲av免费在线观看| 婷婷丁香在线五月| 日韩免费av在线播放| 中国美女看黄片| 国产午夜精品论理片| 免费电影在线观看免费观看| 老司机午夜福利在线观看视频| 三级男女做爰猛烈吃奶摸视频| 欧美性猛交╳xxx乱大交人| 日韩欧美国产在线观看| 久久精品aⅴ一区二区三区四区| 国产欧美日韩一区二区精品| 夜夜看夜夜爽夜夜摸| 在线观看美女被高潮喷水网站 | 亚洲av电影在线进入| 高清在线国产一区| av欧美777| 国产日本99.免费观看| 国产午夜福利久久久久久| 最近最新中文字幕大全免费视频| 香蕉久久夜色| 噜噜噜噜噜久久久久久91| 亚洲人成网站高清观看| 1024香蕉在线观看| 午夜成年电影在线免费观看| 欧美在线黄色| 国产精品亚洲av一区麻豆| 国产高清视频在线播放一区| 久久久久九九精品影院| 亚洲午夜精品一区,二区,三区| 露出奶头的视频| 久久久久久久久免费视频了| 国产精品一及| 亚洲国产精品久久男人天堂| 少妇丰满av| 国产精品美女特级片免费视频播放器 | 久久久国产精品麻豆| 国产 一区 欧美 日韩| 国产不卡一卡二| 欧美色欧美亚洲另类二区| 黄色 视频免费看| 国产精品久久视频播放| h日本视频在线播放| 国内毛片毛片毛片毛片毛片| 黑人操中国人逼视频| 一二三四社区在线视频社区8| 久久伊人香网站| 亚洲国产精品999在线| 黄色片一级片一级黄色片| 99视频精品全部免费 在线 | 国产精品久久久久久久电影 | 国产单亲对白刺激| 亚洲精品在线观看二区| 中文字幕精品亚洲无线码一区| 精品国产超薄肉色丝袜足j| 国产精品 国内视频| 无限看片的www在线观看| 久久精品综合一区二区三区| 欧美一级a爱片免费观看看| 久久久成人免费电影| 狂野欧美激情性xxxx| 午夜福利高清视频| 欧美日韩福利视频一区二区| 亚洲人成网站在线播放欧美日韩| 在线观看午夜福利视频| 在线a可以看的网站| 国产高清有码在线观看视频| 亚洲欧美日韩东京热| 欧美性猛交╳xxx乱大交人| 美女被艹到高潮喷水动态| 美女高潮喷水抽搐中文字幕| 国产精品一区二区免费欧美| 精品乱码久久久久久99久播| xxx96com| 中文字幕人妻丝袜一区二区| 欧美一级a爱片免费观看看| 国产精品久久久久久精品电影| 色综合欧美亚洲国产小说| 最好的美女福利视频网| 日本黄色片子视频| 波多野结衣高清无吗| 一级作爱视频免费观看| 老熟妇仑乱视频hdxx| 久久午夜亚洲精品久久| 动漫黄色视频在线观看| 欧美乱妇无乱码| 变态另类成人亚洲欧美熟女| 男女视频在线观看网站免费| 国产精品98久久久久久宅男小说| 中亚洲国语对白在线视频| 国产毛片a区久久久久| 制服丝袜大香蕉在线| 国产亚洲精品av在线| 久久久国产精品麻豆| 国产激情欧美一区二区| 久久久久久国产a免费观看| 啦啦啦观看免费观看视频高清| 国产私拍福利视频在线观看| 日本在线视频免费播放| 免费av毛片视频| 日本三级黄在线观看| 男人舔女人下体高潮全视频| 亚洲精品乱码久久久v下载方式 | 午夜免费激情av| 三级男女做爰猛烈吃奶摸视频| 免费人成视频x8x8入口观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产精品成人综合色| 欧美精品啪啪一区二区三区| 69av精品久久久久久| www日本在线高清视频| 一个人免费在线观看电影 | 丝袜人妻中文字幕| 日本黄色视频三级网站网址| 日本一二三区视频观看| 999精品在线视频| 欧美成狂野欧美在线观看| 久久精品91蜜桃| 日本一二三区视频观看| 麻豆久久精品国产亚洲av| 欧美乱妇无乱码| 动漫黄色视频在线观看| 国产淫片久久久久久久久 | 成人一区二区视频在线观看| 久久精品综合一区二区三区| netflix在线观看网站| 国产精品爽爽va在线观看网站| 精品久久久久久久人妻蜜臀av| 成年女人永久免费观看视频| 亚洲成av人片在线播放无| 90打野战视频偷拍视频| 欧美高清成人免费视频www| 国产精品爽爽va在线观看网站| 中文字幕av在线有码专区| 90打野战视频偷拍视频| netflix在线观看网站| 亚洲狠狠婷婷综合久久图片| 无限看片的www在线观看| 在线观看美女被高潮喷水网站 | 色av中文字幕| 婷婷六月久久综合丁香| 久久人妻av系列| 88av欧美| 国产激情偷乱视频一区二区| 天天添夜夜摸| 国产精品乱码一区二三区的特点| 老鸭窝网址在线观看| 亚洲欧美精品综合一区二区三区| 亚洲五月婷婷丁香| 色哟哟哟哟哟哟| av女优亚洲男人天堂 | 欧美成人免费av一区二区三区| 啦啦啦免费观看视频1| 熟女少妇亚洲综合色aaa.| 最新中文字幕久久久久 | 丁香欧美五月| 欧美国产日韩亚洲一区| 美女高潮喷水抽搐中文字幕| 丁香六月欧美| 国产三级黄色录像| 国产亚洲精品一区二区www| 欧美日韩乱码在线| 国产黄片美女视频| 日本一二三区视频观看| 午夜福利高清视频| 最新在线观看一区二区三区| 男人舔女人下体高潮全视频| 午夜久久久久精精品| 深夜精品福利| 99国产精品99久久久久| 日本免费a在线| 又黄又爽又免费观看的视频| 丝袜人妻中文字幕| 成人av一区二区三区在线看| aaaaa片日本免费| 亚洲欧美日韩无卡精品| 美女扒开内裤让男人捅视频| 黄片小视频在线播放| 日韩大尺度精品在线看网址| 中文字幕熟女人妻在线| www日本在线高清视频| 欧美黑人巨大hd| 国产精品亚洲一级av第二区| 一级作爱视频免费观看| 2021天堂中文幕一二区在线观| 久久久久国产一级毛片高清牌| 亚洲片人在线观看| 亚洲av成人精品一区久久| 麻豆国产97在线/欧美| 人人妻人人看人人澡| 美女免费视频网站| 成年人黄色毛片网站| 9191精品国产免费久久| 一区福利在线观看| 亚洲色图 男人天堂 中文字幕| 99国产精品一区二区三区| 欧美黄色片欧美黄色片| 99热6这里只有精品| 又黄又爽又免费观看的视频| 国产成人福利小说| 人妻久久中文字幕网| 国产乱人视频| 黄频高清免费视频| 中文字幕高清在线视频| 久久这里只有精品中国| 国内精品久久久久久久电影| 亚洲最大成人中文| 叶爱在线成人免费视频播放| 男女那种视频在线观看| 日韩欧美精品v在线| 99精品久久久久人妻精品| 精品乱码久久久久久99久播| 国产97色在线日韩免费| 久久精品夜夜夜夜夜久久蜜豆| 最新美女视频免费是黄的| 变态另类丝袜制服| 又黄又粗又硬又大视频| 亚洲精品久久国产高清桃花| 精品电影一区二区在线| 欧美一级毛片孕妇| 黄片小视频在线播放| 国产1区2区3区精品| 久久中文字幕一级| 又紧又爽又黄一区二区| 国产精品美女特级片免费视频播放器 | 嫁个100分男人电影在线观看| 成人av一区二区三区在线看| 欧美中文日本在线观看视频| 一进一出好大好爽视频| 国产1区2区3区精品| 性色av乱码一区二区三区2| 一级黄色大片毛片| 欧美日韩福利视频一区二区| 美女免费视频网站| 国产在线精品亚洲第一网站| 国产精品自产拍在线观看55亚洲| 一个人看的www免费观看视频| 桃红色精品国产亚洲av| 人人妻,人人澡人人爽秒播| 一卡2卡三卡四卡精品乱码亚洲| 久久中文看片网| 一级毛片高清免费大全| 91久久精品国产一区二区成人 | 亚洲乱码一区二区免费版| 日韩欧美在线二视频| 老汉色av国产亚洲站长工具| 国产免费男女视频| 国产精华一区二区三区| 免费看a级黄色片| 国产精品 欧美亚洲| 88av欧美| 亚洲专区字幕在线| 黄片大片在线免费观看| 人人妻人人澡欧美一区二区| 精品久久久久久久久久久久久| 亚洲精品国产精品久久久不卡| 亚洲自偷自拍图片 自拍| www.www免费av| 老熟妇仑乱视频hdxx| 亚洲精品456在线播放app | 久久久久免费精品人妻一区二区| 一个人观看的视频www高清免费观看 | www.999成人在线观看| 久久久久免费精品人妻一区二区| 亚洲精品久久国产高清桃花| 日韩欧美国产一区二区入口| 亚洲国产精品久久男人天堂| 久久香蕉国产精品| 欧美不卡视频在线免费观看| 成人av在线播放网站| 美女免费视频网站| 高潮久久久久久久久久久不卡| 偷拍熟女少妇极品色| 女同久久另类99精品国产91| 老司机午夜十八禁免费视频| 一进一出好大好爽视频| netflix在线观看网站| 久久天躁狠狠躁夜夜2o2o| 日韩人妻高清精品专区| 国产成人啪精品午夜网站| 国产午夜精品久久久久久| 久久精品国产综合久久久| 午夜福利在线观看吧| 亚洲 国产 在线| www.精华液| 亚洲国产欧美人成| 一个人看的www免费观看视频| 精品熟女少妇八av免费久了| 国内揄拍国产精品人妻在线| 免费一级毛片在线播放高清视频| 国产精品久久久久久人妻精品电影| 两个人的视频大全免费| 欧美极品一区二区三区四区| 国产午夜精品久久久久久| 色老头精品视频在线观看| 一级作爱视频免费观看| 男人舔女人下体高潮全视频| 国产伦精品一区二区三区四那| 日韩av在线大香蕉| 日韩人妻高清精品专区| svipshipincom国产片| 久久精品综合一区二区三区| 亚洲欧美精品综合一区二区三区| 99热6这里只有精品| 免费av毛片视频| 亚洲国产日韩欧美精品在线观看 | 日本一本二区三区精品| 精品免费久久久久久久清纯| 黄色 视频免费看| 老司机福利观看| 19禁男女啪啪无遮挡网站| 老熟妇乱子伦视频在线观看| 热99re8久久精品国产| 热99在线观看视频| 亚洲av片天天在线观看| 国产精品久久视频播放| 亚洲精品一区av在线观看| 久久国产精品人妻蜜桃| 男女之事视频高清在线观看| 12—13女人毛片做爰片一| 精品99又大又爽又粗少妇毛片 | 免费无遮挡裸体视频| 99久久国产精品久久久| 香蕉av资源在线| 久久精品国产综合久久久| 黄片大片在线免费观看| 丁香欧美五月| 一级毛片精品| 国模一区二区三区四区视频 | 天堂影院成人在线观看| 日韩欧美免费精品| 亚洲成人久久性| 亚洲国产中文字幕在线视频| 国产三级黄色录像| 精品不卡国产一区二区三区| 亚洲一区高清亚洲精品| 亚洲精品美女久久av网站| 老司机在亚洲福利影院| aaaaa片日本免费| 亚洲精品色激情综合| 亚洲国产精品合色在线| 美女 人体艺术 gogo| 黄片小视频在线播放| 亚洲欧美日韩东京热| 国产成人aa在线观看| 香蕉av资源在线| 亚洲自偷自拍图片 自拍| 亚洲国产色片| 丰满的人妻完整版| 国产免费男女视频| 亚洲成人久久爱视频| 亚洲激情在线av| 99国产精品一区二区三区| 国产成人aa在线观看| 色吧在线观看| 757午夜福利合集在线观看| 一进一出抽搐动态| 美女黄网站色视频| 久久久久国产精品人妻aⅴ院| 三级毛片av免费| 97超视频在线观看视频| 色老头精品视频在线观看| 美女 人体艺术 gogo| 亚洲av美国av| 成人高潮视频无遮挡免费网站| 国产麻豆成人av免费视频| 宅男免费午夜| 日韩精品中文字幕看吧| 亚洲欧美激情综合另类| 十八禁网站免费在线| 黄色成人免费大全| 国产成人欧美在线观看| 国产亚洲欧美在线一区二区| 亚洲成人免费电影在线观看| 色综合欧美亚洲国产小说| 精品久久久久久久毛片微露脸| 国产一级毛片七仙女欲春2| 国产成人啪精品午夜网站| 国内毛片毛片毛片毛片毛片| 一进一出抽搐gif免费好疼| 亚洲天堂国产精品一区在线| 岛国在线免费视频观看|