• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of kinetic ions on the toroidal double-tearing modes

    2023-03-13 09:19:28RuiboZhang張睿博LeiYe葉磊YangChenNongXiang項農(nóng)andXiaoqingYang楊小慶
    Chinese Physics B 2023年2期
    關(guān)鍵詞:張睿積極探索進(jìn)校園

    Ruibo Zhang(張睿博) Lei Ye(葉磊) Yang ChenNong Xiang(項農(nóng)) and Xiaoqing Yang(楊小慶)

    1Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China

    2University of Science and Technology of China,Hefei 230026,China

    3Center for Integrated Plasma Studies,University of Colorado at Boulder,Boulder,Colorado 80309,USA

    Keywords: double-tearing modes,kinetic ions,coupling effect

    1.Introduction

    Double-tearing modes (DTMs) can be excited in a reversed magnetic shear configuration, due to the two rational surfaces with the same helicity.Different from the singletearing mode (STM), the two tearing modes on neighboring rational surfaces can be coupled with each other and the linear growth rate of the DTMs is much larger than that of the STM.In a slab plasma, the resistivity scaling of the DTMs(γ~η1/3)[1]is weaker than that of the STM (γ~η3/5).[2]Hereγandηare the growth rate of the tearing mode and the resistivity, respectively.Moreover, nonlinear DTMs can generate strong sheared flows, release large bursts of kinetic energy, and cause the off-axis sawtooth crashes,[3]which may give rise to a major disruption.Therefore, it is important to understand the mechanism of DTMs and to develop methods to suppress the DTMs in tokamaks.Since DTMs are formed by the coupling of tearing modes to each other on two rational surfaces, it is natural to anticipate that the DTM instability can be mitigated by either suppressing or decoupling the tearing modes on two rational surfaces.It has been found that toroidicity[4,5]has stabilizing effects on the STM.On the other hand,shear flows,[6-10]diamagnetic effects[11,12]and external current drives[13,14]can help to decouple the two rational surfaces in a DTM.

    It is difficult to analytically predict behaviors of the tearing mode due to its multi-scale property, and the kinetic effects of ions near the tearing layer may be important.In the past few years,many theoretical and numerical investigations have pointed out that kinetic ions are important in evolution of the STM.[15-20]Theoretical analyses and numerical simulations found that trapped energetic ions have a stabilizing effect on DTMs.[21,22]An investigation of the kinetic ions effect on DTMs has been carried out with the gyrokinetic code GTC.It was found that the kinetic ions destabilize the DTMs in toroidal geometry without toroidal coupling.[23]With energetic ions,the off-axis sawtooth oscillations induced by DTMs were observed in the TFTR,[3]CHS[24]and HL-2A[25]experiments.

    In our previous work,[5]the gyrokinetic particle-in-cell code GEM was employed to study the toroidal effects and kinetic ion effects on STM with the hybrid gyrokinetic ion/fluid electron model.A new field solver in toroidal geometry has been developed for the simulation of low-nmodes in tokamaks.It was found that kinetic ions,mainly the passing particles,have a stabilizing effect on the STM.In the present study,we continue to investigate the DTMs in tokamak geometry using GEM.The main focus is on the the influence of kinetic ions on the coupling of DTMs between the two rational surfaces.

    The remaining part of this paper is organized as follows.The simulation model and basic equations are briefly described in Section 2.The effects of kinetic ions on the DTMs are studied in Section 3.The conclusion is drawn in Section 4.

    2.Physical model

    The gyrokinetic ion/fluid electron hybrid model is employed in this paper to study the (m= 3,n= 1) DTMs in the toroidal geometry.In the hybrid model, the ions are described by the gyrokinetic equation, the particle trapping and the finite-orbit-width effects are included.The electrons are treated as a massless isothermal fluid.Recently, the hybrid version of GEM has been extended to low-nmodes by developing a new field solver, and applied to the simulation of the(2,1) STM in toroidal geometry.[5]Here for convenience we give a brief description of the fluid model for electrons.More details can be found in Refs.[5,26,27]and references therein.

    The electron continuity equation is written as

    withu‖e0andδu‖ebeing the equilibrium electron parallel flow and the perturbed electron parallel flow, respectively.The perturbed electron pressure isδ pe⊥=δ pe‖=neδTe+Teδne,δTeandδneare perturbed electron temperature and perturbed electron density, respectively.The last two terms on the lefthand side of Eq.(1) are associated to the toroidal geometry.The toroidal pressure term ?(δ pe⊥+δ pe‖) arises from the guiding-center magnetic drift in a low-βplasma,[28]and the last term from the compressibility of theE×Bdrift.

    The parallel vector potentialA‖can be evolved by withj‖=δ j‖i-en0δu‖ebeing the parallel perturbed current.The parallel ion currentδ j‖iis calculated from the ion distribution function.

    The electron parallel flow velocityδu‖eused in the electron continuity equation, i.e., Eq.(1), is obtained from Ampere’s equation

    using the Pad′e approximation.The second term on the righthand side of Eq.(5) indicates the finite-Larmor-radius (FLR)effect.

    The main closure relation for this fluid electron model is the linearized isothermal condition for the perturbed electron temperature,[29]

    This isothermal condition is derived from the electron drift kinetic equation by assumingω ?k‖vTe,whereωis the characteristic frequency of the fluctuations,vTeis the electron thermal speed, andk‖is the parallel wave number.The coupling effect of different poloidal harmonics in toroidal geometry is preserved in all the following simulations.

    3.Simulation results

    In this section, the (m,n)=(3,1) DTMs in a tokamak plasma are studied by gyrokientic particle-in-cell(PIC)simulation.A magnetic equilibrium with concentric circular fluxsurfaces is used, with an on-axis magnetic fieldB0=1.6 T,major radiusR0=1.82 m and inverse aspect ratioε=a/R0=0.25,wherea=0.46 m is the minor radius.The safety factor profile is set as

    (1)重視新科技在金融行業(yè)的應(yīng)用。對于清華大學(xué)數(shù)字貨幣進(jìn)校園,我認(rèn)為應(yīng)該鼓勵,支持學(xué)校等機(jī)構(gòu)積極探索新技術(shù)的應(yīng)用。

    withλ= 1,r0= 0.412,δ= 0.303,A= 3, andqcis varied for different separations (ds) of the twoq= 3 rational surfaces, as shown in Fig.1.The density profile is set to be constant asn0i=n0e= 1.3×1019m-3.The temperature profiles areTe(r)=-T0e(r/a-0.45)+T0eandTi(r)=-T0i(r/a-0.45)+T0ifor electrons and ions.TheT0e=0.1 keV is fixed.T0ican be varied to study the effect of a finite ion temperature.In the following the resistivityηand the growth rateγare normalized toη0=B0/en0e=0.77Ωm andωc=eB0/mi=7.74×107Hz,respectively.

    Fig.1.Safety factor profiles for different ds by varying qc.

    3.1.Simulations of DTMs with cold ions

    Firstly, we present the simulation result for the DTMs with cold ions (T0i=10-3keV andL-1Ti=0), where the kinetic effects of ions are in fact excluded.Figure 2 shows the typical 2D mode structure of DTMs for the perturbed electric potentialδφand perturbed vector potentialδA‖on the poloidal cross section withη=2×10-5.It can be observed that the mode structure has an in-out asymmetry due to the toroidal magnetic field.

    As we know, the separation of the two rational surfaces is a key factor affecting the coupling effect between the two rational surfaces.Thus, several simulations have been performed with differentdsand the corresponding radial mode structures ofδφare plotted in Fig.3.It can be seen that for a larger separation ofds=0.37a, the mode structure can be considered as a simple superposition of the two STMs located on each rational surface, respectively.However, asdsis decreased,the coupling effect between the two rational surfaces is stronger,and the mode amplitude in the coupling region can be significantly increased.The variation of radial modes structure between the two rational surfaces can also be used as a criterion for the coupling effect of the DTMs.

    Fig.2.Mode structure of DTMs with ε =0.25 and η =2×10-5.

    Fig.3.The radial mode structures of δφ for ds =0.37a, ds =0.24a and ds=0.14a for η =2×10-5 with T0i=1×10-3 keV.All the profiles are normalized to the their maximum absolute values.The mode amplitude in the coupling region is increased by decreasing ds.

    Fig.4.The dependence of growth rate on η with and without toroidal pressure term.

    For givends=0.24a,the growth rate of the DTMs for differentηis shown in Fig.4.Two resistivity scalings,γ~η0.9andγ~η1/3can be found in the small and large resistivity limit, respectively.The scaling for largeηis consistent with the DTM scaling,which is also consistent with the numerical results presented in Refs.[22,30].However, the scaling for small is larger than that of the STM(γ~η3/5).We find that this discrepancy is associated with the toroidal effect,specifically the electron toroidal pressure termδ pein Eq.(1).This term arises from the guiding-center magnetic drift in a toroidal magnetic field.As plotted by red squares in Fig.4, when the toroidal pressure term is neglected in the simulation,the scaling of STM(γ~η3/5)is recovered in smallηlimit.

    The mode structure of DTMs also changes withη.Figure 5 shows the radial structures ofδφfor three different value ofη.It can be seen that the mode amplitude in the coupling region increases withη.Similar results have been shown in Fig.3,where the enhanced coupling is induced by decreasingds.Nevertheless,for a fixed separation of the two rational surfacesds, the width of the STM on each rational surface can be broadened by increasingη.Therefore, the interaction between the two modes can also be enhanced.This process is also consistent with the different resistivity scalings in twoηlimits,as shown in Fig.4.

    Fig.5.The radial mode structures for η =5×10-6, η =2×10-5 and η =1×10-4 with T0i=1×10-3 keV.All the profiles are normalized to the their maximum absolute values.The mode amplitude in the coupling region is increased with η.

    3.2.Effect of kinetic ions on the DTMs

    In this subsection, the kinetic effects of thermal ions on the DTMs are investigated numerically.Firstly, the dependence of the growth rates of the DTMs onηfor cold and thermal ions are compared in Fig.6.It can be seen that the growth rate of the DTMs can be effectively reduced by thermal ions,the suppression effect increases withη.Moreover,with thermal ions,the DTMs scaling,γ~η1/3,can be extended to smaller resistivity ofη ≈1×10-5.This modification to the resistivity scaling indicates an enhanced coupling of DTMs between the two rational surfaces induced by thermal ions.

    Fig.6.The dependence of growth rate on η for cold (T0i = 1×10-3 keV) and thermal (T0i =0.1 keV) ions with L-1Ti =0.It can be seen that the growth rate of the DTMs can be effectively suppressed by thermal ions and the suppression effect increases with η.

    Fig.7.The dependence of growth rate and frequency on T0i.

    Fig.8.(a)The growth rate of DTMs for cold and thermal ions for different ds.(b) The stabilization effect of kinetic ions decreases as ds increases.The superscripts ‘co’ and ‘th’ represent cold and thermal ions,respectively.

    To further illustrate the effect of thermal ions on the DTMs,especially the coupling effect between the two rational surfaces, the simulations of the DTMs with different separations of the two rational surfaces are carried out.The simulation results for the growth rate are plotted in Fig.8.From Fig.8(a), it can be found that withdsincreasing, the growth rate increases at first and then decreases,which is independent of ion temperature.In Fig.8(b), it can be seen that the stabilization effect of thermal ions decreases asdsincreases.As we have shown before,the coupling effect can be enhanced asdsdecreases.This indicates that the stabilization effect of thermal ions on DTMs depends on the the coupling effect between the two rational surfaces.In Fig.9, the radial mode structures of the DTMs for differentdswith cold and thermal ions are plotted.It can be seen that whendsis large(ds&gt;0.24a),the coupling effect between the two rational surfaces is weak,thermal ions can increase the mode amplitude in the coupling region.This enhancement effect increases with the coupling effect.Whendsis small (ds&gt;0.24a), the coupling effect is strong and the resistivity scaling isγ~η1/3,the coupling enhancement effect of thermal ions becomes weaker.

    The above results suggest that thermal ions can suppress the growth of the DTMs.The suppression effect of kinetic ions becomes stronger with the enhancement of the coupling between rational surfaces.On the other hand,kinetic ions can enhance the coupling effect between the two rational surfaces whendsis large.However, further investigations should be carried out to explore the physical dynamics of the interaction between kinetic ions and the DTMs.

    It is known that the effect of kinetic ions includes the FLR effect and the effect of a finite radial magnetic drift (vD) in a toroidal magnetic field.It has been found that the FLR effect is not important in the STM instability especially for largeη[5,31]due to the fact that the ion gyro radius is much smaller than the width of the STM.The kinetic ions can affect the STM mainly through the magnetic drift in toroidal geometry.Since the width of the DTMs is much larger than that of the STM,we can speculate that the kinetic ions also affect the DTMs mainly through the magnetic drift.This can be illustrated by Table 1.

    Table 1.FLR effect and magnetic drift effect on the DTMs growth rates for η =5×10-5.The growth rates are normalized to the value from the cases with cold ions(T0i=1×10-3 keV).

    Fig.9.The radial mode structures for T0i =1×10-3 keV and T0i =0.1 keV for ds =0.37a,0.24a,and 0.14a.The profiles are normalized to their maximum absolute values.

    It has been shown that the kinetic ions can provide either an energy source or sink for tearing modes.[17]To gain further insight into the energy exchange between kinetic ions and the DTMs,the simulation results are studied by analyzing energy transfer between the ions and the wave field.Similar analysis has been given in our previous work for the STM.[5]Here we focus on the kinetic ion effect on the coupling of the two rational surfaces for the DTMs.A brief introduction to the numerical diagnostic of Joule heating is given in the following,and more details can be found in Ref.[5].The energy-like equation can be derived as

    As shown in Table 2, for thermal ions, bothγ‖iandγ⊥ihave dumping effect on the DTMs.The perpendicular Joule heating rate is larger than the parallel Joule heating rate for both trapped and passing ions.This is different from the STM result where the parallel Joule heating rate is dominant.The contribution of the passing ions to the damping rate is much larger than that of trapped ions in both the parallel and perpendicular directions.

    In order to investigate the influence of kinetic ions on the coupling between the two rational surfaces,the radial distributions of ion Joule heating for differentdsare plotted in Fig.10.It can be seen that the ion Joule heating rate is mainly distributed around the outer rational surface and the coupling region.For the distribution ofγ‖i(Fig.10(a)), the peak on the right side of the outer rational surface decreases with the decrease ofds,which means that the relative amplitude between the two rational surfaces is increased.Forγ⊥i(Fig.10(b)),the damping rate can be significantly increased between the two rational surfaces and cause substantial damping of the DTMs asdsis decreased.Therefore, one can conclude from the above observations that thermal ions can effectively impact the DTMs through the energy exchange between ions and wave fields around the outer rational surface and the coupling region.On the one hand, thermal ions can enhance the coupling effects of the DTMs.On the other hand, the enhanced coupling of the DTMs can in turn induce stronger energy exchange owing to the ion dynamics in the coupling region.The consequent result of such a wave-particle interaction is the suppression of the DTMs growth rate and extending of the resistivity scalingγ~η1/3to smallerη.

    Table 2.The Joule heating rate of passing and trapped ions for T0i =10-3 keV and T0i=0.1 keV when η =2×10-5.The superscripts‘T’and‘P’represent trapped and passing ions,respectively;γ is the heating rate.

    4.Conclusion

    In this work, the effects kinetic ions on the linear DTMs are studied by using the GEM code with a gyrokinetic ion/fluid electron model.The toroidal effect can decrease the growth rate of the DTMs and increase the resistivity scaling for smallηthrough the toroidal pressure term in the electron continuity equation.Thermal GK ions can decrease the growth rate of the DTMs significantly and change the resistivity scaling by enhancing the coupling effect of the two rational surfaces.The suppression effect increases with the ion temperature and the decrease of separation of the two rational surfaces.The mechanisms of the ions affecting the DTMs are studied through energy transfer analysis.It is found that the DTMs can be effectively affected by thermal ions through the energy exchange between ions and wave fields around the outer rational surface and the coupling region.Thermal ions can enhance the coupling effects of the DTMs.On the contrary,the enhanced coupling of the DTMs can in turn induce stronger energy exchange owing to the ion dynamics in the coupling region.

    Acknowledgements

    This work was supported by the National MCF Energy R&D Program of China (Grant No.2019YFE03060001),the National Key R&D Program of China (Grant No.2017YFE0300406), and the National Natural Science Foundation of China(Grant Nos.11975272 and 11905257).Y.Chen is supported by the SciDAC Center Advanced Tokamak Modeling Environment(AToM)(Grant No.DE-SC0017992).The numerical calculations in this work were performed on the ShenMa High Performance Computing Cluster in Institute of Plasma Physics, Chinese Academy of Sciences, and resources of the National Energy Research Scientific Computing Center (NERSC), which are supported by the Office of Science of the U.S.Department of Energy(Grant No.DEAC02-05CH11231).

    猜你喜歡
    張睿積極探索進(jìn)校園
    昌圖縣積極探索侵蝕溝綜合治理
    The dilemma and development of industrial design in contemporary life
    舞龍舞獅進(jìn)校園
    烏蘭牧騎進(jìn)校園
    民族音樂(2018年2期)2018-05-26 03:04:36
    優(yōu)秀劇目進(jìn)校園
    Wechat, life in our Palm
    我的新發(fā)現(xiàn)
    我的開心事
    積極探索高校思政課教學(xué)改革
    對聯(lián)文化進(jìn)校園
    對聯(lián)(2011年10期)2011-11-19 21:49:03
    三级男女做爰猛烈吃奶摸视频| 亚洲精品日韩在线中文字幕| 欧美成人午夜免费资源| 99久久精品国产国产毛片| 人妻少妇偷人精品九色| 午夜精品一区二区三区免费看| 欧美潮喷喷水| 免费人成在线观看视频色| 亚洲国产精品国产精品| 老师上课跳d突然被开到最大视频| 大又大粗又爽又黄少妇毛片口| 日韩成人伦理影院| 国产色爽女视频免费观看| 日韩视频在线欧美| 色综合色国产| 日韩av在线免费看完整版不卡| 中文欧美无线码| 成人国产麻豆网| 一级片'在线观看视频| 嫩草影院精品99| 日韩成人av中文字幕在线观看| 成人无遮挡网站| 国产美女午夜福利| 国产日韩欧美亚洲二区| 一个人看的www免费观看视频| 午夜福利网站1000一区二区三区| 99热国产这里只有精品6| 黑人高潮一二区| 国产精品精品国产色婷婷| 日韩av免费高清视频| 又粗又硬又长又爽又黄的视频| 国产成人a∨麻豆精品| 国产精品99久久99久久久不卡 | 久久精品熟女亚洲av麻豆精品| 18+在线观看网站| 久久精品熟女亚洲av麻豆精品| 国产午夜精品一二区理论片| 高清午夜精品一区二区三区| 亚洲自拍偷在线| 男女国产视频网站| 日本黄色片子视频| 尤物成人国产欧美一区二区三区| 久久亚洲国产成人精品v| 日韩,欧美,国产一区二区三区| 亚洲国产高清在线一区二区三| 91久久精品电影网| 美女国产视频在线观看| 综合色丁香网| 亚洲欧美日韩另类电影网站 | 青春草亚洲视频在线观看| 亚洲成人精品中文字幕电影| 黄色怎么调成土黄色| 国产精品无大码| 中文天堂在线官网| 国产永久视频网站| 91狼人影院| 成人美女网站在线观看视频| 免费大片黄手机在线观看| 亚洲欧美精品自产自拍| 日韩中字成人| 听说在线观看完整版免费高清| 色播亚洲综合网| 最近的中文字幕免费完整| 午夜精品国产一区二区电影 | 最后的刺客免费高清国语| 韩国av在线不卡| 国产在线一区二区三区精| 午夜免费男女啪啪视频观看| 亚洲经典国产精华液单| 精品国产乱码久久久久久小说| 国产国拍精品亚洲av在线观看| 丝袜美腿在线中文| 热re99久久精品国产66热6| 老女人水多毛片| 亚洲国产日韩一区二区| 寂寞人妻少妇视频99o| 亚洲熟女精品中文字幕| 亚洲精品国产成人久久av| 最后的刺客免费高清国语| 久久精品久久久久久久性| 国产精品麻豆人妻色哟哟久久| 欧美+日韩+精品| 国产免费福利视频在线观看| 五月伊人婷婷丁香| 听说在线观看完整版免费高清| 午夜福利视频1000在线观看| 国产精品久久久久久精品古装| 成年女人在线观看亚洲视频 | 国产中年淑女户外野战色| 欧美97在线视频| 亚洲经典国产精华液单| 男女下面进入的视频免费午夜| 欧美少妇被猛烈插入视频| 国产免费一区二区三区四区乱码| 久久久久久久国产电影| 欧美激情久久久久久爽电影| 国产黄色免费在线视频| 我的女老师完整版在线观看| 国产成人a∨麻豆精品| 超碰97精品在线观看| 大又大粗又爽又黄少妇毛片口| 黄色日韩在线| 欧美日韩精品成人综合77777| 亚洲欧美精品自产自拍| 人人妻人人爽人人添夜夜欢视频 | 久久人人爽人人爽人人片va| 亚洲aⅴ乱码一区二区在线播放| 国产淫片久久久久久久久| 内地一区二区视频在线| 亚洲最大成人中文| 精华霜和精华液先用哪个| 久久久久久国产a免费观看| 免费观看无遮挡的男女| 又爽又黄无遮挡网站| 国产免费又黄又爽又色| 亚洲成色77777| 精品人妻视频免费看| 免费不卡的大黄色大毛片视频在线观看| 99九九线精品视频在线观看视频| 简卡轻食公司| 免费人成在线观看视频色| 99视频精品全部免费 在线| 欧美亚洲 丝袜 人妻 在线| 各种免费的搞黄视频| 69av精品久久久久久| 狂野欧美白嫩少妇大欣赏| 国产91av在线免费观看| 免费大片黄手机在线观看| 在线看a的网站| 国产一区二区在线观看日韩| 97在线视频观看| 美女内射精品一级片tv| 中文字幕免费在线视频6| 国产午夜精品一二区理论片| 1000部很黄的大片| 国产一区亚洲一区在线观看| 欧美成人一区二区免费高清观看| 欧美丝袜亚洲另类| 亚洲av中文字字幕乱码综合| 欧美老熟妇乱子伦牲交| 男的添女的下面高潮视频| 日韩制服骚丝袜av| 一区二区三区免费毛片| 亚洲不卡免费看| 日韩一区二区视频免费看| 精品国产露脸久久av麻豆| 国产真实伦视频高清在线观看| 国产成人精品婷婷| 欧美成人a在线观看| 久久久久性生活片| 久久久久久久久久人人人人人人| 欧美少妇被猛烈插入视频| 美女视频免费永久观看网站| 亚洲三级黄色毛片| 国产午夜福利久久久久久| 亚洲美女视频黄频| 啦啦啦中文免费视频观看日本| 人妻系列 视频| 国产在线一区二区三区精| 国产成人精品福利久久| 黄片wwwwww| 蜜桃亚洲精品一区二区三区| 在线观看免费高清a一片| 亚洲国产精品999| 国产高清三级在线| av线在线观看网站| 日韩电影二区| 特大巨黑吊av在线直播| 干丝袜人妻中文字幕| 一级av片app| 久久精品国产a三级三级三级| 国产成人精品一,二区| 日本一本二区三区精品| 赤兔流量卡办理| 亚洲欧美成人精品一区二区| 亚洲国产日韩一区二区| 日韩在线高清观看一区二区三区| 成人高潮视频无遮挡免费网站| av福利片在线观看| 欧美日韩一区二区视频在线观看视频在线 | 精品一区在线观看国产| 国产精品精品国产色婷婷| 下体分泌物呈黄色| 99久久精品一区二区三区| 国产精品一区二区性色av| 99久久精品热视频| 亚洲精品国产av成人精品| 如何舔出高潮| 网址你懂的国产日韩在线| 3wmmmm亚洲av在线观看| 国产精品久久久久久av不卡| 久久精品国产亚洲av天美| 免费看光身美女| 汤姆久久久久久久影院中文字幕| 91久久精品国产一区二区三区| 丝袜脚勾引网站| 国产大屁股一区二区在线视频| 三级经典国产精品| 免费av毛片视频| av卡一久久| 欧美丝袜亚洲另类| 欧美变态另类bdsm刘玥| 国产黄色免费在线视频| 校园人妻丝袜中文字幕| 亚洲精品中文字幕在线视频 | 三级男女做爰猛烈吃奶摸视频| 在线观看一区二区三区| 丰满少妇做爰视频| 免费少妇av软件| 欧美高清成人免费视频www| 日韩av不卡免费在线播放| 精品久久国产蜜桃| 一级黄片播放器| 国产午夜精品一二区理论片| 亚洲精品乱码久久久久久按摩| 久久久久久国产a免费观看| 日韩 亚洲 欧美在线| 亚洲三级黄色毛片| 日产精品乱码卡一卡2卡三| 久久久久久久午夜电影| 最近的中文字幕免费完整| a级一级毛片免费在线观看| 久久久久久九九精品二区国产| 日韩欧美精品v在线| 国产成人精品婷婷| 国产片特级美女逼逼视频| 欧美成人午夜免费资源| 97超碰精品成人国产| 国产精品偷伦视频观看了| 天美传媒精品一区二区| 久久精品国产亚洲av天美| 国产老妇女一区| 日韩三级伦理在线观看| 国产美女午夜福利| 五月开心婷婷网| eeuss影院久久| 天天躁日日操中文字幕| 亚洲人成网站在线播| 欧美激情国产日韩精品一区| 搡女人真爽免费视频火全软件| 91久久精品国产一区二区三区| 亚洲美女搞黄在线观看| 久久女婷五月综合色啪小说 | 久久午夜福利片| 亚洲图色成人| 国产成人精品久久久久久| 又粗又硬又长又爽又黄的视频| 黄色视频在线播放观看不卡| 日本熟妇午夜| 色吧在线观看| 久久久精品欧美日韩精品| 国产精品国产三级国产专区5o| av在线app专区| av天堂中文字幕网| 久久久久久伊人网av| 2021少妇久久久久久久久久久| 国产色婷婷99| 亚洲av中文av极速乱| 日韩成人av中文字幕在线观看| 如何舔出高潮| 免费观看av网站的网址| 中国国产av一级| 老师上课跳d突然被开到最大视频| 欧美日韩在线观看h| 国产精品久久久久久精品电影小说 | 伊人久久精品亚洲午夜| 91久久精品国产一区二区三区| 国产亚洲av片在线观看秒播厂| 街头女战士在线观看网站| 一本一本综合久久| 最近中文字幕2019免费版| 欧美性感艳星| kizo精华| 国产精品久久久久久精品电影| 能在线免费看毛片的网站| 国产成人a区在线观看| 欧美精品一区二区大全| av在线天堂中文字幕| 美女视频免费永久观看网站| 亚洲成色77777| 黄片wwwwww| 免费观看性生交大片5| 九九爱精品视频在线观看| 精品国产露脸久久av麻豆| 国产成人福利小说| 女的被弄到高潮叫床怎么办| 精品国产露脸久久av麻豆| 亚洲av免费在线观看| 久久久久网色| 秋霞伦理黄片| 成人黄色视频免费在线看| 久久97久久精品| 国产在线一区二区三区精| 一级毛片黄色毛片免费观看视频| 少妇丰满av| 性色avwww在线观看| 精品一区二区三卡| 神马国产精品三级电影在线观看| 免费观看无遮挡的男女| 国产日韩欧美亚洲二区| 一个人看的www免费观看视频| www.色视频.com| 亚洲精品日本国产第一区| 午夜免费男女啪啪视频观看| 免费观看a级毛片全部| 亚州av有码| 男女边吃奶边做爰视频| 久久鲁丝午夜福利片| 日本-黄色视频高清免费观看| 26uuu在线亚洲综合色| 亚洲熟女精品中文字幕| 日韩三级伦理在线观看| videossex国产| 男人狂女人下面高潮的视频| 乱码一卡2卡4卡精品| 免费av观看视频| 国产精品不卡视频一区二区| 亚洲精品一二三| 99久久精品一区二区三区| 另类亚洲欧美激情| 夫妻性生交免费视频一级片| 日日啪夜夜撸| 欧美亚洲 丝袜 人妻 在线| 18禁裸乳无遮挡动漫免费视频 | 又粗又硬又长又爽又黄的视频| 国产成人a∨麻豆精品| 亚洲成人一二三区av| 亚洲美女搞黄在线观看| 久久精品国产亚洲av涩爱| 黄色一级大片看看| 亚洲精品久久久久久婷婷小说| 久久影院123| 欧美高清性xxxxhd video| 夜夜看夜夜爽夜夜摸| 久久影院123| 亚洲美女搞黄在线观看| 午夜福利高清视频| 女人十人毛片免费观看3o分钟| 精品人妻一区二区三区麻豆| 午夜福利在线在线| 丝袜美腿在线中文| 成人美女网站在线观看视频| 黄片无遮挡物在线观看| 国产在视频线精品| 久久久欧美国产精品| 久久久久精品久久久久真实原创| 国产老妇伦熟女老妇高清| 麻豆成人av视频| 精品国产乱码久久久久久小说| 亚洲av免费高清在线观看| 中国美白少妇内射xxxbb| 一级毛片 在线播放| 人妻系列 视频| 三级男女做爰猛烈吃奶摸视频| 九色成人免费人妻av| 国产乱来视频区| 波野结衣二区三区在线| 久久人人爽人人爽人人片va| 亚洲精品国产av蜜桃| 三级国产精品欧美在线观看| 一级毛片久久久久久久久女| 成人美女网站在线观看视频| 欧美精品人与动牲交sv欧美| 久久久久久久精品精品| 成年免费大片在线观看| 十八禁网站网址无遮挡 | 深夜a级毛片| 色吧在线观看| 69人妻影院| 听说在线观看完整版免费高清| 日日啪夜夜撸| 午夜福利在线在线| 国产一区二区三区av在线| 一级毛片电影观看| 久久久色成人| 香蕉精品网在线| 免费看不卡的av| 中文字幕av成人在线电影| 日韩国内少妇激情av| 精品国产乱码久久久久久小说| av卡一久久| 精品视频人人做人人爽| 日韩中字成人| 欧美高清性xxxxhd video| 白带黄色成豆腐渣| videossex国产| av在线亚洲专区| 亚洲国产av新网站| 国产乱来视频区| 国产69精品久久久久777片| 免费看不卡的av| 舔av片在线| 久久久欧美国产精品| 国产高清国产精品国产三级 | 熟女av电影| 我要看日韩黄色一级片| 日韩国内少妇激情av| 亚洲色图综合在线观看| av福利片在线观看| 99久国产av精品国产电影| 亚洲第一区二区三区不卡| 老司机影院成人| 制服丝袜香蕉在线| 狂野欧美激情性bbbbbb| av播播在线观看一区| 美女高潮的动态| 91aial.com中文字幕在线观看| 欧美丝袜亚洲另类| 日韩中字成人| 国产日韩欧美亚洲二区| 大片电影免费在线观看免费| 欧美变态另类bdsm刘玥| 观看美女的网站| 国产成人freesex在线| 国产免费视频播放在线视频| 九九在线视频观看精品| 日韩亚洲欧美综合| 久久久亚洲精品成人影院| 亚洲人与动物交配视频| 国产一区二区三区av在线| 久久久久久久大尺度免费视频| 黄片wwwwww| 亚洲精品一区蜜桃| 黑人高潮一二区| 成年女人在线观看亚洲视频 | 三级经典国产精品| 亚洲最大成人手机在线| 亚洲精品乱码久久久久久按摩| 三级国产精品片| 欧美日韩在线观看h| 国产91av在线免费观看| 爱豆传媒免费全集在线观看| 小蜜桃在线观看免费完整版高清| 久久综合国产亚洲精品| 色综合色国产| 日韩免费高清中文字幕av| 天堂中文最新版在线下载 | 人体艺术视频欧美日本| 下体分泌物呈黄色| 国产精品无大码| 国产爽快片一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 99热这里只有是精品50| 亚洲最大成人av| 人人妻人人爽人人添夜夜欢视频 | 精品久久久久久久久亚洲| 免费黄网站久久成人精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 2021天堂中文幕一二区在线观| 欧美成人精品欧美一级黄| 九九久久精品国产亚洲av麻豆| 亚洲人成网站高清观看| 亚洲最大成人av| 国产欧美亚洲国产| 亚州av有码| 精品视频人人做人人爽| 一级毛片久久久久久久久女| .国产精品久久| 老司机影院成人| 日产精品乱码卡一卡2卡三| 欧美日韩亚洲高清精品| 亚州av有码| 人人妻人人看人人澡| 91在线精品国自产拍蜜月| 国产老妇女一区| 国产精品一区www在线观看| 国产精品国产三级专区第一集| 国产一级毛片在线| 最近最新中文字幕免费大全7| 日韩一区二区视频免费看| 超碰av人人做人人爽久久| 在线播放无遮挡| 成人特级av手机在线观看| 国产伦精品一区二区三区四那| 日本猛色少妇xxxxx猛交久久| av国产精品久久久久影院| 2021少妇久久久久久久久久久| 人人妻人人爽人人添夜夜欢视频 | 看非洲黑人一级黄片| 亚洲成人久久爱视频| 制服丝袜香蕉在线| 日韩欧美精品免费久久| 成人免费观看视频高清| 国产av国产精品国产| 一个人看视频在线观看www免费| 99九九线精品视频在线观看视频| 另类亚洲欧美激情| 国产片内射在线| 成年动漫av网址| 亚洲一级一片aⅴ在线观看| 亚洲五月色婷婷综合| 亚洲成人av在线免费| 热re99久久国产66热| 免费在线观看完整版高清| 亚洲精品乱久久久久久| 亚洲美女搞黄在线观看| 观看av在线不卡| 欧美亚洲日本最大视频资源| 久久性视频一级片| 丰满饥渴人妻一区二区三| 超色免费av| 国产亚洲av高清不卡| 天天躁夜夜躁狠狠久久av| 日韩 亚洲 欧美在线| 男的添女的下面高潮视频| 中文乱码字字幕精品一区二区三区| 丝袜美腿诱惑在线| 久久国产亚洲av麻豆专区| 伦理电影大哥的女人| 久久国产亚洲av麻豆专区| 美女高潮到喷水免费观看| av国产精品久久久久影院| 亚洲精品美女久久av网站| av在线播放精品| 国产成人精品福利久久| 国产免费视频播放在线视频| 国产精品二区激情视频| 一区二区三区四区激情视频| 国产成人精品久久二区二区91 | 午夜福利网站1000一区二区三区| 如何舔出高潮| av网站在线播放免费| 久久久久精品人妻al黑| 五月天丁香电影| 亚洲美女黄色视频免费看| 丝袜喷水一区| 国产成人av激情在线播放| 中文字幕人妻丝袜制服| 国产精品一二三区在线看| 国产精品秋霞免费鲁丝片| 午夜福利一区二区在线看| 精品少妇内射三级| 日韩av在线免费看完整版不卡| 自线自在国产av| 国产男女内射视频| 人妻一区二区av| 亚洲自偷自拍图片 自拍| 欧美亚洲 丝袜 人妻 在线| 精品人妻一区二区三区麻豆| 青春草亚洲视频在线观看| 叶爱在线成人免费视频播放| 久久久精品区二区三区| 成年女人毛片免费观看观看9 | 日本av免费视频播放| 新久久久久国产一级毛片| 国产亚洲最大av| 午夜福利免费观看在线| 亚洲五月色婷婷综合| 99久久精品国产亚洲精品| 欧美老熟妇乱子伦牲交| 婷婷色综合www| 亚洲美女黄色视频免费看| 一级爰片在线观看| 亚洲色图综合在线观看| 永久免费av网站大全| 欧美成人精品欧美一级黄| 高清av免费在线| 国产精品.久久久| 97精品久久久久久久久久精品| 一区二区av电影网| 国产av一区二区精品久久| 色播在线永久视频| 久久99精品国语久久久| 伊人久久国产一区二区| 久久综合国产亚洲精品| 亚洲av日韩在线播放| 纯流量卡能插随身wifi吗| 欧美国产精品一级二级三级| 色网站视频免费| 啦啦啦啦在线视频资源| 中文精品一卡2卡3卡4更新| 国产成人精品福利久久| 免费黄色在线免费观看| 成人国产av品久久久| 精品久久蜜臀av无| 看免费成人av毛片| 亚洲欧美精品综合一区二区三区| 日本wwww免费看| 亚洲第一青青草原| 又黄又粗又硬又大视频| 日本午夜av视频| 久热这里只有精品99| 毛片一级片免费看久久久久| 精品免费久久久久久久清纯 | 国产色婷婷99| av在线播放精品| av网站免费在线观看视频| 18禁动态无遮挡网站| 国产精品三级大全| 精品国产一区二区三区久久久樱花| 在线 av 中文字幕| 日本av免费视频播放| 日韩精品免费视频一区二区三区| 午夜日韩欧美国产| 免费高清在线观看视频在线观看| 丝袜喷水一区| 中文字幕av电影在线播放| 亚洲精品日韩在线中文字幕| 亚洲国产毛片av蜜桃av| 久久青草综合色| 1024视频免费在线观看| 亚洲国产毛片av蜜桃av| 国产免费视频播放在线视频| 欧美日韩成人在线一区二区| 精品一区二区三卡| 王馨瑶露胸无遮挡在线观看| 日本av免费视频播放| 日韩一区二区视频免费看| 精品久久久精品久久久| 91aial.com中文字幕在线观看| 在线观看免费视频网站a站| 天天躁日日躁夜夜躁夜夜| 婷婷色综合大香蕉| 久久久精品免费免费高清| 又黄又粗又硬又大视频|