• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Current bifurcation,reversals and multiple mobility transitions of dipole in alternating electric fields

    2023-03-13 09:18:04WeiDu杜威KaoJia賈考ZhiLongShi施志龍andLinRuNie聶林如
    Chinese Physics B 2023年2期
    關(guān)鍵詞:杜威

    Wei Du(杜威), Kao Jia(賈考), Zhi-Long Shi(施志龍), and Lin-Ru Nie(聶林如)

    Faculty of Science,Kunming University of Science and Technology,Kunming 650500,China

    Keywords: dipole,current bifurcation,current reversals,mobility transition

    1.Intro duction

    Electric dipoles exist universally in various kinds of substances, whose dynamical behaviors in alternating electric fields have stimulated investigators for a long time.It is of great significance in the aspect of utilizing energy for mankind to control their motions.The model describing rotation of dipoles, first proposed by Debye, has also been widely used in many fields such as the interaction between electromagnetic field and matter, the emission and absorption of electromagnetic wave, and the interaction theory between molecules and atoms.For example, the dipole model is used to study the interaction between near-field optical microscopy and samples.[1,2]When studying dielectric and its interaction with the electric field, the electric dipole model is often employed to describe polarization of the dielectric,[3]domain distribution and steering in ferroelectric materials,[4,5]etc.Some research work on electric dipoles has been reported in the existing literature, such as the distribution of electric and magnetic fields excited by dipoles,[6]the interaction between dipole and dipole,[7-9]and movement of dipoles in static field.[10]In addition, the model of dipoles has wide applications to life science.[11]It is believed that theoretical and experimental studies of dipoles will bring about much useful information in many other research fields.[12-14]

    The dipoles are usually in materials with spatially periodic potentials.In the alternating electric fields, they can make directed rotation,[15]and motions of the dipoles in the solid often lag behind the change in the electric field, which causes dielectric loss and polarization relaxation.[16-18]In the meantime,they also exhibit many characteristic dynamical behaviors.Abnormal transports of particle in a periodic potential, including absolute negative mobility and current reversal,have been a challenge for a large number of investigations over the years.[19,20]Intrinsic physical mechanism and condition for them to occur have not been understood completely yet, especially for the rotation of the dipoles in the alternating electric fields.In what follows, it will be seen that in the action of the alternating electric fields,the dipole exhibits current bifurcation and multiple current reversals, and multiple mobility transitions.These findings will play important roles in optimizing materials heating and utilizing energy.

    In this study,our aims are to investigate anomalous transports of dipole in the two alternating electric fields whose directions are perpendicular to each other, and open up conditions and physical mechanism of the current bifurcation, current reversals, and mobility transitions.This paper is constructed as follows: In Section 2, model and theory are provided.In Section 3,results and discussions are presented.By means of numerical calculations,the anomalous transports of dipoles induced by the external electric field will be analyzed in detail.In Section 4,conclusions are given.

    2.Model and theory

    Here we consider one-dimensional rotation of a dipole with inertial mass in a constant fieldFc.The fieldFc, for instance,may be a local field produced by some other immobile molecules.As is well known, potential energy of the dipole with momentμ0in the electric fieldFcreads

    whereφis the angle between the dipole moment and the electric field.Thus, the differential equation for the dipole with a moment of inertiaI0rotating in the constant electric fieldFcunder the influence of the time dependent fieldsF⊥(t)andF||(t) perpendicular and parallel to the constant fieldFcis given by[21,22]

    where the dot aboveφrepresents the first derivative ofφwith respect to timet,andγI0˙φis the damping torque.After dividing Eq.(2) by the angular momentum of inertia, withφ=xwe have

    whereγis the damping constant of the dipole rotation, the constantsdis given by

    andF⊥(t)andF||(t)are the normalized fields

    with the superscript‘un’representing the unnormalized fields in Eq.(2).

    For the sake of discussion, we assume that the timedependent fieldsF⊥(t) andF||(t) are the alternating electric fields with the cosine and sine functions

    F⊥(t)=A1cos(ω1t), F||(t)=A2sin(ω2t),(6)

    whereA1andω1are the amplitude and angular frequency of the normalized fieldF⊥(t), respectively, whileA2andω2are the amplitude and angular frequency of the normalized fieldF||(t).If the constant bias forceFexerting on the dipole is also considered,Eq.(3)can be rewritten as

    ¨x+γ˙x+dsinx=A1cos(ω1t)cosx-A2sin(ω2t)sinx+F.(7)All these physical quantities and parameters are in dimensionless forms.

    In terms of Eq.(7),current of the system is very difficult to be found analytically, yet we can make use of the modified Euler algorithm to calculate numerically its mean angular velocity(or current)of the dipole rotation according to its definition

    where〈〉denotes the time average.In the hypothesis of ergodicity,the time average is equal to the ensemble average.Thus the mobility of the dipole can be obtained by

    3.Results and discussion

    By means of Eqs.(7)-(9), we can calculate numerically current and mobility of the system, and discuss effects of parameters of the alternating fields on movements of the dipole,and the results are plotted in Figs.1-7

    3.1.The case of F=0

    Let us discuss the case without the external constant bias forceF.As the additional time-varying fieldsF⊥(t)andF||(t)have the same amplitude and angular frequency,i.e.,

    Eq.(7)reduces to

    Equation(11)can be viewed as the dynamic equation of an inertial particle moving in a periodic potential with traveling wave and basal potentials, where the basal potentialdcosxdepends on the fieldFc.The traveling wave potential is-Asin[ω(t+x/ω)],which describes a traveling wave moving to the negative direction of thex-axis with the velocity-ω.In this case,the velocity of the traveling wave is numerically equal to the angular frequencyωof the additional fields.It is well known that the particle always moves in the same direction as the traveling wave without any signal.[23-27]The dependence of the mean angular velocity〈v〉on the frequencyωof the external fields at different amplitudes of the external fields for the different basal potentialAanddis shown in Fig.1, from which we can see that the external fields greatly affect the dynamical behavior of the dipole.As the amplitude of the basal potentialdequals 0, absolute value of the mean angular velocity first increases and then decreases with the frequency of the external fields increasing,see Fig.1(a).If the amplitudeAis further increased in the case of unchangedd=0,the more prominent two pathways appear in the curves of〈v〉vs.ω, i.e., a current bifurcation phenomenon, see Fig.1(b).The branching point locates atωc?2.68.After the critical point,one of them is that the〈v〉decreases withω,while the〈v〉increases withωfor the other pathway.Furthermore,the dipole almost has the same probability to occupy the two pathways.During the branching region,it can possess two values of〈v〉.This is similar to the optical bistability.[28,29]By comparing Figs.1(a)and 1(b),when the amplitude of the external fields increases, a current bifurcation of the dipole will occur at the larger frequency and the bifurcation area will be larger.

    However, if theAis fixed at the value 3 in the presence of the basal potential (d=1), absolute value of the〈v〉first increases,then suddenly drops to zero,i.e.,a current transition phenomenon appears,see Fig.1(c).The inflection point takes place atωin≈2.05.The phenomenon can be explained like this: For smaller wave velocity, the dipole stays in its potential well and moves with the wave together.Thus,the average angular velocity of the dipole increases linearly with the angular frequency of the alternating field increasing.Due to the action of the basal potential, its average angular velocity is smaller than its wave velocity.As the frequency of the alternating electric field increases, it is difficult for the dipole to keep pace with the wave for its inertia and friction,and the angular velocity of the dipole should decrease gradually like that in Fig.1(a).For the barrier in the basal potential,the average angular velocity suddenly falls to zero.Yet, as the amplitude of the basal potentiald=1 remains unchanged and the amplitude of the alternating electric fields is increased to 5, the larger area bistable state and inflection point phenomena take place simultaneously in the system, see Fig.1(d).Therefore it can be concluded that the alternating electric fields play important roles in inducing current bifurcation and current transition.

    Fig.1.The mean angular velocity〈v〉vs. ω at different amplitudes of the alternating electric fields: A=3,5, and different amplitudes of the basal potential: d =0, 1.The other parameters are γ =0.9, and time step 0.001.Initial conditions are t=0,x=0,and dx/dt=0.

    Let us discuss the case ofω1/=ω2,namely,the frequencies of the alternating electric fields perpendicular and parallel to the constant field are not equal to each other.Figure 2 is the time evolutions of the dipole angular positionxat different parametersω2=0.2,0.25,0.4,1.0,1.5,withω1=1.The trajectories in Fig.2 are very close to straight lines,which indicates that the dipole has been stable state of non-equilibrium within the evolution time.Thus, their slopes represent angular velocities of the dipole.From Fig.2, we can easily see that the mean angular velocity〈v〉is affected greatly by the angular frequencyω2of the normalized fieldF||(t).Due to the temporal symmetry breaking byω1/=ω2,〈v〉is less than zero atω2=0.2.Asω2increases, the dipole begins to rotate to positive direction.However, forω2=1.0, the dipole rotates in a negative direction again.It is interesting that the dipole experiences many times of direction changes from negative→positive→negative→positive withω2increasing.This means that there exists multiple current reversals in the system.[30-32]

    In order to catch some insight into the multiple current reversals,the dependence of〈v〉onω2at different angular frequenciesω1of normalized fieldF⊥(t)is shown in Fig.3.Figure 3 looks very rough, but the data in it are actually correct and reliable because the time evolutions of some typical samples in Fig.2 are very straight, or the dipole has been stable state of non-equilibrium.It can be seen from Fig.3 that the multiple current reversals rely on the frequency to a large degree.Asω1=0.8, 1.0, or 1.6, the〈v〉changes its sign many times,i.e.,multiple current reversals.Nevertheless,as theω2increases(e.g.,ω2=3), the multiple current reversals gradually disappear,and the current of the system turns to be zero.Because the system’s symmetry is broken temporally by the two periodic signals, and its symmetry depends on the frequenciesω1andω2.Asω2takes greater value, the signalAsin(ω2t)changes so fast that the system does not keep pace with it.Thus, function of the signal is lost, and the system is temporally symmetric,which leads to its current being zero.

    Fig.2.Time evolutions of x at different frequencies of the normalized field F||(t): ω2=0.2,0.25,0.4,1.0,1.5,with A1=A2=A=2,ω1=1,d=1.The other parameters are the same as those in Fig.1.

    Fig.3.The mean angular velocity〈v〉vs. ω2 at different frequencies of the normalized field F⊥(t):ω1=0.8,1.0,1.6.The other parameters are the same as those in Fig.2.

    3.2.The case of F/=0

    As the external constant bias forceFis exerted on the dipole,the system will also display some interesting dynamical behaviors.

    Figure 4(a) shows the〈v〉vs.the constant bias forceFat different amplitudes of the alternating electric fields:A1=A2=A=1,2,3,4,5,withω1=ω2=1,d=1.From Fig.4(a),we can see that the amplitudes of the alternating electric fields actually affect transport of the dipole.AsA1=A2=A=1,the dipole remains stationary untilFis greater than about 1.This is because the traveling force in Eq.(11)is too small to make the particle jump over the basal potential barrier (d=1).AsFis just greater than the threshold value,the dipole suddenly rotates with the angular velocity 1,then increases linearly withFincreasing.With the increment ofA(e.g.,2),the three platforms〈v〉=-1,-0.25,0 appear in the curve of〈v〉vs.F.According to the total potentialdcosx-Asin[ω(t+x/ω)]-Fx,the two platforms〈v〉=-1,0 should come from the traveling potential-Asin[ω(t+x/ω)]and the basal potentialdcosx,respectively,while the platform〈v〉=-0.25 from the co-action between the two types of potentials.AsAis further increased(e.g., 3, 4, 5), the system comes back to one platform caused by the traveling potential,whose〈v〉takes-1.After the platforms, the particle’s velocity also suddenly jumps to certain positive value, then varies linearly withF.Transport of the system becomes normal.The greater the valueAtakes, the greater the transition force is.Fig.4(b)is the mobilityμvs.Fcorresponding to Fig.4(a).It can be seen easily from Fig.4(b)that the mobility obviously transits twice at least forA=2,while only once forA=1,3,4,5.

    Fig.4.Behavior of〈v〉vs.the constant bias force F for(a),and the mobility μ vs. F for(b)at different amplitudes of the alternating electric fields: A1=A2=A=1,2,3,4,5,with ω1=ω2=1,d=1.The other parameters are the same as those in Fig.1.

    Of course, frequency of the traveling force in Eq.(11)also influences the mobility transition effect.Figure 5 is the dependence of〈v〉onFat different frequencies of the alternating electric fields withA1=A2=A=2,d=1.We can see that for the smaller frequencies (e.g.,ω1=ω2=0.25),there are four platforms in the curve of〈v〉vs.F.In other words, the mobility transits four times.With the increment of the frequencies,the number of the platforms gradually decreases.For greater frequencies(e.g.,ω1=ω2=10),the traveling force loses its function,so only the platform〈v〉=0 takes place due to the basal potential.

    Fig.5.Behavior of〈v〉vs. F at different frequencies of the alternating electric fields: ω1=ω2=0.25,0.6,1,1.5,10,with A1=A2=A=2,d=1.The other parameters are the same as those in Fig.1.

    Fig.6.Behavior of〈v〉vs. F at different values of ω2: 1.5,2,3 for(a),5 for(b),with ω1 =1,A1 =A2 =A=2,d=1.The other parameters are the same as those in Fig.1.

    Fig.7.Behavior ofμ vs. F at different values of ω2: 1.5,2,3 for(a),5 for(b),with ω1=1,A1=A2=A=2,d=1.The other parameters are the same as those in Fig.1.

    Let us discuss the mobility transitions in the case ofω1/=ω2.The dependence of〈v〉onFatω2=1.5,2,3,5 andω1=1 is shown in Fig.6.Figure 6 indicates that there still exist many mean angular velocity platforms in this case, where the two platforms〈v〉=ω1and〈v〉=ω2are indispensable at least.Nevertheless,asω2=5 andω1=1,seven obvious mean velocity platforms occur in the system.This makes dynamical behavior of the system more inconceivable.Thus,mobility of the system in this case transits more times compared with that ofω1=ω2due to the action of more types of traveling forces,see Fig.7.

    4.Conclusions

    In summary, we have investigated the characteristic dynamical behaviors of the one-dimensional dipole in the action of the two alternating electric fields whose directions are perpendicular to each other.Our numerical results show that the two alternating electric fields play crucial roles in inducing abnormal dynamical behaviors of the dipole.As the two alternating electric fields are periodic functions of cosine and sine with the same amplitude and frequency, there exists current bifurcation phenomenon about the frequency.If the frequencies of the two alternating electric fields are not equal to each other,they can cause the multiple current reversals of the dipole.As a constant bias force exerts on the diploe,there are many current platforms appearing in the curve of〈v〉vs.F.Namely,multiple mobility transitions take place in the system, which depends on amplitudes,frequencies and number of the traveling forces in it.

    Here the effects of the alternating electric fields on the dynamical behaviors of the dipole are considered.It is found that there exist current bifurcation,reversals and multiple mobility transitions phenomena in the system.The findings not only help us further understand dynamical behaviors of the dipoles in the alternating fields, but also play important roles in enhancing heating efficiency of matter, which are of important significance for saving energy sources.According to our research results,one can optimize matter heating through adjusting amplitudes and frequency of the exerted alternating fields.

    Acknowledgements

    Project supported by the Research Group of Nonequilibrium Statistics (Grant No.14078206), and Kunming University of Science and Technology,China.

    猜你喜歡
    杜威
    合肥杜威智能科技股份有限公司
    合肥杜威智能科技股份有限公司
    合肥杜威智能科技股份有限公司
    合肥杜威智能科技股份有限公司
    合肥杜威智能科技股份有限公司
    讓我們搖起櫓來(lái)
    絕世武功的奧秘
    杜威傳播思想在中國(guó)的早期接受
    Measurement and Correlation of Vapor-Liquid Equilibria for Hexamethyl Disiloxane + Vinyl Acetate System at 101.3 kPa
    杜威的職業(yè)教育思想
    香蕉国产在线看| 亚洲自偷自拍图片 自拍| 精品久久久精品久久久| 无遮挡黄片免费观看| 国内久久婷婷六月综合欲色啪| 国产成年人精品一区二区 | 老司机深夜福利视频在线观看| 午夜两性在线视频| 麻豆成人av在线观看| 欧美人与性动交α欧美精品济南到| 少妇的丰满在线观看| 夫妻午夜视频| 美女扒开内裤让男人捅视频| a级毛片黄视频| 亚洲精华国产精华精| 欧美日韩黄片免| 欧美黄色淫秽网站| 午夜福利欧美成人| 免费一级毛片在线播放高清视频 | 国产精品九九99| 国产在线观看jvid| 一本综合久久免费| 精品国产国语对白av| 免费观看精品视频网站| svipshipincom国产片| 久久中文字幕一级| 日韩欧美在线二视频| 午夜免费激情av| 日韩大码丰满熟妇| 母亲3免费完整高清在线观看| 欧美激情高清一区二区三区| 久久久久久久午夜电影 | 精品欧美一区二区三区在线| 精品欧美一区二区三区在线| 成熟少妇高潮喷水视频| 首页视频小说图片口味搜索| 69精品国产乱码久久久| 欧美精品一区二区免费开放| 久久中文字幕一级| 天堂动漫精品| 亚洲五月色婷婷综合| 久久午夜综合久久蜜桃| 99香蕉大伊视频| 丝袜人妻中文字幕| 久久久国产成人免费| 热99re8久久精品国产| 黄色片一级片一级黄色片| 波多野结衣一区麻豆| 日本a在线网址| 一进一出好大好爽视频| 欧美成人午夜精品| 真人做人爱边吃奶动态| cao死你这个sao货| 黄色 视频免费看| 一级毛片精品| 国产精品 欧美亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 最近最新中文字幕大全免费视频| 母亲3免费完整高清在线观看| 欧美日韩乱码在线| 国产免费现黄频在线看| 88av欧美| 男女做爰动态图高潮gif福利片 | 国产精华一区二区三区| 法律面前人人平等表现在哪些方面| 欧美 亚洲 国产 日韩一| 99久久人妻综合| 久久久久久大精品| 国产精品亚洲av一区麻豆| 一区二区三区国产精品乱码| 亚洲一区二区三区色噜噜 | www国产在线视频色| 一区二区三区国产精品乱码| 涩涩av久久男人的天堂| 丝袜美腿诱惑在线| 欧美成人免费av一区二区三区| av天堂久久9| 熟女少妇亚洲综合色aaa.| 午夜福利欧美成人| 免费在线观看影片大全网站| 午夜视频精品福利| 999久久久国产精品视频| 免费在线观看影片大全网站| 成人国产一区最新在线观看| 日本五十路高清| 在线观看免费视频网站a站| 日韩欧美一区视频在线观看| 999久久久国产精品视频| 天天躁狠狠躁夜夜躁狠狠躁| 两个人免费观看高清视频| 婷婷精品国产亚洲av在线| 国产成人欧美| 变态另类成人亚洲欧美熟女 | 夫妻午夜视频| 国产精品 欧美亚洲| 久久久久精品国产欧美久久久| 自拍欧美九色日韩亚洲蝌蚪91| 午夜久久久在线观看| 国产av又大| 91av网站免费观看| 淫秽高清视频在线观看| 国产亚洲欧美在线一区二区| 最好的美女福利视频网| 涩涩av久久男人的天堂| 亚洲国产精品999在线| 国产野战对白在线观看| 精品人妻1区二区| 久久欧美精品欧美久久欧美| 久久久久久人人人人人| 午夜视频精品福利| 叶爱在线成人免费视频播放| 男女高潮啪啪啪动态图| 免费在线观看影片大全网站| 欧美日韩乱码在线| 制服人妻中文乱码| 乱人伦中国视频| 嫩草影院精品99| 亚洲人成伊人成综合网2020| 777久久人妻少妇嫩草av网站| 欧美激情 高清一区二区三区| 亚洲色图 男人天堂 中文字幕| 黄色毛片三级朝国网站| 亚洲国产看品久久| 一边摸一边抽搐一进一小说| 久久青草综合色| 欧美+亚洲+日韩+国产| 精品国产乱码久久久久久男人| 成人三级做爰电影| 悠悠久久av| 午夜福利在线免费观看网站| svipshipincom国产片| 久久久久久免费高清国产稀缺| 久久精品影院6| 精品一区二区三区四区五区乱码| 欧美精品亚洲一区二区| 五月开心婷婷网| 精品国产一区二区久久| 变态另类成人亚洲欧美熟女 | 国产熟女午夜一区二区三区| 免费观看精品视频网站| 国产伦一二天堂av在线观看| 欧美中文日本在线观看视频| 精品久久久久久成人av| 国产人伦9x9x在线观看| 日本 av在线| 99在线人妻在线中文字幕| 国产成人精品久久二区二区91| 国产精品久久久久久人妻精品电影| 黄色片一级片一级黄色片| 中文字幕最新亚洲高清| 一边摸一边抽搐一进一出视频| 老熟妇乱子伦视频在线观看| 久久精品国产99精品国产亚洲性色 | 18禁国产床啪视频网站| 日韩欧美一区视频在线观看| 一边摸一边做爽爽视频免费| 女人爽到高潮嗷嗷叫在线视频| x7x7x7水蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 可以免费在线观看a视频的电影网站| 国产单亲对白刺激| 自拍欧美九色日韩亚洲蝌蚪91| 国产99久久九九免费精品| 免费在线观看日本一区| 久久精品91无色码中文字幕| 美女高潮喷水抽搐中文字幕| 99热只有精品国产| 一区二区日韩欧美中文字幕| av在线播放免费不卡| 午夜影院日韩av| 国产三级在线视频| 老熟妇仑乱视频hdxx| 久热这里只有精品99| 免费在线观看影片大全网站| 久久精品亚洲熟妇少妇任你| 淫妇啪啪啪对白视频| 高清av免费在线| 成人影院久久| 久99久视频精品免费| 大陆偷拍与自拍| 亚洲av成人av| 99国产综合亚洲精品| 午夜福利一区二区在线看| 搡老岳熟女国产| 精品一区二区三区视频在线观看免费 | 久久久国产欧美日韩av| 国产真人三级小视频在线观看| 久久精品aⅴ一区二区三区四区| 日本黄色日本黄色录像| 免费搜索国产男女视频| 亚洲一码二码三码区别大吗| 91av网站免费观看| 最近最新中文字幕大全免费视频| aaaaa片日本免费| 国产亚洲欧美精品永久| 中文字幕最新亚洲高清| 色老头精品视频在线观看| 又紧又爽又黄一区二区| 曰老女人黄片| 亚洲国产欧美网| 国产精品98久久久久久宅男小说| 老司机亚洲免费影院| 丰满饥渴人妻一区二区三| 80岁老熟妇乱子伦牲交| 日韩欧美一区视频在线观看| 19禁男女啪啪无遮挡网站| 国产有黄有色有爽视频| 精品无人区乱码1区二区| 搡老乐熟女国产| 丰满迷人的少妇在线观看| 91字幕亚洲| 欧美老熟妇乱子伦牲交| 久久久久久久精品吃奶| 亚洲精品av麻豆狂野| 成人av一区二区三区在线看| 久久久久久大精品| 9色porny在线观看| 12—13女人毛片做爰片一| 黄频高清免费视频| 美女扒开内裤让男人捅视频| 成人av一区二区三区在线看| 丝袜美腿诱惑在线| 黄色怎么调成土黄色| 亚洲成人久久性| 99精品欧美一区二区三区四区| 后天国语完整版免费观看| 中文字幕高清在线视频| 午夜a级毛片| 国产精品av久久久久免费| cao死你这个sao货| 亚洲成国产人片在线观看| 人成视频在线观看免费观看| 99国产精品免费福利视频| 国产一区二区三区综合在线观看| 久久久久久久精品吃奶| 少妇的丰满在线观看| 十八禁网站免费在线| 亚洲精品一卡2卡三卡4卡5卡| 色婷婷久久久亚洲欧美| 亚洲欧美激情在线| 色在线成人网| 久久中文看片网| 大香蕉久久成人网| 美女 人体艺术 gogo| 色婷婷av一区二区三区视频| 啦啦啦在线免费观看视频4| 亚洲va日本ⅴa欧美va伊人久久| 韩国av一区二区三区四区| a级毛片黄视频| 激情视频va一区二区三区| 一区二区日韩欧美中文字幕| 日本vs欧美在线观看视频| 一区二区三区国产精品乱码| 三上悠亚av全集在线观看| 久久精品国产亚洲av高清一级| 亚洲国产中文字幕在线视频| ponron亚洲| 久久中文字幕一级| 国产在线精品亚洲第一网站| 成人永久免费在线观看视频| 日韩大码丰满熟妇| 99久久综合精品五月天人人| 亚洲中文av在线| 国产精品av久久久久免费| 最近最新中文字幕大全免费视频| 一级,二级,三级黄色视频| 黄色片一级片一级黄色片| 色播在线永久视频| 亚洲 欧美 日韩 在线 免费| 自线自在国产av| 村上凉子中文字幕在线| 黑丝袜美女国产一区| 亚洲人成电影观看| 成年女人毛片免费观看观看9| 不卡av一区二区三区| www.自偷自拍.com| 99精品欧美一区二区三区四区| 亚洲人成电影免费在线| 国产精品一区二区在线不卡| 亚洲一区二区三区不卡视频| 久久国产精品男人的天堂亚洲| 国产一区二区三区在线臀色熟女 | 中文字幕人妻丝袜一区二区| 亚洲avbb在线观看| 国产精品野战在线观看 | 亚洲色图 男人天堂 中文字幕| 国产精品国产高清国产av| 一进一出好大好爽视频| 大码成人一级视频| 欧美日韩黄片免| 久久久久久久久久久久大奶| 91精品国产国语对白视频| 99精品欧美一区二区三区四区| 国产麻豆69| 国产99白浆流出| 久久久久久大精品| 人人澡人人妻人| 伊人久久大香线蕉亚洲五| 亚洲九九香蕉| 久久久国产一区二区| 女同久久另类99精品国产91| 亚洲av第一区精品v没综合| 夫妻午夜视频| 精品一区二区三卡| 国产欧美日韩一区二区精品| 亚洲中文字幕日韩| 黄色视频,在线免费观看| 日日摸夜夜添夜夜添小说| 精品久久久久久,| bbb黄色大片| 免费在线观看视频国产中文字幕亚洲| 久久久水蜜桃国产精品网| 国产成人欧美在线观看| 久久人妻av系列| 欧美在线黄色| www.www免费av| 中文字幕av电影在线播放| 欧美成人午夜精品| 淫秽高清视频在线观看| 国产激情久久老熟女| 免费在线观看影片大全网站| 18禁裸乳无遮挡免费网站照片 | 男女床上黄色一级片免费看| 久久亚洲真实| 亚洲专区国产一区二区| 女性生殖器流出的白浆| 欧美另类亚洲清纯唯美| 国产不卡一卡二| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品亚洲一级av第二区| 亚洲av第一区精品v没综合| 亚洲国产欧美网| 国产精品香港三级国产av潘金莲| 黄色片一级片一级黄色片| 老熟妇乱子伦视频在线观看| 久久人妻熟女aⅴ| 国产人伦9x9x在线观看| 男女下面进入的视频免费午夜 | 中文亚洲av片在线观看爽| 免费看a级黄色片| 一级作爱视频免费观看| 侵犯人妻中文字幕一二三四区| 欧美日韩亚洲综合一区二区三区_| 一区在线观看完整版| 在线观看66精品国产| 久久久久久大精品| 在线国产一区二区在线| 久久亚洲精品不卡| 久久草成人影院| 丰满饥渴人妻一区二区三| 视频在线观看一区二区三区| 亚洲av成人一区二区三| 91成年电影在线观看| 国产精品久久电影中文字幕| 日韩欧美一区视频在线观看| 很黄的视频免费| 伊人久久大香线蕉亚洲五| 在线观看午夜福利视频| 久热爱精品视频在线9| 久久香蕉国产精品| 中文字幕av电影在线播放| 搡老岳熟女国产| 首页视频小说图片口味搜索| 亚洲精品中文字幕在线视频| 日韩人妻精品一区2区三区| 久久影院123| 亚洲av成人一区二区三| www国产在线视频色| 国产成人av教育| 最近最新中文字幕大全电影3 | 亚洲一区二区三区色噜噜 | 天堂中文最新版在线下载| 成熟少妇高潮喷水视频| 国产精品久久久久成人av| 亚洲国产欧美日韩在线播放| 日日干狠狠操夜夜爽| 日本wwww免费看| 久久影院123| 亚洲中文字幕日韩| 亚洲第一青青草原| 最新在线观看一区二区三区| 午夜91福利影院| 久热这里只有精品99| 国产精品美女特级片免费视频播放器 | 欧美日本中文国产一区发布| 国产人伦9x9x在线观看| 在线观看一区二区三区激情| 人成视频在线观看免费观看| 一本综合久久免费| 久久精品国产亚洲av高清一级| 久久午夜综合久久蜜桃| 一边摸一边抽搐一进一出视频| 99精品久久久久人妻精品| 在线观看免费视频网站a站| 久久精品人人爽人人爽视色| 久99久视频精品免费| 亚洲情色 制服丝袜| 欧美日本亚洲视频在线播放| 香蕉丝袜av| 国产亚洲欧美98| 久久精品91蜜桃| 88av欧美| 久久久久国产一级毛片高清牌| 一边摸一边抽搐一进一出视频| 久久欧美精品欧美久久欧美| 十八禁人妻一区二区| 国内久久婷婷六月综合欲色啪| 欧美乱色亚洲激情| 午夜福利,免费看| 三级毛片av免费| 欧美成人午夜精品| 另类亚洲欧美激情| 亚洲国产欧美一区二区综合| 亚洲自偷自拍图片 自拍| 国产午夜精品久久久久久| 91精品国产国语对白视频| 他把我摸到了高潮在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲伊人色综图| 亚洲免费av在线视频| 一进一出抽搐gif免费好疼 | 国产精品乱码一区二三区的特点 | 黑人欧美特级aaaaaa片| 国产精品综合久久久久久久免费 | 午夜a级毛片| 国产精品 欧美亚洲| 三上悠亚av全集在线观看| 美女 人体艺术 gogo| 国产精品亚洲一级av第二区| av福利片在线| 热re99久久精品国产66热6| 久久亚洲真实| 亚洲专区字幕在线| 国产一区二区三区在线臀色熟女 | 欧美日韩黄片免| 精品熟女少妇八av免费久了| 亚洲自偷自拍图片 自拍| 国产精品久久久久久人妻精品电影| 精品国内亚洲2022精品成人| 天堂√8在线中文| 亚洲第一欧美日韩一区二区三区| 精品人妻在线不人妻| av网站在线播放免费| 亚洲专区中文字幕在线| 大陆偷拍与自拍| 夜夜躁狠狠躁天天躁| av有码第一页| 国产成人免费无遮挡视频| 久久久久久大精品| 欧美成人免费av一区二区三区| 一二三四在线观看免费中文在| 久久人妻福利社区极品人妻图片| 亚洲色图综合在线观看| 亚洲全国av大片| 中亚洲国语对白在线视频| 一本大道久久a久久精品| cao死你这个sao货| 国产免费男女视频| 国产成人影院久久av| 日韩精品中文字幕看吧| 丝袜人妻中文字幕| 99久久久亚洲精品蜜臀av| 国产精华一区二区三区| 亚洲av成人不卡在线观看播放网| 欧美人与性动交α欧美精品济南到| 波多野结衣高清无吗| 在线观看日韩欧美| 亚洲国产毛片av蜜桃av| 首页视频小说图片口味搜索| 日本 av在线| 亚洲成a人片在线一区二区| 99re在线观看精品视频| 在线av久久热| 在线永久观看黄色视频| 免费在线观看日本一区| 免费在线观看完整版高清| 热re99久久国产66热| 啦啦啦 在线观看视频| 国产成+人综合+亚洲专区| 一二三四社区在线视频社区8| 麻豆一二三区av精品| 在线看a的网站| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲中文av在线| 十分钟在线观看高清视频www| 亚洲国产精品sss在线观看 | 亚洲欧美精品综合久久99| 女同久久另类99精品国产91| 十八禁网站免费在线| 99精品欧美一区二区三区四区| 一级作爱视频免费观看| 色婷婷久久久亚洲欧美| 久久久精品欧美日韩精品| 亚洲第一欧美日韩一区二区三区| 亚洲自拍偷在线| 18美女黄网站色大片免费观看| 91老司机精品| 一区福利在线观看| 亚洲人成电影免费在线| 亚洲欧美日韩另类电影网站| 美女高潮到喷水免费观看| 久久久久精品国产欧美久久久| 日韩精品青青久久久久久| 日本a在线网址| 高潮久久久久久久久久久不卡| 国产av在哪里看| 国产欧美日韩一区二区三| 成熟少妇高潮喷水视频| 亚洲色图av天堂| 亚洲熟妇中文字幕五十中出 | 亚洲一区二区三区不卡视频| 精品国产美女av久久久久小说| 美女 人体艺术 gogo| 日韩中文字幕欧美一区二区| 国产精品成人在线| 欧美 亚洲 国产 日韩一| 18禁美女被吸乳视频| 怎么达到女性高潮| 亚洲性夜色夜夜综合| 亚洲欧美一区二区三区久久| 亚洲精华国产精华精| 亚洲色图av天堂| 午夜精品久久久久久毛片777| 精品国产超薄肉色丝袜足j| 无人区码免费观看不卡| 精品电影一区二区在线| 欧洲精品卡2卡3卡4卡5卡区| 久久精品影院6| 老鸭窝网址在线观看| 丝袜在线中文字幕| 99热国产这里只有精品6| 波多野结衣av一区二区av| 国产单亲对白刺激| 深夜精品福利| 欧美久久黑人一区二区| 性色av乱码一区二区三区2| 欧美精品亚洲一区二区| 久久久久国内视频| 男人舔女人的私密视频| 国产国语露脸激情在线看| 一区二区日韩欧美中文字幕| 免费久久久久久久精品成人欧美视频| 亚洲精品美女久久av网站| 欧美性长视频在线观看| 一夜夜www| 亚洲成人久久性| 免费在线观看黄色视频的| 一区二区日韩欧美中文字幕| 在线观看免费高清a一片| 精品久久久久久久毛片微露脸| 国产精品免费视频内射| 桃红色精品国产亚洲av| 亚洲美女黄片视频| 一区在线观看完整版| 亚洲成人久久性| 午夜久久久在线观看| 国产一区在线观看成人免费| 最近最新中文字幕大全电影3 | 国产97色在线日韩免费| 99热只有精品国产| 国产免费男女视频| 欧美乱妇无乱码| 亚洲 欧美 日韩 在线 免费| 欧美中文日本在线观看视频| 日韩 欧美 亚洲 中文字幕| 国产成人啪精品午夜网站| 国产欧美日韩一区二区三| 88av欧美| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利一区二区在线看| 99热国产这里只有精品6| 999久久久国产精品视频| 日韩高清综合在线| 久久久久久免费高清国产稀缺| 日日干狠狠操夜夜爽| a级毛片黄视频| 大陆偷拍与自拍| 国产亚洲精品综合一区在线观看 | 亚洲视频免费观看视频| 两个人看的免费小视频| 日本黄色日本黄色录像| 一区二区三区国产精品乱码| 亚洲伊人色综图| bbb黄色大片| ponron亚洲| 91国产中文字幕| 三上悠亚av全集在线观看| 高清黄色对白视频在线免费看| 亚洲色图av天堂| 男女下面进入的视频免费午夜 | 久久欧美精品欧美久久欧美| 美女 人体艺术 gogo| 手机成人av网站| 丰满的人妻完整版| 精品国内亚洲2022精品成人| 久久亚洲精品不卡| 久久久久精品国产欧美久久久| 欧美+亚洲+日韩+国产| av片东京热男人的天堂| 国产精品亚洲一级av第二区| 成人手机av| 黑人欧美特级aaaaaa片| 亚洲三区欧美一区| 久久久久久久午夜电影 | 十八禁人妻一区二区| 欧美不卡视频在线免费观看 | 99国产精品99久久久久| 午夜免费成人在线视频| 久久精品国产99精品国产亚洲性色 | 国产97色在线日韩免费| www国产在线视频色| 亚洲精品久久午夜乱码| 欧美黑人精品巨大| 国产精品一区二区免费欧美| av中文乱码字幕在线|