• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Current bifurcation,reversals and multiple mobility transitions of dipole in alternating electric fields

    2023-03-13 09:18:04WeiDu杜威KaoJia賈考ZhiLongShi施志龍andLinRuNie聶林如
    Chinese Physics B 2023年2期
    關(guān)鍵詞:杜威

    Wei Du(杜威), Kao Jia(賈考), Zhi-Long Shi(施志龍), and Lin-Ru Nie(聶林如)

    Faculty of Science,Kunming University of Science and Technology,Kunming 650500,China

    Keywords: dipole,current bifurcation,current reversals,mobility transition

    1.Intro duction

    Electric dipoles exist universally in various kinds of substances, whose dynamical behaviors in alternating electric fields have stimulated investigators for a long time.It is of great significance in the aspect of utilizing energy for mankind to control their motions.The model describing rotation of dipoles, first proposed by Debye, has also been widely used in many fields such as the interaction between electromagnetic field and matter, the emission and absorption of electromagnetic wave, and the interaction theory between molecules and atoms.For example, the dipole model is used to study the interaction between near-field optical microscopy and samples.[1,2]When studying dielectric and its interaction with the electric field, the electric dipole model is often employed to describe polarization of the dielectric,[3]domain distribution and steering in ferroelectric materials,[4,5]etc.Some research work on electric dipoles has been reported in the existing literature, such as the distribution of electric and magnetic fields excited by dipoles,[6]the interaction between dipole and dipole,[7-9]and movement of dipoles in static field.[10]In addition, the model of dipoles has wide applications to life science.[11]It is believed that theoretical and experimental studies of dipoles will bring about much useful information in many other research fields.[12-14]

    The dipoles are usually in materials with spatially periodic potentials.In the alternating electric fields, they can make directed rotation,[15]and motions of the dipoles in the solid often lag behind the change in the electric field, which causes dielectric loss and polarization relaxation.[16-18]In the meantime,they also exhibit many characteristic dynamical behaviors.Abnormal transports of particle in a periodic potential, including absolute negative mobility and current reversal,have been a challenge for a large number of investigations over the years.[19,20]Intrinsic physical mechanism and condition for them to occur have not been understood completely yet, especially for the rotation of the dipoles in the alternating electric fields.In what follows, it will be seen that in the action of the alternating electric fields,the dipole exhibits current bifurcation and multiple current reversals, and multiple mobility transitions.These findings will play important roles in optimizing materials heating and utilizing energy.

    In this study,our aims are to investigate anomalous transports of dipole in the two alternating electric fields whose directions are perpendicular to each other, and open up conditions and physical mechanism of the current bifurcation, current reversals, and mobility transitions.This paper is constructed as follows: In Section 2, model and theory are provided.In Section 3,results and discussions are presented.By means of numerical calculations,the anomalous transports of dipoles induced by the external electric field will be analyzed in detail.In Section 4,conclusions are given.

    2.Model and theory

    Here we consider one-dimensional rotation of a dipole with inertial mass in a constant fieldFc.The fieldFc, for instance,may be a local field produced by some other immobile molecules.As is well known, potential energy of the dipole with momentμ0in the electric fieldFcreads

    whereφis the angle between the dipole moment and the electric field.Thus, the differential equation for the dipole with a moment of inertiaI0rotating in the constant electric fieldFcunder the influence of the time dependent fieldsF⊥(t)andF||(t) perpendicular and parallel to the constant fieldFcis given by[21,22]

    where the dot aboveφrepresents the first derivative ofφwith respect to timet,andγI0˙φis the damping torque.After dividing Eq.(2) by the angular momentum of inertia, withφ=xwe have

    whereγis the damping constant of the dipole rotation, the constantsdis given by

    andF⊥(t)andF||(t)are the normalized fields

    with the superscript‘un’representing the unnormalized fields in Eq.(2).

    For the sake of discussion, we assume that the timedependent fieldsF⊥(t) andF||(t) are the alternating electric fields with the cosine and sine functions

    F⊥(t)=A1cos(ω1t), F||(t)=A2sin(ω2t),(6)

    whereA1andω1are the amplitude and angular frequency of the normalized fieldF⊥(t), respectively, whileA2andω2are the amplitude and angular frequency of the normalized fieldF||(t).If the constant bias forceFexerting on the dipole is also considered,Eq.(3)can be rewritten as

    ¨x+γ˙x+dsinx=A1cos(ω1t)cosx-A2sin(ω2t)sinx+F.(7)All these physical quantities and parameters are in dimensionless forms.

    In terms of Eq.(7),current of the system is very difficult to be found analytically, yet we can make use of the modified Euler algorithm to calculate numerically its mean angular velocity(or current)of the dipole rotation according to its definition

    where〈〉denotes the time average.In the hypothesis of ergodicity,the time average is equal to the ensemble average.Thus the mobility of the dipole can be obtained by

    3.Results and discussion

    By means of Eqs.(7)-(9), we can calculate numerically current and mobility of the system, and discuss effects of parameters of the alternating fields on movements of the dipole,and the results are plotted in Figs.1-7

    3.1.The case of F=0

    Let us discuss the case without the external constant bias forceF.As the additional time-varying fieldsF⊥(t)andF||(t)have the same amplitude and angular frequency,i.e.,

    Eq.(7)reduces to

    Equation(11)can be viewed as the dynamic equation of an inertial particle moving in a periodic potential with traveling wave and basal potentials, where the basal potentialdcosxdepends on the fieldFc.The traveling wave potential is-Asin[ω(t+x/ω)],which describes a traveling wave moving to the negative direction of thex-axis with the velocity-ω.In this case,the velocity of the traveling wave is numerically equal to the angular frequencyωof the additional fields.It is well known that the particle always moves in the same direction as the traveling wave without any signal.[23-27]The dependence of the mean angular velocity〈v〉on the frequencyωof the external fields at different amplitudes of the external fields for the different basal potentialAanddis shown in Fig.1, from which we can see that the external fields greatly affect the dynamical behavior of the dipole.As the amplitude of the basal potentialdequals 0, absolute value of the mean angular velocity first increases and then decreases with the frequency of the external fields increasing,see Fig.1(a).If the amplitudeAis further increased in the case of unchangedd=0,the more prominent two pathways appear in the curves of〈v〉vs.ω, i.e., a current bifurcation phenomenon, see Fig.1(b).The branching point locates atωc?2.68.After the critical point,one of them is that the〈v〉decreases withω,while the〈v〉increases withωfor the other pathway.Furthermore,the dipole almost has the same probability to occupy the two pathways.During the branching region,it can possess two values of〈v〉.This is similar to the optical bistability.[28,29]By comparing Figs.1(a)and 1(b),when the amplitude of the external fields increases, a current bifurcation of the dipole will occur at the larger frequency and the bifurcation area will be larger.

    However, if theAis fixed at the value 3 in the presence of the basal potential (d=1), absolute value of the〈v〉first increases,then suddenly drops to zero,i.e.,a current transition phenomenon appears,see Fig.1(c).The inflection point takes place atωin≈2.05.The phenomenon can be explained like this: For smaller wave velocity, the dipole stays in its potential well and moves with the wave together.Thus,the average angular velocity of the dipole increases linearly with the angular frequency of the alternating field increasing.Due to the action of the basal potential, its average angular velocity is smaller than its wave velocity.As the frequency of the alternating electric field increases, it is difficult for the dipole to keep pace with the wave for its inertia and friction,and the angular velocity of the dipole should decrease gradually like that in Fig.1(a).For the barrier in the basal potential,the average angular velocity suddenly falls to zero.Yet, as the amplitude of the basal potentiald=1 remains unchanged and the amplitude of the alternating electric fields is increased to 5, the larger area bistable state and inflection point phenomena take place simultaneously in the system, see Fig.1(d).Therefore it can be concluded that the alternating electric fields play important roles in inducing current bifurcation and current transition.

    Fig.1.The mean angular velocity〈v〉vs. ω at different amplitudes of the alternating electric fields: A=3,5, and different amplitudes of the basal potential: d =0, 1.The other parameters are γ =0.9, and time step 0.001.Initial conditions are t=0,x=0,and dx/dt=0.

    Let us discuss the case ofω1/=ω2,namely,the frequencies of the alternating electric fields perpendicular and parallel to the constant field are not equal to each other.Figure 2 is the time evolutions of the dipole angular positionxat different parametersω2=0.2,0.25,0.4,1.0,1.5,withω1=1.The trajectories in Fig.2 are very close to straight lines,which indicates that the dipole has been stable state of non-equilibrium within the evolution time.Thus, their slopes represent angular velocities of the dipole.From Fig.2, we can easily see that the mean angular velocity〈v〉is affected greatly by the angular frequencyω2of the normalized fieldF||(t).Due to the temporal symmetry breaking byω1/=ω2,〈v〉is less than zero atω2=0.2.Asω2increases, the dipole begins to rotate to positive direction.However, forω2=1.0, the dipole rotates in a negative direction again.It is interesting that the dipole experiences many times of direction changes from negative→positive→negative→positive withω2increasing.This means that there exists multiple current reversals in the system.[30-32]

    In order to catch some insight into the multiple current reversals,the dependence of〈v〉onω2at different angular frequenciesω1of normalized fieldF⊥(t)is shown in Fig.3.Figure 3 looks very rough, but the data in it are actually correct and reliable because the time evolutions of some typical samples in Fig.2 are very straight, or the dipole has been stable state of non-equilibrium.It can be seen from Fig.3 that the multiple current reversals rely on the frequency to a large degree.Asω1=0.8, 1.0, or 1.6, the〈v〉changes its sign many times,i.e.,multiple current reversals.Nevertheless,as theω2increases(e.g.,ω2=3), the multiple current reversals gradually disappear,and the current of the system turns to be zero.Because the system’s symmetry is broken temporally by the two periodic signals, and its symmetry depends on the frequenciesω1andω2.Asω2takes greater value, the signalAsin(ω2t)changes so fast that the system does not keep pace with it.Thus, function of the signal is lost, and the system is temporally symmetric,which leads to its current being zero.

    Fig.2.Time evolutions of x at different frequencies of the normalized field F||(t): ω2=0.2,0.25,0.4,1.0,1.5,with A1=A2=A=2,ω1=1,d=1.The other parameters are the same as those in Fig.1.

    Fig.3.The mean angular velocity〈v〉vs. ω2 at different frequencies of the normalized field F⊥(t):ω1=0.8,1.0,1.6.The other parameters are the same as those in Fig.2.

    3.2.The case of F/=0

    As the external constant bias forceFis exerted on the dipole,the system will also display some interesting dynamical behaviors.

    Figure 4(a) shows the〈v〉vs.the constant bias forceFat different amplitudes of the alternating electric fields:A1=A2=A=1,2,3,4,5,withω1=ω2=1,d=1.From Fig.4(a),we can see that the amplitudes of the alternating electric fields actually affect transport of the dipole.AsA1=A2=A=1,the dipole remains stationary untilFis greater than about 1.This is because the traveling force in Eq.(11)is too small to make the particle jump over the basal potential barrier (d=1).AsFis just greater than the threshold value,the dipole suddenly rotates with the angular velocity 1,then increases linearly withFincreasing.With the increment ofA(e.g.,2),the three platforms〈v〉=-1,-0.25,0 appear in the curve of〈v〉vs.F.According to the total potentialdcosx-Asin[ω(t+x/ω)]-Fx,the two platforms〈v〉=-1,0 should come from the traveling potential-Asin[ω(t+x/ω)]and the basal potentialdcosx,respectively,while the platform〈v〉=-0.25 from the co-action between the two types of potentials.AsAis further increased(e.g., 3, 4, 5), the system comes back to one platform caused by the traveling potential,whose〈v〉takes-1.After the platforms, the particle’s velocity also suddenly jumps to certain positive value, then varies linearly withF.Transport of the system becomes normal.The greater the valueAtakes, the greater the transition force is.Fig.4(b)is the mobilityμvs.Fcorresponding to Fig.4(a).It can be seen easily from Fig.4(b)that the mobility obviously transits twice at least forA=2,while only once forA=1,3,4,5.

    Fig.4.Behavior of〈v〉vs.the constant bias force F for(a),and the mobility μ vs. F for(b)at different amplitudes of the alternating electric fields: A1=A2=A=1,2,3,4,5,with ω1=ω2=1,d=1.The other parameters are the same as those in Fig.1.

    Of course, frequency of the traveling force in Eq.(11)also influences the mobility transition effect.Figure 5 is the dependence of〈v〉onFat different frequencies of the alternating electric fields withA1=A2=A=2,d=1.We can see that for the smaller frequencies (e.g.,ω1=ω2=0.25),there are four platforms in the curve of〈v〉vs.F.In other words, the mobility transits four times.With the increment of the frequencies,the number of the platforms gradually decreases.For greater frequencies(e.g.,ω1=ω2=10),the traveling force loses its function,so only the platform〈v〉=0 takes place due to the basal potential.

    Fig.5.Behavior of〈v〉vs. F at different frequencies of the alternating electric fields: ω1=ω2=0.25,0.6,1,1.5,10,with A1=A2=A=2,d=1.The other parameters are the same as those in Fig.1.

    Fig.6.Behavior of〈v〉vs. F at different values of ω2: 1.5,2,3 for(a),5 for(b),with ω1 =1,A1 =A2 =A=2,d=1.The other parameters are the same as those in Fig.1.

    Fig.7.Behavior ofμ vs. F at different values of ω2: 1.5,2,3 for(a),5 for(b),with ω1=1,A1=A2=A=2,d=1.The other parameters are the same as those in Fig.1.

    Let us discuss the mobility transitions in the case ofω1/=ω2.The dependence of〈v〉onFatω2=1.5,2,3,5 andω1=1 is shown in Fig.6.Figure 6 indicates that there still exist many mean angular velocity platforms in this case, where the two platforms〈v〉=ω1and〈v〉=ω2are indispensable at least.Nevertheless,asω2=5 andω1=1,seven obvious mean velocity platforms occur in the system.This makes dynamical behavior of the system more inconceivable.Thus,mobility of the system in this case transits more times compared with that ofω1=ω2due to the action of more types of traveling forces,see Fig.7.

    4.Conclusions

    In summary, we have investigated the characteristic dynamical behaviors of the one-dimensional dipole in the action of the two alternating electric fields whose directions are perpendicular to each other.Our numerical results show that the two alternating electric fields play crucial roles in inducing abnormal dynamical behaviors of the dipole.As the two alternating electric fields are periodic functions of cosine and sine with the same amplitude and frequency, there exists current bifurcation phenomenon about the frequency.If the frequencies of the two alternating electric fields are not equal to each other,they can cause the multiple current reversals of the dipole.As a constant bias force exerts on the diploe,there are many current platforms appearing in the curve of〈v〉vs.F.Namely,multiple mobility transitions take place in the system, which depends on amplitudes,frequencies and number of the traveling forces in it.

    Here the effects of the alternating electric fields on the dynamical behaviors of the dipole are considered.It is found that there exist current bifurcation,reversals and multiple mobility transitions phenomena in the system.The findings not only help us further understand dynamical behaviors of the dipoles in the alternating fields, but also play important roles in enhancing heating efficiency of matter, which are of important significance for saving energy sources.According to our research results,one can optimize matter heating through adjusting amplitudes and frequency of the exerted alternating fields.

    Acknowledgements

    Project supported by the Research Group of Nonequilibrium Statistics (Grant No.14078206), and Kunming University of Science and Technology,China.

    猜你喜歡
    杜威
    合肥杜威智能科技股份有限公司
    合肥杜威智能科技股份有限公司
    合肥杜威智能科技股份有限公司
    合肥杜威智能科技股份有限公司
    合肥杜威智能科技股份有限公司
    讓我們搖起櫓來(lái)
    絕世武功的奧秘
    杜威傳播思想在中國(guó)的早期接受
    Measurement and Correlation of Vapor-Liquid Equilibria for Hexamethyl Disiloxane + Vinyl Acetate System at 101.3 kPa
    杜威的職業(yè)教育思想
    色网站视频免费| 午夜精品国产一区二区电影| 熟女av电影| 男女下面插进去视频免费观看| 日韩制服骚丝袜av| av卡一久久| 女人被躁到高潮嗷嗷叫费观| www.av在线官网国产| 视频在线观看一区二区三区| 中文字幕最新亚洲高清| 一区二区三区激情视频| 91精品三级在线观看| 亚洲精品久久久久久婷婷小说| 国产精品免费大片| 亚洲国产色片| 男女无遮挡免费网站观看| 中文字幕人妻丝袜制服| 色吧在线观看| 免费日韩欧美在线观看| 日韩一区二区视频免费看| 欧美激情高清一区二区三区 | 亚洲精品国产一区二区精华液| 日韩免费高清中文字幕av| 18禁观看日本| 国产免费现黄频在线看| 日韩中字成人| 午夜日韩欧美国产| 亚洲国产精品国产精品| 免费观看在线日韩| 日韩中文字幕视频在线看片| 老司机影院成人| 久久久久久久亚洲中文字幕| 寂寞人妻少妇视频99o| 一本色道久久久久久精品综合| 日韩欧美精品免费久久| 一级爰片在线观看| 寂寞人妻少妇视频99o| 亚洲一级一片aⅴ在线观看| 精品卡一卡二卡四卡免费| 久久久久久久国产电影| 亚洲人成77777在线视频| 日韩伦理黄色片| av在线播放精品| 国产成人欧美| 国产在线视频一区二区| 精品久久久久久电影网| 色婷婷久久久亚洲欧美| 少妇的逼水好多| 伊人亚洲综合成人网| 亚洲精品国产一区二区精华液| 中文乱码字字幕精品一区二区三区| 国产成人精品一,二区| 你懂的网址亚洲精品在线观看| 日日撸夜夜添| 97人妻天天添夜夜摸| h视频一区二区三区| 亚洲av欧美aⅴ国产| 国产男女内射视频| 国产精品国产三级国产专区5o| tube8黄色片| 国产一区有黄有色的免费视频| 又粗又硬又长又爽又黄的视频| 26uuu在线亚洲综合色| 国产极品粉嫩免费观看在线| 国产97色在线日韩免费| 久久久久久久精品精品| 亚洲精品国产av成人精品| 久久久久网色| 午夜日韩欧美国产| 国产亚洲最大av| 亚洲国产精品一区三区| 中国国产av一级| 看免费av毛片| 天天躁日日躁夜夜躁夜夜| videossex国产| 我要看黄色一级片免费的| 亚洲国产精品成人久久小说| 国产精品久久久久久精品古装| 亚洲av在线观看美女高潮| 欧美在线黄色| 99国产精品免费福利视频| 中文字幕另类日韩欧美亚洲嫩草| av在线观看视频网站免费| 成人漫画全彩无遮挡| 免费看av在线观看网站| 久久国产精品大桥未久av| av免费在线看不卡| 最近的中文字幕免费完整| 两个人免费观看高清视频| 亚洲精品久久久久久婷婷小说| 黑人欧美特级aaaaaa片| 精品亚洲乱码少妇综合久久| 成人毛片a级毛片在线播放| 男女边吃奶边做爰视频| 香蕉精品网在线| 国产欧美亚洲国产| 亚洲精品乱久久久久久| 在线免费观看不下载黄p国产| 熟女av电影| 成人黄色视频免费在线看| 日日摸夜夜添夜夜爱| 久久精品国产a三级三级三级| 精品国产一区二区三区久久久樱花| 精品国产乱码久久久久久小说| av卡一久久| 丁香六月天网| 丝袜人妻中文字幕| 美女福利国产在线| tube8黄色片| 边亲边吃奶的免费视频| 久久久精品94久久精品| 女人被躁到高潮嗷嗷叫费观| 午夜福利在线观看免费完整高清在| 一边亲一边摸免费视频| 久久精品久久久久久久性| 国产一区二区三区综合在线观看| 精品一区二区三区四区五区乱码 | a级毛片在线看网站| 久久影院123| 婷婷成人精品国产| 中文字幕人妻丝袜制服| 2018国产大陆天天弄谢| 免费看av在线观看网站| 日本-黄色视频高清免费观看| av福利片在线| 久久久久网色| 亚洲国产日韩一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 最近2019中文字幕mv第一页| 深夜精品福利| 人人妻人人澡人人看| 婷婷色综合www| 在线观看免费视频网站a站| 超色免费av| 国产成人免费无遮挡视频| 男女午夜视频在线观看| 一区二区三区精品91| 啦啦啦在线免费观看视频4| 97在线人人人人妻| 1024视频免费在线观看| 国产免费一区二区三区四区乱码| 成人午夜精彩视频在线观看| 日韩不卡一区二区三区视频在线| 99久久精品国产国产毛片| 欧美变态另类bdsm刘玥| 日本wwww免费看| 在现免费观看毛片| 久久鲁丝午夜福利片| 国产成人91sexporn| 色婷婷久久久亚洲欧美| 九草在线视频观看| 一本—道久久a久久精品蜜桃钙片| 人妻少妇偷人精品九色| 久久精品人人爽人人爽视色| 免费久久久久久久精品成人欧美视频| 国产精品蜜桃在线观看| 中文字幕另类日韩欧美亚洲嫩草| 人人妻人人添人人爽欧美一区卜| 国产免费又黄又爽又色| 国产精品无大码| 9191精品国产免费久久| 人妻 亚洲 视频| 日本色播在线视频| 亚洲国产精品成人久久小说| 女性生殖器流出的白浆| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人aa在线观看| 在线观看免费视频网站a站| 精品少妇黑人巨大在线播放| 亚洲国产精品成人久久小说| 免费少妇av软件| 日本-黄色视频高清免费观看| 亚洲国产av新网站| 国产日韩一区二区三区精品不卡| 九色亚洲精品在线播放| 精品国产一区二区三区四区第35| 永久网站在线| 成人国产麻豆网| 日日爽夜夜爽网站| 久久久精品免费免费高清| av免费观看日本| 中文字幕精品免费在线观看视频| kizo精华| 日韩制服骚丝袜av| 欧美日韩精品网址| 岛国毛片在线播放| 男女国产视频网站| 高清在线视频一区二区三区| 母亲3免费完整高清在线观看 | 国产精品久久久久久久久免| 日韩人妻精品一区2区三区| 啦啦啦在线免费观看视频4| 午夜影院在线不卡| 一区二区av电影网| 亚洲五月色婷婷综合| 成人亚洲精品一区在线观看| 国产男人的电影天堂91| 亚洲三区欧美一区| 蜜桃在线观看..| 女人久久www免费人成看片| 亚洲图色成人| 九草在线视频观看| 国产精品一国产av| 国产精品亚洲av一区麻豆 | 黑丝袜美女国产一区| 欧美精品一区二区免费开放| 在线观看美女被高潮喷水网站| 青春草国产在线视频| 免费少妇av软件| 交换朋友夫妻互换小说| 午夜91福利影院| 亚洲视频免费观看视频| 少妇人妻久久综合中文| 欧美成人午夜精品| 狠狠婷婷综合久久久久久88av| 国产高清国产精品国产三级| 国产乱人偷精品视频| 国产黄色免费在线视频| 亚洲欧美清纯卡通| 性高湖久久久久久久久免费观看| 夫妻午夜视频| 亚洲少妇的诱惑av| 91aial.com中文字幕在线观看| 春色校园在线视频观看| 看十八女毛片水多多多| 国产一区二区 视频在线| 日韩制服丝袜自拍偷拍| 如日韩欧美国产精品一区二区三区| 久久国内精品自在自线图片| videosex国产| 黄色怎么调成土黄色| 巨乳人妻的诱惑在线观看| 婷婷色综合大香蕉| 建设人人有责人人尽责人人享有的| 国产av码专区亚洲av| 国产综合精华液| 久久国产精品男人的天堂亚洲| 五月伊人婷婷丁香| 日韩 亚洲 欧美在线| 国产男女超爽视频在线观看| 9色porny在线观看| 亚洲国产看品久久| 国产欧美日韩综合在线一区二区| 妹子高潮喷水视频| a级毛片在线看网站| 9191精品国产免费久久| 在线精品无人区一区二区三| 亚洲精品国产色婷婷电影| 精品亚洲成国产av| 哪个播放器可以免费观看大片| av不卡在线播放| 九草在线视频观看| 久久ye,这里只有精品| 日本91视频免费播放| 哪个播放器可以免费观看大片| 久久久久精品性色| 亚洲欧美精品自产自拍| 精品久久久精品久久久| 成人免费观看视频高清| 久久精品久久精品一区二区三区| 亚洲国产精品999| 久久久久国产一级毛片高清牌| 国产精品蜜桃在线观看| 黄片无遮挡物在线观看| 侵犯人妻中文字幕一二三四区| 精品国产乱码久久久久久男人| 久久青草综合色| 国产av一区二区精品久久| 十分钟在线观看高清视频www| 婷婷成人精品国产| 一级,二级,三级黄色视频| 亚洲欧美清纯卡通| 中文字幕人妻丝袜一区二区 | 精品国产国语对白av| 国产毛片在线视频| 日韩av免费高清视频| 18禁动态无遮挡网站| 午夜日本视频在线| 97人妻天天添夜夜摸| 最近中文字幕2019免费版| 9色porny在线观看| 亚洲视频免费观看视频| 久久久精品94久久精品| 男女无遮挡免费网站观看| 精品一区二区三区四区五区乱码 | 综合色丁香网| 亚洲欧美成人精品一区二区| 欧美少妇被猛烈插入视频| 一个人免费看片子| 久久久久精品久久久久真实原创| 蜜桃国产av成人99| 欧美亚洲 丝袜 人妻 在线| 国产老妇伦熟女老妇高清| 欧美最新免费一区二区三区| 最近中文字幕高清免费大全6| 国产午夜精品一二区理论片| 大码成人一级视频| 日日啪夜夜爽| 性少妇av在线| 成年av动漫网址| 久久精品亚洲av国产电影网| 日韩电影二区| xxx大片免费视频| 亚洲伊人色综图| 69精品国产乱码久久久| 建设人人有责人人尽责人人享有的| 中文天堂在线官网| 亚洲四区av| 黑丝袜美女国产一区| 人人妻人人添人人爽欧美一区卜| 热99久久久久精品小说推荐| 一边亲一边摸免费视频| 亚洲第一av免费看| 亚洲av.av天堂| 天天躁夜夜躁狠狠躁躁| 久久精品久久久久久噜噜老黄| 久久久久久免费高清国产稀缺| 永久免费av网站大全| 美国免费a级毛片| 在线天堂中文资源库| 丰满迷人的少妇在线观看| 久久久精品免费免费高清| 亚洲国产欧美在线一区| 国产免费又黄又爽又色| 一级片'在线观看视频| 日日啪夜夜爽| 女人精品久久久久毛片| 亚洲精品一区蜜桃| 最新中文字幕久久久久| 中文字幕制服av| 制服诱惑二区| 黄色 视频免费看| 国产黄频视频在线观看| 少妇 在线观看| 精品福利永久在线观看| 97人妻天天添夜夜摸| 满18在线观看网站| 亚洲国产色片| 亚洲一码二码三码区别大吗| 热99国产精品久久久久久7| 人体艺术视频欧美日本| 人妻人人澡人人爽人人| 伦理电影大哥的女人| 91在线精品国自产拍蜜月| 欧美人与善性xxx| 免费av中文字幕在线| 涩涩av久久男人的天堂| 一区在线观看完整版| 另类精品久久| 亚洲美女黄色视频免费看| 亚洲精品成人av观看孕妇| 日韩一本色道免费dvd| 亚洲精品日本国产第一区| 男女免费视频国产| 国产 精品1| 欧美精品人与动牲交sv欧美| 少妇人妻精品综合一区二区| 国产黄色免费在线视频| 精品国产超薄肉色丝袜足j| 国产精品偷伦视频观看了| 亚洲三区欧美一区| 亚洲色图 男人天堂 中文字幕| 啦啦啦啦在线视频资源| 日本色播在线视频| 自线自在国产av| 搡女人真爽免费视频火全软件| 久久人人97超碰香蕉20202| 久久精品久久久久久噜噜老黄| 欧美日韩亚洲高清精品| 日本wwww免费看| av线在线观看网站| 日韩大片免费观看网站| 青春草视频在线免费观看| 大片电影免费在线观看免费| 亚洲人成网站在线观看播放| 久久久久久久久免费视频了| 国产欧美亚洲国产| 久久午夜福利片| 欧美日韩综合久久久久久| 一区二区三区乱码不卡18| 精品国产乱码久久久久久男人| 最近手机中文字幕大全| 天天操日日干夜夜撸| 国产 精品1| 1024视频免费在线观看| 免费看av在线观看网站| 又大又黄又爽视频免费| 91成人精品电影| 可以免费在线观看a视频的电影网站 | 伊人久久国产一区二区| 亚洲成国产人片在线观看| 久久久久久久亚洲中文字幕| 男女边吃奶边做爰视频| 亚洲国产精品999| 午夜免费鲁丝| 亚洲经典国产精华液单| 性色avwww在线观看| 久久人妻熟女aⅴ| 成年人午夜在线观看视频| 老鸭窝网址在线观看| 免费黄色在线免费观看| 亚洲色图 男人天堂 中文字幕| 国产精品蜜桃在线观看| 美女国产视频在线观看| 欧美在线黄色| 亚洲欧洲精品一区二区精品久久久 | 在线观看人妻少妇| 免费久久久久久久精品成人欧美视频| 欧美老熟妇乱子伦牲交| 日日爽夜夜爽网站| 国产熟女欧美一区二区| 五月天丁香电影| a级毛片在线看网站| 亚洲三区欧美一区| 26uuu在线亚洲综合色| 老熟女久久久| 又粗又硬又长又爽又黄的视频| 久久这里有精品视频免费| av天堂久久9| 国产探花极品一区二区| 午夜91福利影院| 寂寞人妻少妇视频99o| 水蜜桃什么品种好| 国产精品无大码| 亚洲精品国产av蜜桃| 色婷婷av一区二区三区视频| 日韩精品免费视频一区二区三区| 黑人欧美特级aaaaaa片| 女性生殖器流出的白浆| 久久国内精品自在自线图片| 日韩av在线免费看完整版不卡| 国产精品一二三区在线看| 婷婷色综合大香蕉| 国产亚洲av片在线观看秒播厂| 国产成人精品婷婷| 尾随美女入室| 99久久综合免费| 欧美xxⅹ黑人| 人妻系列 视频| 欧美日韩精品成人综合77777| 亚洲av在线观看美女高潮| 日韩三级伦理在线观看| 国产又色又爽无遮挡免| 久久国产亚洲av麻豆专区| 国产av码专区亚洲av| 国产精品久久久久久精品电影小说| freevideosex欧美| 男人舔女人的私密视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产午夜精品一二区理论片| 校园人妻丝袜中文字幕| 丝袜美腿诱惑在线| 97精品久久久久久久久久精品| 欧美日韩视频精品一区| 国产亚洲精品第一综合不卡| 国产亚洲午夜精品一区二区久久| 国产精品秋霞免费鲁丝片| tube8黄色片| 丰满乱子伦码专区| 日韩电影二区| 午夜免费鲁丝| 国产av码专区亚洲av| 丝袜脚勾引网站| 中文欧美无线码| 乱人伦中国视频| 午夜激情久久久久久久| 伦精品一区二区三区| 精品卡一卡二卡四卡免费| 国产福利在线免费观看视频| 亚洲成人一二三区av| 日韩不卡一区二区三区视频在线| 精品一区二区三卡| 色视频在线一区二区三区| 免费高清在线观看日韩| 国产精品99久久99久久久不卡 | 最近中文字幕高清免费大全6| 黑丝袜美女国产一区| 亚洲欧美中文字幕日韩二区| 免费观看a级毛片全部| av在线app专区| 免费av中文字幕在线| 成年人免费黄色播放视频| 日韩免费高清中文字幕av| 91午夜精品亚洲一区二区三区| 欧美 日韩 精品 国产| 18禁裸乳无遮挡动漫免费视频| 午夜免费男女啪啪视频观看| 卡戴珊不雅视频在线播放| 大话2 男鬼变身卡| 超碰97精品在线观看| 色婷婷av一区二区三区视频| 久久久欧美国产精品| 一二三四中文在线观看免费高清| 国产成人精品无人区| 超碰97精品在线观看| 99久久中文字幕三级久久日本| 另类亚洲欧美激情| 99久久综合免费| 久久久久久久久久久久大奶| 在线亚洲精品国产二区图片欧美| 国产成人精品婷婷| 日本黄色日本黄色录像| 不卡av一区二区三区| 91国产中文字幕| 97在线人人人人妻| 国产高清国产精品国产三级| 久久国产精品大桥未久av| 最近2019中文字幕mv第一页| 人人妻人人澡人人看| 成年女人在线观看亚洲视频| 91在线精品国自产拍蜜月| 午夜福利在线观看免费完整高清在| 建设人人有责人人尽责人人享有的| 精品久久久久久电影网| 国产成人午夜福利电影在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲av国产av综合av卡| 亚洲国产精品国产精品| 欧美精品av麻豆av| 成人亚洲欧美一区二区av| 少妇人妻精品综合一区二区| 精品一区二区免费观看| 亚洲视频免费观看视频| 日韩欧美精品免费久久| 久久99精品国语久久久| 一个人免费看片子| 我的亚洲天堂| 大话2 男鬼变身卡| 久久久久久久大尺度免费视频| 啦啦啦在线观看免费高清www| 久久精品国产亚洲av涩爱| 亚洲av免费高清在线观看| 亚洲色图 男人天堂 中文字幕| 少妇精品久久久久久久| 我的亚洲天堂| 最近最新中文字幕大全免费视频 | 青春草国产在线视频| 亚洲av.av天堂| 黄片小视频在线播放| 国产在视频线精品| 欧美精品一区二区免费开放| 亚洲第一av免费看| av在线播放精品| 亚洲精品aⅴ在线观看| 亚洲精品国产av蜜桃| 亚洲欧洲日产国产| 波野结衣二区三区在线| 人妻系列 视频| av免费在线看不卡| 中文字幕人妻丝袜一区二区 | h视频一区二区三区| 在线观看免费高清a一片| 久久免费观看电影| 亚洲国产精品国产精品| 久久热在线av| 制服丝袜香蕉在线| 久久久久久久大尺度免费视频| 免费久久久久久久精品成人欧美视频| 日韩熟女老妇一区二区性免费视频| 国产精品免费视频内射| 久久久久久伊人网av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 91精品三级在线观看| 五月天丁香电影| 久久久久精品久久久久真实原创| 另类亚洲欧美激情| 亚洲综合精品二区| 一区在线观看完整版| 精品一品国产午夜福利视频| 亚洲婷婷狠狠爱综合网| 一区二区三区精品91| 国产精品久久久av美女十八| 亚洲精品av麻豆狂野| 一级,二级,三级黄色视频| 精品人妻一区二区三区麻豆| 天堂8中文在线网| 最近最新中文字幕大全免费视频 | 亚洲三区欧美一区| 精品午夜福利在线看| 亚洲中文av在线| 久久人人爽人人片av| 各种免费的搞黄视频| 久久久久国产网址| 97精品久久久久久久久久精品| 女人精品久久久久毛片| 亚洲精品美女久久av网站| 亚洲欧美一区二区三区国产| 桃花免费在线播放| 亚洲国产日韩一区二区| 最近的中文字幕免费完整| 色吧在线观看| 国产欧美亚洲国产| 少妇熟女欧美另类| 亚洲国产欧美在线一区| 成人免费观看视频高清| 建设人人有责人人尽责人人享有的| 国产男人的电影天堂91| 亚洲经典国产精华液单| 亚洲精品在线美女| 日本猛色少妇xxxxx猛交久久| 99精国产麻豆久久婷婷| 老汉色∧v一级毛片| 一级毛片电影观看| 肉色欧美久久久久久久蜜桃| 18禁观看日本| 精品第一国产精品| 人成视频在线观看免费观看| 极品少妇高潮喷水抽搐| 亚洲 欧美一区二区三区| 1024视频免费在线观看| 一级爰片在线观看| 精品少妇内射三级| 亚洲色图 男人天堂 中文字幕| 成人午夜精彩视频在线观看|