• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping

    2023-03-13 09:18:18ChaoZhongWang王朝中LeiLiu劉雷YingLiSun孫穎莉JiangTaoZhao趙江濤BoZhou周波SiSiTu涂思思ChunGuoWang王春國YongDing丁勇andRuYan閆阿儒
    Chinese Physics B 2023年2期

    Chao-Zhong Wang(王朝中) Lei Liu(劉雷) Ying-Li Sun(孫穎莉) Jiang-Tao Zhao(趙江濤) Bo Zhou(周波)Si-Si Tu(涂思思) Chun-Guo Wang(王春國) Yong Ding(丁勇) and A-Ru Yan(閆阿儒)

    1CISRI&NIMTE Joint Innovation Center for Rare Earth Permanent Magnets,CAS Key Laboratory of Magnetic Materials and Devices,Ningbo Institute of Material Technology and Engineering,Chinese Academy of Sciences(CAS),Ningbo 315201,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: SmCo-spin reorientation,transition-thermal,stability-rare-earth

    1.Introduction

    The 2:17 SmCo permanent magnets are well known to have outstanding magnetic properties such as a high coercivity of above 2.0 T and a high maximum energy product of up to 266 kJ/m3.[1-4]Owing to their high Curie temperatures and thermal stabilities, they are regarded as the most promising candidates for high temperature applications and precise instruments such as sensors, actuators,and accelerometers.[5,6]The remanence of Sm2Co17magnet mainly arises from Sm2(Co, Fe)17cell interiors and Sm(Co,Cu)5cell boundaries,creating strong pinning coercivity on the domain walls.[7]In the application of magnets, the temperature coefficient of the remanence(α)has been the focus of research because the remanence directly affects the strength of the air-gap field.The temperature dependence of remanence can be regulated by alloying techniques, in which Sm is partially substituted by heavy rare earth element Gd.[8,9]Recent studies have found that the temperature coefficient of coercivity(β)can affect the irreversible magnetic flux loss and longterm time stability of magnets.[10,11]Much effort has been made to improve their coercivity thermal stabilities by adjusting the Cu content in the cell boundary phase.[12-15]With spinreorientation-transition(SRT)phenomenon of the cell boundary phase,an extreme lowβmagnet was obtained by Sm partially substituted with heavy rare earth element Dy.[11,16,17]The Nd element also has the characteristic of inducing SRT phenomenon in NdCo5alloy,[18-20]which is a typical hexagonal CaCu5-type structure acting as the cell boundary phase in Sm2Co17magnet.Besides,Nd is a light rare earth element,its orbital moment is antiparallel to the spin moment, leading to ferromagnetic coupling with Co,[21-23]which is different from heavy rare earth elements reducing the energy product.[24-26]By doping Nd,βis expected to be controlled within a certain temperature range while the temperature coefficient of remanence(α)is expected to remain basically unchanged.[27]

    In this work,the 2:17 SmCo permanent magnets with lowβare prepared by doping Nd element.The effects of Nd doping on microstructure and magnetic properties of magnets are investigated systematically.

    2.Experiment

    Five Sm1-xNdx(Co0.695Fe0.2Cu0.08Zr0.025)7.2(x= 0,0.3, 0.5, 0.7, 1.0) magnets were prepared by the powder mixing method.Sm (Co0.695Fe0.2Cu0.08Zr0.025)7.2and Nd(Co0.695Fe0.2Cu0.08Zr0.025)7.2alloys were separately prepared by induction melting under argon atmosphere.The ingots were crashed into powders with a mean particle size of 3μm-5 μm by ball milling process.The as-prepared Sm and Nd powders were mixed in different proportions in a mixing machine for 180 min.Fine powders were aligned and pressed in a magnet field up to 3 T and further compacted under 150 MPa by cold isostatic pressing.The green compacts were sintered at 1494 K for 0.5 h and later homogenized at 1463 K for 3 h,then quenched to room temperature to obtain a solid solution magnet.The magnets were aged at 1103 K for 12 h,followed by cooling down to 673 K with a cooling rate of 0.7 K/min and kept for 3 h,finally cooled down to room temperature.

    Phase structures were characterized by x-ray diffraction(XRD) with CuKαradiation.Microstructures and compositions of the experimental magnets were obtained by a scanning electron microscope (SEM) equipped with an energydispersive spectroscope (EDS) analysis system.The detailed microstructure was investigated by Tecnai F20 transmission electron microscope(TEM).Magnetic properties and the spin reorientation transitions were tested by a Quantum Design SQUID-VSM and a physical property measurement system(PPMS).The dimension of the sample is 1 mm×1 mm×3 mm,and the demagnetization factor correction has also been added to the calculation of the demagnetization curve.

    3.Results and discussion

    The XRD patterns of the powders of as-solution-treated samples are measured, and the results are shown in Fig.1(a).Almost all diffraction peaks are indexed as the 1:7H phase with a TbCu7structure.For the samples withx=0.5, 0.7,and 1.0,weak(204)-2:17R and(203)-2:17H reflections are detected,indicating a minority 2:17R/2:17H phase coexists with the majority 1:7H phase.The phase compositions of aged samples are shown in Fig.1(b).The diffraction peaks from 2:17H are detected in thex=0.5,0.7,and 1.0 samples,indicating that the major phases of the aged samples can be identified as 2:17R,coexisting with the minor 2:17H phase in those samples.The XRD patterns of cubic oriented magnets are shown in Fig.1(c).For the sample withx=0,the intensity of(006)is strong while other diffraction peaks are almost undetectable, meaning that the orientation direction of the magnet is [001],i.e., easy axis (EA).For sample withx=1.0, (006)peak is very weak as(300)peak and(220)peak are detected.These two peaks suggest that the easy magnetization direction of sample withx=1.0 is in the plane perpendicular to [001]direction,i.e.,easy plane(EP).The relative intensity value ofI(006)/I(220)of aged cubic sample withx=0.3,0.5,0.7,and 1.0,are 10.63,9.44,5.44,and 0.14,respectively.Therefore,asxincreases, the degree of orientation of the magnet becomes worse.

    Fig.1.XRD patterns of powders of(a) as-solution-treated samples, (b) aged samples of Sm1-xNdx (Co0.695Fe0.2Cu0.08Zr0.025)7.2 magnets, and (c) cubic samples of aged Sm1-xNdx (Co0.695Fe0.2Cu0.08Zr0.025)7.2 magnets.

    Figures 2(a)-2(e) show the back-scattered SEM images of samples with various Nd content,which are solution treated.According to the difference in distinct contrast,three types of regions can be distinguished.The dark phase, the dark gray phase, and the light gray phase are marked by +1, +2, and+3 in Figs.2(a)-2(e), respectively.The white phases, observed in all samples,are rare earth element oxides according to the composition analysis through EDS, which are formed inevitably during ball milling and sintering.The 1μm-4μmsized particle illustrated by the green circle is of the CoFeZrrich phase.[28]The EDS point detections within different regions of five samples are implemented and summarized in Table 1.On average,the+1 phases contain less content of rare earth element (RE) and Cu element, but more content of Fe element and Co element, while the +2 phases contain more content of RE element and Cu element, but less content of Fe element and Co element.The difference in element content between the dark phase and grey phasefor each of five samples are shown in Fig.2(f).The differences in RE,Fe,and Co contents in the two phases tend to be larger with the Nd content increasing.Element segregation at the solution-treated stage will lead to inhomogeneous cellular nanostructure after aging process.[29]Moreover,phase+3 emerges in the samples withx=0.7 andx=1.0.Phase+3 has the highest content of RE element and Cu element, but much lower content of Co and Fe element than +1 phase and +2 phase as shown in Fig.3.According to the literature,[30]phase +3 will not evolve into cellular structure after aging process.

    Fig.2.Back-scattered SEM images of as-solution-treated Sm1-xNdx(Co0.695Fe0.2Cu0.08Zr0.025)7.2 magnets with various Nd contents: (a)x=0,(b)x=0.3,(c)x=0.5,(d)x=0.7,and(e)x=1.0.(f)Variations of difference in content of rare earth elements(Sm+Nd),Co,Fe between+1 phase and+2 phase with Nd content in Sm1-xNdx TM(TM=(Co0.695Fe0.2Cu0.08Zr0.025)7.2)magnets.

    Fig.3.Back-scattered SEM images of as-solution-treated Sm1-xNdx (Co0.695Fe0.2Cu0.08Zr0.025)7.2 magnets and the corresponding mapping of Cu,Sm,Nd,Zr elements with Nd contents x=0.3(a)and x=0.7(b).

    Magnetocrystalline anisotropy field,Ha, significantly affects the coercivity.[31]To measure the values ofHaof Sm1-xNdx(Co0.695Fe0.2Cu0.08Zr0.025)7.2(x= 0, 0.3, 0.5)magnets,a Quantum Design SQUID-VSM is used to measure the initial magnetization curves of easy and hard magnetization direction of three aged samples.The abscissa of the intersection of the two curves is the value of theHa.For samplesx=0 and 0.3, we extend the two curves and make them intersect at a point as shown in Figs.4(a)-4(c).As Nd content increases from 0 to 0.5,theHadecreases monotonically.

    Figure 5(a) shows the cellular microstructure of the Sm0.7Nd0.3(Co0.695Fe0.2Cu0.08Zr0.025)7.2magnet, which is the same as that of the conventional magnet.[32]Figure 5(b)shows the demagnetization curves of the aged samples at room temperature, and the corresponding magnetic properties are listed in Table 2.During the test, the magnetic field strength increases from 0 Oe (1 Oe = 79.5775 A·m-1) to 5×104Oe, and then decreases from-5×104Oe, and data points are collected in steps of 500 Oe.The magnetic polarization(4πM(kGs),1 Gs=10-4T)is calculated from themagnetization(M(emu·g-1)),then the flux density(B(kGs))is obtained by summing magnetic polarization and magnetic field, the product of flux density and magnetic field is the yielded magnetic energy.The largestBHis selected as the maximum magnetic energy product, (BH)max, in the demagnetization curve part.Whenxincreases from 0 to 0.3,theHcjdecreases from 34.22 kOe to 14.72 kOe.As the Nd content increases to 1.0, the sample has a weak magnetic property.Nd doping will lead to inhomogeneity in the solid solution state, which makes it more difficult to generate a perfect cell structure after aging process.At the same time,theHaof the main phase of the magnet decreases.The above results suggest that the coercivity decreases rapidly as Nd content increases.Meanwhile, the decrease in the degree of orientation of the cube leads to a decrease in remanence.The combined effect of coercivity and remanence results in an immensely decrease in the magnetic energy product.

    Table 1.EDX measured element content in different positions in Fig.2.

    Table 2.The magnetic properties of aged Sm1-xNdx(Co0.695Fe0.2Cu0.08Zr0.025)7.2 (x = 0, 0.3, 0.5, 0.7,1.0)magnets at room temperature.

    Fig.4.Initial magnetization curves of easy and hard magnetization directions of aged samples with Nd contents x=0(a),0.3(b),and 0.5(c).

    Fig.5.(a) The TEM image of cellular microstructure of aged Sm0.7Nd0.3(Co0.695Fe0.2Cu0.08Zr0.025)7.2 magnet.(b) Demagnetization curves of aged Sm1-xNdx (Co0.695Fe0.2Cu0.08Zr0.025)7.2 (x=0, 0.3, 0.5, 0.7, 1.0)magnets at room temperature.

    Fig.6.(a)Temperature-dependent curves of real part of ac susceptibility,χ',of aged Sm1-xNdx (Co0.695Fe0.2Cu0.08Zr0.025)7.2 (x=0,0.3,0.5,0.7)magnets.(b) Schematic diagram of spin-reorientation-transition transformation process of cell boundary phase with temperature increasing.

    A typical magnetic characteristic,ac susceptibilityχ',for each of Sm1-xNdx(Co0.695Fe0.2Cu0.08Zr0.025)7.2(x=0, 0.3,0.5,0.7,1.0)magnets is tested by using a PPMS.The parameters for the measurement include an external feild of 5 Oe,a frequency of 1000 Hz and a temperature rise at a rate of 3 K per min in a range from 5 K to 320 K.The curve of the real part ofχ'versustemperature is shown in Fig.6(a).Note that there are sharp peaks in theχ'-Tcurves of samples withx=0.5 and 0.7.The corresponding temperatures of these peaks are the SRT of the cell boundary phase (SRT-CBP) temperaturesTS1R:5of the magnet,[17]and their values are 60 K and 170 K,respectively.The easy magnetization direction of cell boundary phase is easy plane at a low temperature and turned into easy axis at high temperature[11,16,33]as illustrated in Fig.6(b).The transition type of cell boundary is from easy plane to easy axis (EP→EA) as temperature increases.Theχ'-Tcurve of the sample withx=0.3 only has half a peak, indicating that the easy magnetization direction is easy cone at the starting temperature of the test.As temperature increases,the easy magnetization direction of cell boundary phase of sample withx=0.3 turns into easy axis(EC→EA).There is no peak in theχ'-Tcurve of the sample withx=0,meaning that there is no SRT-CBP.

    The coercivity temperature dependent Sm1-xNdx(Co0.695Fe0.2Cu0.08Zr0.025)7.2(x=0, 0.3, 0.5, 0.7, 1.0) magnets are measured as shown in Fig.7(a).The coercivity of the sample withx=0 decreases monotonically with increasing temperature,same as traditional magnets,and the same is for the sample withx=1.0.[34]Unlike the samples withx=0 and 1.0, the samples withx=0.3, 0.5, and 0.7 exhibit particular coercivity behaviors.Taking sample withx=0.3 for example, a coercivity (corresponding temperature 5 K) decreases slowly to its local minimum coercivity (corresponding temperatureT(Hlo-min)).Then, positive temperature coefficient of coercivity (β) phenomenon appears until the temperature reaches its local maximum coercivity (corresponding temperatureT(Hlo-max)).When the temperature is higher thanT(Hlo-max) and continues to rise, the coercivity decreases again.The temperature ranges with a positiveβare about 70 K-170 K,60 K-260 K,182 K-490 K for the samples withx=0.3, 0.5, and 0.7, respectively.It can be found that the values ofT(Hlo-min) of samples withx=0.5 and 0.7 are in good agreement with their SRT-CBP temperatures as shown in Table 3.However, theT(Hlo-min) is not matching in the sample withx= 0.3 because the SRT-CBP type of the cell boundary phase is EC→EA.The temperature ranges with a positiveβexpands from 100 K to 300 K,and theT(Hlo-max)point shifts from 170 K to 490 K asxincreases from 0.3 to 0.7,and the results are shown in Fig.7(b).

    Table 3.The SRT-CBP temperatures and temperatures corresponding to local minimum/maximum coercivity of aged Sm1-xNdx(Co0.695Fe0.2Cu0.08Zr0.025)7.2 (x=0.3,0.5,0.7)magnets.

    It is worth noting that the coercivity aroundT(Hmin)andT(Hmax) are stable, which makes the magnets have a wide range of applications in high stability devices.As shown in the inset of Fig.7(a), the coercivity temperature curve nearT(Hmax) is smoother than that nearT(Hmin), presenting a higher coercivity and a wider temperature smoothing range.Based on this feature, an Sm0.7Nd0.3(Co0.695Fe0.2Cu0.08Zr0.025)7.2magnet is obtained as shown in Fig.8.The magnetic properties of Sm0.7Nd0.3(Co0.695Fe0.2Cu0.08Zr0.025)7.2magnet at 150 K areBr=8.69 kGs,Hcj= 17.51 kOe, (BH)max= 16.29 MGOe,β(150 K-200 K)=-0.002 %/K as shown in Table 4.Compared with theβ(150 K-200 K)≈-0.236%/K in a conventional magnet,theβin this work is improved by two orders of magnitude.

    Table 4.Magnetic properties of aged Sm1-xNdx (Co0.695Fe0.2Cu0.08Zr0.025)7.2 (x=0,0.3)magnets at 150 K and 200 K.

    Fig.7.(a) Plots of temperature-dependent coercivity of aged Sm1-xNdx (Co0.695Fe0.2Cu0.08Zr0.025)7.2 (x=0, 0.3, 0.5, 0.7, 1.0) magnets in a temperature range of 5 K-800 K with inset showing an enlarged view of the part of the curve in the dashed box.(b)Abnormal coercivity temperature ranges of aged Sm1-xNdx (Co0.695Fe0.2Cu0.08Zr0.025)7.2 (x=0.3,0.5,0.7)magnets in a range of 5 K-600 K.

    Fig.8.Demagnetization curves of(a)aged Sm(Co0.695Fe0.2Cu0.08Zr0.025)7.2 magnet and(b)Sm0.7Nd0.3 (Co0.695Fe0.2Cu0.08Zr0.025)7.2 magnet at 150 K and 200 K.

    4.Conclusion

    The effects of Nd doping on the microstructures and magnetic properties of Sm1-xNdx(Co0.695Fe0.2Cu0.08Zr0.025)7.2(x=0,0.3,0.5,0.7,1.0)permanent magnets are studied.The solid solution state samples withx=0.7 and 1.0 have a minority 2:17R/2:17H phase coexisting with the majority disordered 1:7H phase,which deteriorates the integrity and homogeneity of the cellular structure after the aging process.TheHadecreases,and the degree of the orientation of the magnets becomes worse with Nd content increasing.These above reasons lead magnetic performance to decrease as Nd content increases in each of the Sm1-xNdx(Co0.695Fe0.2Cu0.08Zr0.025)7.2(x= 0, 0.3, 0.5, 0.7, 1.0) magnets.Positive temperature coefficients of coercivity (β) are found in the Sm1-xNdx(Co0.695Fe0.2Cu0.08Zr0.025)7.2(x= 0.3, 0.5, 0.7) samples,which result from the spin-reorientation-transition phenomena in the cell boundary phases.The corresponding positiveβtemperature ranges are about 70 K-170 K, 60 K-260 K,182 K-490 K for the samples withx= 0.3, 0.5, and 0.7,respectively.The Sm0.7Nd0.3(Co0.695Fe0.2Cu0.08Zr0.025)7.2magnet is obtained withBr= 8.69 kGs,Hcj= 17.51 kOe,(BH)max=16.29 MGOe at 150 K,possessing thermal stabilityβ ≈-0.002%/K at a temperature range of 150 K-200 K.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China (Grant Nos.2021YFB3803003 and 2021YFB3503101), the Major Project of “Science and Technology Innovation 2025” in Ningbo, China (Grant No.2020Z044), the Zhejiang Provincial Key Research and Development Program, China (Grant No.2021C01172),and the National Natural Science Funds of China (Grant No.51601209).

    亚洲无线观看免费| 真人一进一出gif抽搐免费| 日本黄大片高清| 乱码一卡2卡4卡精品| 欧美一区二区亚洲| 欧美日韩中文字幕国产精品一区二区三区| 天堂动漫精品| 村上凉子中文字幕在线| 深夜a级毛片| 午夜两性在线视频| 日韩精品中文字幕看吧| 又紧又爽又黄一区二区| 麻豆成人av在线观看| 日本黄色视频三级网站网址| 中文字幕av成人在线电影| 搡老岳熟女国产| 91麻豆精品激情在线观看国产| 亚洲av美国av| 久久久久久久久大av| 最新中文字幕久久久久| 人人妻,人人澡人人爽秒播| 亚洲欧美日韩东京热| 国产探花在线观看一区二区| 女人十人毛片免费观看3o分钟| 一个人观看的视频www高清免费观看| 精品免费久久久久久久清纯| av视频在线观看入口| 女人十人毛片免费观看3o分钟| 嫁个100分男人电影在线观看| x7x7x7水蜜桃| 精品午夜福利视频在线观看一区| 欧美一级a爱片免费观看看| 天堂av国产一区二区熟女人妻| 变态另类成人亚洲欧美熟女| 好男人电影高清在线观看| 日韩精品青青久久久久久| 男人舔奶头视频| 最好的美女福利视频网| 999久久久精品免费观看国产| 亚洲一区二区三区色噜噜| 亚洲成人久久性| 久久久久亚洲av毛片大全| 亚洲精品在线美女| 波多野结衣巨乳人妻| 少妇的逼水好多| 中文字幕久久专区| 精品国内亚洲2022精品成人| 少妇的逼水好多| 真人做人爱边吃奶动态| 91九色精品人成在线观看| 人妻制服诱惑在线中文字幕| 国产精品亚洲美女久久久| 亚洲av电影不卡..在线观看| av女优亚洲男人天堂| 岛国在线免费视频观看| 亚洲av.av天堂| 日本成人三级电影网站| 小蜜桃在线观看免费完整版高清| 亚洲三级黄色毛片| 中文字幕久久专区| 赤兔流量卡办理| 看免费av毛片| 精品国内亚洲2022精品成人| 亚洲国产色片| 午夜福利免费观看在线| 免费在线观看日本一区| 一级av片app| 久久中文看片网| 欧美一级a爱片免费观看看| 90打野战视频偷拍视频| 亚洲真实伦在线观看| 亚洲美女黄片视频| 色综合亚洲欧美另类图片| 97超视频在线观看视频| 女生性感内裤真人,穿戴方法视频| 久久99热这里只有精品18| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美国产一区二区入口| 一个人看的www免费观看视频| 亚洲男人的天堂狠狠| 亚洲最大成人手机在线| 亚洲国产精品成人综合色| 精品久久久久久久末码| 天堂动漫精品| 亚洲av.av天堂| 黄色女人牲交| 一a级毛片在线观看| 午夜福利在线在线| 中文字幕精品亚洲无线码一区| 欧美乱色亚洲激情| 亚洲人与动物交配视频| 成人无遮挡网站| 我要搜黄色片| 深夜精品福利| 97人妻精品一区二区三区麻豆| 永久网站在线| 中文亚洲av片在线观看爽| 好看av亚洲va欧美ⅴa在| 午夜精品一区二区三区免费看| 欧美丝袜亚洲另类 | 神马国产精品三级电影在线观看| 国产精品久久久久久久电影| 国产午夜精品论理片| 天堂av国产一区二区熟女人妻| 亚洲美女搞黄在线观看 | 全区人妻精品视频| 两性午夜刺激爽爽歪歪视频在线观看| 日日夜夜操网爽| 欧美国产日韩亚洲一区| 亚洲男人的天堂狠狠| 成人性生交大片免费视频hd| 狠狠狠狠99中文字幕| 亚洲国产欧美人成| 亚洲18禁久久av| 日韩免费av在线播放| 亚洲自拍偷在线| 成人三级黄色视频| 国产精品综合久久久久久久免费| 国产乱人视频| www.色视频.com| 亚洲av成人av| 午夜福利免费观看在线| 99久久无色码亚洲精品果冻| 能在线免费观看的黄片| 日韩欧美在线二视频| 亚洲久久久久久中文字幕| 国产在线男女| 成年女人看的毛片在线观看| 五月伊人婷婷丁香| 久久久精品欧美日韩精品| 毛片女人毛片| av黄色大香蕉| 少妇熟女aⅴ在线视频| 亚洲专区中文字幕在线| 丰满人妻一区二区三区视频av| 欧美zozozo另类| 97超级碰碰碰精品色视频在线观看| 亚洲在线观看片| 亚洲专区国产一区二区| 亚洲美女黄片视频| 欧美性猛交黑人性爽| 桃红色精品国产亚洲av| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久久久免 | 国产v大片淫在线免费观看| av黄色大香蕉| 亚洲色图av天堂| 一级黄色大片毛片| 亚洲av成人不卡在线观看播放网| 99热只有精品国产| 色播亚洲综合网| 久久久国产成人精品二区| 免费一级毛片在线播放高清视频| 亚洲精品一卡2卡三卡4卡5卡| 深夜a级毛片| 亚洲国产欧美人成| 一本一本综合久久| 免费黄网站久久成人精品 | 一级a爱片免费观看的视频| 日本五十路高清| 色在线成人网| 深夜精品福利| 午夜福利在线观看吧| 麻豆国产av国片精品| 国产视频内射| 精品人妻熟女av久视频| 蜜桃亚洲精品一区二区三区| 看免费av毛片| 国产伦一二天堂av在线观看| 搞女人的毛片| 永久网站在线| 黄片小视频在线播放| 久久精品综合一区二区三区| 给我免费播放毛片高清在线观看| x7x7x7水蜜桃| 久久久精品大字幕| 亚洲 欧美 日韩 在线 免费| 国内揄拍国产精品人妻在线| 亚洲av熟女| 成熟少妇高潮喷水视频| 老司机深夜福利视频在线观看| 日韩精品青青久久久久久| 国产三级黄色录像| 一级作爱视频免费观看| av黄色大香蕉| 国产野战对白在线观看| 国产精品嫩草影院av在线观看 | 亚洲成人久久爱视频| 高清在线国产一区| 色哟哟哟哟哟哟| 一进一出抽搐gif免费好疼| 久久精品久久久久久噜噜老黄 | 最近在线观看免费完整版| 亚洲七黄色美女视频| 99国产精品一区二区蜜桃av| 成人午夜高清在线视频| 国产麻豆成人av免费视频| 又黄又爽又刺激的免费视频.| 成人精品一区二区免费| 亚洲人成网站在线播放欧美日韩| 国产野战对白在线观看| 一级a爱片免费观看的视频| 国产高清视频在线观看网站| 午夜老司机福利剧场| 桃红色精品国产亚洲av| 国产视频内射| 天堂影院成人在线观看| 亚洲中文日韩欧美视频| 内射极品少妇av片p| 在线天堂最新版资源| 国产一区二区在线观看日韩| 香蕉av资源在线| 在线免费观看的www视频| 久久中文看片网| 最近中文字幕高清免费大全6 | 国产午夜精品久久久久久一区二区三区 | 亚洲无线观看免费| 在线天堂最新版资源| 午夜免费成人在线视频| 91麻豆精品激情在线观看国产| 日韩欧美三级三区| 综合色av麻豆| 啪啪无遮挡十八禁网站| 最近在线观看免费完整版| 亚洲不卡免费看| a级一级毛片免费在线观看| 国产精品一区二区性色av| 国产欧美日韩精品亚洲av| 国产一区二区亚洲精品在线观看| 午夜福利在线观看吧| 老司机福利观看| 伦理电影大哥的女人| 午夜福利18| 草草在线视频免费看| 亚洲av电影在线进入| 亚洲欧美激情综合另类| 中文字幕av在线有码专区| 免费在线观看影片大全网站| 亚洲av免费在线观看| 亚洲成av人片免费观看| 国产色婷婷99| 动漫黄色视频在线观看| 亚洲精品粉嫩美女一区| 三级毛片av免费| 国产伦在线观看视频一区| 一a级毛片在线观看| 国模一区二区三区四区视频| 有码 亚洲区| 亚洲内射少妇av| 最新在线观看一区二区三区| 日韩国内少妇激情av| 99久久99久久久精品蜜桃| 久久99热这里只有精品18| 亚洲人成电影免费在线| 一本综合久久免费| 午夜免费激情av| 国产综合懂色| 国产免费男女视频| 少妇高潮的动态图| 国产免费av片在线观看野外av| 日韩欧美精品免费久久 | 三级国产精品欧美在线观看| 麻豆国产97在线/欧美| 三级毛片av免费| 在线国产一区二区在线| 3wmmmm亚洲av在线观看| 精品免费久久久久久久清纯| 精品久久久久久久久久久久久| 亚洲欧美日韩高清在线视频| 欧美又色又爽又黄视频| 欧美性感艳星| 麻豆国产av国片精品| 国内毛片毛片毛片毛片毛片| 亚洲美女搞黄在线观看 | 老司机午夜十八禁免费视频| 国产精品亚洲美女久久久| 午夜福利欧美成人| 免费人成视频x8x8入口观看| 在线播放国产精品三级| 在线a可以看的网站| 亚洲综合色惰| 三级毛片av免费| 99久久精品一区二区三区| av天堂在线播放| 一区二区三区四区激情视频 | 精品不卡国产一区二区三区| 露出奶头的视频| 久久久久精品国产欧美久久久| 亚洲成人免费电影在线观看| 九色成人免费人妻av| 欧美成人免费av一区二区三区| 日本黄色视频三级网站网址| 国产三级黄色录像| 高清在线国产一区| 又粗又爽又猛毛片免费看| 免费搜索国产男女视频| 尤物成人国产欧美一区二区三区| 神马国产精品三级电影在线观看| 丰满乱子伦码专区| 桃色一区二区三区在线观看| 欧美日韩综合久久久久久 | 精品一区二区三区人妻视频| 国产黄a三级三级三级人| 很黄的视频免费| 黄色一级大片看看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩高清专用| 欧美绝顶高潮抽搐喷水| 精品国产三级普通话版| 欧美色视频一区免费| 亚洲成av人片在线播放无| 免费av毛片视频| 亚洲精品日韩av片在线观看| 久久久精品欧美日韩精品| 国产69精品久久久久777片| 色5月婷婷丁香| 国产男靠女视频免费网站| 久久天躁狠狠躁夜夜2o2o| 国产在视频线在精品| 中文字幕av成人在线电影| 日本免费a在线| 97超级碰碰碰精品色视频在线观看| 可以在线观看毛片的网站| 97碰自拍视频| 午夜福利免费观看在线| 中出人妻视频一区二区| 麻豆成人av在线观看| 色综合站精品国产| 国产精品伦人一区二区| 黄色配什么色好看| 国产不卡一卡二| 精品久久久久久久末码| 免费黄网站久久成人精品 | 床上黄色一级片| 美女高潮的动态| 变态另类成人亚洲欧美熟女| 最近视频中文字幕2019在线8| 亚洲精品乱码久久久v下载方式| 欧美区成人在线视频| 欧美性感艳星| 中文字幕久久专区| 最新中文字幕久久久久| 非洲黑人性xxxx精品又粗又长| 亚洲成人免费电影在线观看| 琪琪午夜伦伦电影理论片6080| 女人被狂操c到高潮| 久久国产精品影院| 久久久久久久久大av| 亚洲人成电影免费在线| 国产伦在线观看视频一区| 亚洲内射少妇av| 高清在线国产一区| 午夜影院日韩av| 亚洲人成电影免费在线| 久久精品国产亚洲av涩爱 | 极品教师在线免费播放| 蜜桃亚洲精品一区二区三区| 99久久九九国产精品国产免费| 女生性感内裤真人,穿戴方法视频| 国产人妻一区二区三区在| 精品久久久久久久人妻蜜臀av| 久久精品夜夜夜夜夜久久蜜豆| 欧美xxxx性猛交bbbb| 黄色日韩在线| 欧美一区二区国产精品久久精品| 免费黄网站久久成人精品 | 成人av在线播放网站| 亚洲色图av天堂| 啪啪无遮挡十八禁网站| 在线观看免费视频日本深夜| 久久性视频一级片| 成人av一区二区三区在线看| 国产精品美女特级片免费视频播放器| 亚洲 国产 在线| 亚洲人与动物交配视频| 欧美日本亚洲视频在线播放| 首页视频小说图片口味搜索| 欧美bdsm另类| 久久久久精品国产欧美久久久| 欧美午夜高清在线| 精品久久久久久久久久免费视频| 亚洲精品粉嫩美女一区| 免费av观看视频| 欧美性猛交╳xxx乱大交人| 国产熟女xx| 一级毛片久久久久久久久女| 日韩精品中文字幕看吧| 97热精品久久久久久| 在线a可以看的网站| 99riav亚洲国产免费| 一区二区三区激情视频| 青草久久国产| 日韩人妻高清精品专区| 最新在线观看一区二区三区| 中文字幕人成人乱码亚洲影| 99久久成人亚洲精品观看| 国产免费av片在线观看野外av| 天堂影院成人在线观看| 国产欧美日韩精品亚洲av| 国产av麻豆久久久久久久| 成人特级av手机在线观看| netflix在线观看网站| 免费大片18禁| 国产白丝娇喘喷水9色精品| 日本 欧美在线| 久久香蕉精品热| 久久午夜亚洲精品久久| 久久热精品热| 国产精品亚洲av一区麻豆| 搡老岳熟女国产| 99热这里只有精品一区| 精品乱码久久久久久99久播| 免费一级毛片在线播放高清视频| 亚洲av电影在线进入| 一本综合久久免费| 男女视频在线观看网站免费| 中文亚洲av片在线观看爽| 久久午夜亚洲精品久久| 神马国产精品三级电影在线观看| 国产v大片淫在线免费观看| 在线观看一区二区三区| 精品久久久久久成人av| 久久久久久久久久黄片| 啦啦啦韩国在线观看视频| 亚洲国产欧美人成| 老司机深夜福利视频在线观看| 欧美zozozo另类| 亚洲国产精品合色在线| 久久久精品欧美日韩精品| 色综合欧美亚洲国产小说| 婷婷丁香在线五月| 日韩中文字幕欧美一区二区| 国产精品女同一区二区软件 | 午夜精品在线福利| 韩国av一区二区三区四区| 亚洲av美国av| 亚洲成a人片在线一区二区| 999久久久精品免费观看国产| 一个人免费在线观看电影| 老女人水多毛片| 午夜影院日韩av| 久久性视频一级片| 日韩精品中文字幕看吧| 国产成人福利小说| 又爽又黄a免费视频| 五月伊人婷婷丁香| 中文字幕精品亚洲无线码一区| 日本黄色视频三级网站网址| 欧美成人a在线观看| 欧美+日韩+精品| 嫩草影院精品99| 精品久久久久久久久久免费视频| 日韩欧美一区二区三区在线观看| 91麻豆av在线| av天堂在线播放| 欧美xxxx性猛交bbbb| 一区二区三区高清视频在线| 国产亚洲精品久久久com| 宅男免费午夜| 亚洲黑人精品在线| 动漫黄色视频在线观看| 久久6这里有精品| 无人区码免费观看不卡| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 亚洲精品456在线播放app | 黄色日韩在线| 国内毛片毛片毛片毛片毛片| 夜夜躁狠狠躁天天躁| av欧美777| 99久国产av精品| 婷婷精品国产亚洲av在线| 真人一进一出gif抽搐免费| 波野结衣二区三区在线| 国产黄色小视频在线观看| 麻豆一二三区av精品| 天堂动漫精品| 观看免费一级毛片| 国产一区二区在线观看日韩| 国内精品久久久久久久电影| 国产高潮美女av| 真人一进一出gif抽搐免费| av天堂在线播放| 国产成人啪精品午夜网站| 亚洲熟妇中文字幕五十中出| 国产精品亚洲美女久久久| 久久午夜福利片| 国内少妇人妻偷人精品xxx网站| 性欧美人与动物交配| 午夜a级毛片| 人妻丰满熟妇av一区二区三区| 嫩草影院精品99| 一个人看的www免费观看视频| 国产欧美日韩一区二区精品| 亚洲自拍偷在线| 精品人妻一区二区三区麻豆 | 亚洲av成人不卡在线观看播放网| 亚洲av电影不卡..在线观看| 五月玫瑰六月丁香| 欧美日韩国产亚洲二区| 最近最新免费中文字幕在线| ponron亚洲| 欧美成人免费av一区二区三区| 亚洲av免费在线观看| 韩国av一区二区三区四区| 性插视频无遮挡在线免费观看| 国产高清视频在线播放一区| 人妻久久中文字幕网| 天堂动漫精品| 亚洲va日本ⅴa欧美va伊人久久| 禁无遮挡网站| 久久国产乱子伦精品免费另类| 亚洲天堂国产精品一区在线| 亚洲av日韩精品久久久久久密| 婷婷亚洲欧美| 久99久视频精品免费| 3wmmmm亚洲av在线观看| 国产探花在线观看一区二区| av视频在线观看入口| 国产精品一区二区性色av| 男人狂女人下面高潮的视频| 天堂动漫精品| 天天一区二区日本电影三级| 日韩亚洲欧美综合| 精品久久久久久久久亚洲 | 国产爱豆传媒在线观看| 精品99又大又爽又粗少妇毛片 | 国产麻豆成人av免费视频| av欧美777| 国产欧美日韩精品一区二区| 亚洲黑人精品在线| 成人国产一区最新在线观看| 国产精品永久免费网站| 久久久久久大精品| 国产白丝娇喘喷水9色精品| 熟女人妻精品中文字幕| 国产精品av视频在线免费观看| 99热精品在线国产| 国产精品久久久久久人妻精品电影| 欧美一区二区精品小视频在线| 一卡2卡三卡四卡精品乱码亚洲| 国产黄a三级三级三级人| 好看av亚洲va欧美ⅴa在| 精品免费久久久久久久清纯| 婷婷亚洲欧美| 中亚洲国语对白在线视频| 在线a可以看的网站| 日韩亚洲欧美综合| 老熟妇仑乱视频hdxx| 一级黄片播放器| 91av网一区二区| 久久精品国产亚洲av天美| 久久久久久久久久黄片| 欧美最黄视频在线播放免费| 午夜福利免费观看在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲黑人精品在线| 亚洲中文字幕日韩| av女优亚洲男人天堂| 97碰自拍视频| 欧美中文日本在线观看视频| 男女下面进入的视频免费午夜| 欧美高清性xxxxhd video| 亚洲av.av天堂| 精品国内亚洲2022精品成人| 久久久久久大精品| 一个人看视频在线观看www免费| 免费人成视频x8x8入口观看| 在线a可以看的网站| 精品一区二区三区视频在线| 久久精品人妻少妇| 久久99热6这里只有精品| 亚洲欧美日韩无卡精品| 欧美日韩亚洲国产一区二区在线观看| 国产精品av视频在线免费观看| 亚洲天堂国产精品一区在线| 一二三四社区在线视频社区8| 中文字幕高清在线视频| 国产黄色小视频在线观看| 精品福利观看| 国产精品嫩草影院av在线观看 | 国产精品一区二区三区四区免费观看 | 日本一本二区三区精品| 女生性感内裤真人,穿戴方法视频| 国产午夜精品论理片| а√天堂www在线а√下载| 黄色日韩在线| 亚洲欧美清纯卡通| 在线观看av片永久免费下载| 久久精品国产99精品国产亚洲性色| 欧美bdsm另类| 男女那种视频在线观看| 国产精品日韩av在线免费观看| 一本综合久久免费| 久久天躁狠狠躁夜夜2o2o| av在线蜜桃| 午夜激情福利司机影院| 国产精品一区二区性色av| 中文字幕精品亚洲无线码一区| 亚洲精品日韩av片在线观看| 黄色丝袜av网址大全| 国产黄a三级三级三级人| 一本综合久久免费| 最近最新免费中文字幕在线| 国产免费一级a男人的天堂| 麻豆av噜噜一区二区三区| 国产高清激情床上av| 又黄又爽又刺激的免费视频.| a级毛片免费高清观看在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 一边摸一边抽搐一进一小说| 老熟妇仑乱视频hdxx| 男人狂女人下面高潮的视频| 国产精品一及| 国产在线男女|