• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coupled-generalized nonlinear Schr¨odinger equations solved by adaptive step-size methods in interaction picture

    2023-03-13 09:19:14LeiChen陳磊PanLi李磐HeShanLiu劉河山JinYu余錦ChangJunKe柯常軍andZiRenLuo羅子人
    Chinese Physics B 2023年2期
    關(guān)鍵詞:陳磊河山

    Lei Chen(陳磊) Pan Li(李磐) He-Shan Liu(劉河山) Jin Yu(余錦)Chang-Jun Ke(柯常軍) and Zi-Ren Luo(羅子人)

    1Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China

    2National Microgravity Laboratory,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: nonlinear optics, optical propagation in nonlinear media, coupled-generalized nonlinear Schr¨odinger equations(C-GNLSE),adaptive step-size methods

    1.Introduction

    Coupling an ultrashort laser pulses into an optical fiber,a wealth of nonlinear effects will take place due to the dispersion and the nonlinear effect of the fiber.The phenomenon has been widely used in optical fiber communication, ultrafast optical,supercontinuum generation,optical coherence tomography,etc.[1-4]The propagation of the low power ultrashort pulses in the fiber could be described by a mathematical model of the nonlinear Schr¨odinger equation (NLSE) which contains the group velocity dispersion (GVD) and self-phase modulation (SPM) terms.[2]To evaluate the high peak power femtosecond pulses, the generalized nonlinear Schr¨odinger equation (GNLSE) with the high order dispersion and nonlinear terms was adopted.[5]Although the NLSE could be analytically solved by the inverse scattering and self-similar method,[6,7]the GNLSE can only be calculated numerically.A common numerical solution to the GNLSE has been obtained by the split-step Fourier method (SSFM).[2]In the SSFM scheme, the dispersion and nonlinearity were integrated respectively in each step and the accuracy of the global error was of the second-order.[8]While the accuracy could be improved by the symmetric split-step Fourier method(S-SSFM)[9-13]or high order split-step schemes such as the fourth-order scheme of Blow and Wood,[14]the global accuracy was not better than that of the nonlinear step integration.In order to further improve the accuracy,a number of methods have been developed:A Runge-Kutta in the interaction picture(RK4IP)method was extended to solve the GNLSE and stimulate the pulse propagation and supercontinuum generation in the optic fiber by Hult.[15]The RK4IP exhibits a fifth order local accuracy and high calculation efficiency in the fixed step methods.The conservation quantity error adaptive step-control algorithm based on RK4IP(RK4IP-CQE)was introduced to solve the GNLSE by Heidt in 2009.[16]The RK4IP-CQE,an effective and accurate numerical method of GNLSE solution,reduced more than 50% computational time than the local error adaptive stepcontrol method.[17]Furtherly, the RK4IP-CQE in frequency domain was also introduced to solve the GNLSE by Riezniket al.[18]and the numerical results seems impressive.

    Recently multimode optical fibers and micron waveguides have reemerged as a viable platform to observe the novel linear and nonlinear physical phenomena.[19-23]The additional spatial degrees of freedom of the new fibers and waveguides offer further opportunities to investigate the interesting phenomena and processes such as the vector soliton fission,the vector modulation instability,the intermodal modulational instability, and the soliton capture appeared.[24-33]Understanding the ultrashort pulse propagation dynamics mechanism behind these complex physics phenomena and processes needs to solve the numerical modeling of the so-called coupled-generalized nonlinear Schrodinger equations (C-GNLSE) or the multimode generalized nonlinear Schr¨odinger equations(MM-GNLSE).

    Although the MM-GNLSE can be easily handled with the SSFM and S-SSFM, the accuracies andyefficiencies of the two methods need to be enhanced.To obtain accurate and effective numerical simulations,the fixed step method of RK4IP is extend to solve MM-GNLSE.[34-36]In order to improve the calculation speed of FFT, the GPU-accelerated method has been adopted.[37]Practically,an algorithm with various adaptive step sizes such as RK4IP-CQE or local error adaptive stepcontrol method used in GNLSE simulation may be more effective and useful than the fixed step method.However, to our knowledge, the adaptive step-size algorithm has not been extended to the solution of MM-GNSLE.

    In this work we extend the adaptive step-size algorithm to C-GNLSE to verify the effectiveness.By mapping the CGNLSE in the normal picture into the interaction picture in frequency domain and converting the coupled equations into a vector equation, the RK4IP-CQE and the local error adaptive step-control method are introduced to solve C-GNLSE.The two adaptive step-control algorithms are used to solve CGNLSE to simulate the SC generation in high birefringence PCF.The simulation results are the same as those calculated by fixed step algorithm RK4IP, which proves the accuracies of the two algorithms.The calculation efficiency of RK4IPLEM and RK4IP-CQE are displayed and the large difference in computational time between the two algorithms at the same global error is explained.

    2.Coupled generalized nonlinear Schro¨dinger equations

    To simplify our numerical simulations,RK4IP-CQE and RK4IP-LEM are used for solving the two-dimensional CGNLSE in instead of MM-GNLSE.The process and the methods can be fully extended to solve then-dimensional MMGNLSE withndimensions.The typical coupled generalized nonlinear Schr¨odinger equations (C-GNLSE) can be expressed as[38-40]

    with

    whereAnis the pulse envelope for the polarizationn, the asterisk denotes the complex conjugate, the timeT=tz(β11+β12)/2 is in a reference frame moving at a group velocity,βmn=?βn/?ω|ω=ωnis them-th term of the Taylor series expansion for the propagation constantβn(ω),δβ1=(β11-β12)/2, Δβ=β01-β02,γn=n2ω0/cAeff,n,cis the speed of light in vacuum,Aeff,nis the effective area for the polarizationn,andω0is the carrier frequency.The express of shock term isτSHOCK,n=1/ω0.R1(T),R2(T),andR3(T)are the response functions of the fiber which is expressed as

    wherefR=0.18 is the Raman response contribution to the Kerr effect.f1(t) andf3(t) are related to the parallel and orthogonal Raman gain respectively, and can be measured experimentally.[41,42]In the simulations, the expressions off1(t),f2(t), andf3(t) aref1= (τ21+τ22)/τ1τ22×exp(-t/τ2)sin(t/τ1),f2=f1- 2f3, andf3= [(2τb-t)/τ2b)]exp(-t/τb) respectively and the values ofτ1,τ2, andτbare 12.2 fs, 32 fs, and 96 fs respectively.The C-GNLSE shown in Eq.(1) can be converted to the form indicated in Refs.[31,32,43] if the vertical and the parallel Raman gain functions are omitted.

    Equation(1)can be translated to the frequency domain by Fourier transform as follows:

    3.Algorithm

    3.1.Fourth-order Runge-Kutta in interaction picture method

    Equation(5)can be changed into the vector form,

    The final solution of C-GNSLE can be obtained by the integration of each step using the iterative scheme of RK4IP at the fifth-order local accuracy.However, the error of RK4IP method in integration step cannot be predetermined unless the step is small enough.In order to control the error and change the step within the error in the stimulations, the local error adaptive step method and conservation quantity error adaptive step method based on RK4IP will be introduced.

    3.2.RK4IP-LEM

    For the C-GNSLE in Eq.(8), if the complex field is discretized into the frequency grid points and an integration method with RK4IP in Eq.(9)is uesed,there exists a constant for each grid point so that the calculated field can be expressed as

    where ?Ature(z+h,ω) is an exact solution.Here,η=5 for RK4IP scheme,for it exhibits a five-order local error.The relative local amplitude error is now defined as

    3.3.RK4IP-CQE

    The optical photon numberPduring the propagation can be given by

    where

    4.Results and discussion

    In this section, the performance of adaptive step algorithms described in the above section is compared and discussed.

    To prove the accuracy of the methods for C-GNLSE,a typical example of the supercontinuum generation in high birefringence photonic crystal fiber(PCF)is first simulated by using a constant step size of RK4IP.The input pulse is a hyperbolic secant with a full width at half maximum (FWHM)durationTFWHM=50 fs.The peak power of the input pulse is 20 kW, and the center wavelength is 680 nm.The angle between the polarization and the fast axis of the high birefringence PCF isπ/4.The length of high birefringence PCF is 0.1 m,and the Taylor expansion coefficients for the dispersion curve are taken from Martinset al.[39]The nonlinear coefficient isγ1=γ2=0.045 W-1·m-1.In the stimulation,the time window is 5 ps and discretized into 213grids.

    Figure 1 illustrates a temporal and spectral evolution of the supercontinuum generation process over 0.1-m length of high birefringence PCF with the step size of 40 μm in the stimulation using the constant step-size method of RK4IP.A logarithmic density scale is used which is truncated at-80 dB relative to the maximum value.As shown in Figs.1(a)-1(d),the orthogonally polarized pulses traveling at different group velocities in the slow axial direction and the fast axial direction are completely separated in time after a few-mm propagation distance.After the orthogonally polarized pulses transmit apart,both of them break into a series of pulses at about 1.5 cm and 2 cm far in the slow axial direction and fast axial direction respectively, which is known as the vector soliton fission.[30]The fundamental solitons emerge one by one in the slow axial direction and the fast axial direction and subsequently shift to longer wavelengths due to the intrapulse Raman scattering.Therefore, the energy is transferred to a narrow band resonance in the normal GVD regime, associated with the emergence of a dispersive wave.The spectra of the different red moving solitons and dispersion waves are formed as an octave supercontinuum.The simulations of the supercontinuum generated in high birefringence PCF are similar to the results obtain by Martinset al.[39]

    Fig.1.Numerical simulation of supercontinuum generation in 0.1-mhigh birefringence PCF.(a) Temporal evolution and (b) spectral evolution of pulse along slow axis; (c) temporal evolution and (d) spectral evolution of pulse along fast axis, with retarded time frame of the reference travelling at envelope group velocity of input pulse used in panels(a)and(b).

    To exhibit the errors changing with propagation distance,fgiure 2 shows the approximate local error and the relative photon number error between the values of the two consecutive computational steps with the pulse transmitting in the high birefringence PCF.The calculation is run with RK4IP method in the vector form in steps of 40 μm.The approximated local error and the relative photon number error are calculated with Eqs.(11)and(16).As shown in Figs.2(a)and 2(b),the approximated local error curve is similar to the relative photon number error curve, where they both have a large error peak located in a range from 0 m to 0.01 m and a small error peak located at about 0.02 m.To further understand the details of the error variance, theyaxes of the approximated local error curve and relative photon number error curve are enlarged as indicated in the insets, respectively, in Figs.2(a)and 2(b).The details of two curves are also similar to each other and they both fluctuate heavily during the propagation in a distance of 0 m-0.05 m; while the propagating distance is more than 0.05 m,the two error curves rise monotonically.

    The oscillations of the two error curves ranging from 0 m to 0.05 m are mainly due to the vector soliton fission process.Many different frequency photons are created and annihilated in the vector soliton fission process,which makes the spectrum of the pulse change and the photon number error increase.At the same time, the time waveform of the pulse breaks into a series of solitons, which increases the local error.When the propagation distance is larger than 0.05 m, the vector soliton fission and photons creation and annihilation become weak.Therefore the photon number error and local error vary slowly.

    Fig.2.Plots of propagation distance-dependent error estimations between two consecutive computational steps for (a) approximate local error(Eq.(11)),and(b)relative photon number error(Eq.(16))in a constant step of 40 μm, with inset showing enlarged section to compare the small scale errors,and error estimations depicted with the same x axis to facilitate graph comparison.

    From the above analysis, it can be concluded that when the waveforms in the time domain and in frequency domain change dramatically,the approximate local error curve and relative photon number error become large,so,the step should be reduced to produce a small error;otherwise,when the approximated local error and relative photon number error become small,step should be increased to reduce the simulation time.

    Supercontinuum generation in a high-birefringence photonic crystal fiber (PCF) is also simulated with the same parameters by RK4IP-LEM with a relative local errorηG=10-6and RK4IP-CQE with a relative photon number errorηP=10-14.Figure 3 shows the calculation results.The output spectra calculated by three different methods are completely the same,which means that RK4IP-LEM and RK4IP-CQE are reliable.

    Fig.3.Slow and fast axis output spectra of high birefringence PCF calculation by RK4IP,RK4IP-LEM,and RK4IP-CQE methods.

    To make a comparison of accuracy and efficiency between the RK4IP-LEM method and the RK4IP-CQE method,the computational time value with the global error of the twoadaptive step-control algorithm is shown in Fig.4.The global average error in Fig.4 is defined as

    where the complex field ?Acalis calculated by the RK4IP-LEM method and the RK4IP-CQE method, ?Aaccis calculated by the RK4IP in steps of 0.1μm.

    It can be seen from Fig.4 that the computational time taken by each of the RK4IP-LEM method and the RK4IPCQE method generally decreases with the global average error increasing.However,the computational time taken by the RK4IP-LEM method is much more than that by the RK4IPCQE method,which is 30 times more than that by the RK4IPCQE method when the global average error is less than 10-7,and is about 20 times more than that by the RK4IP-CQE method when the global average error is more than 10-7.

    Fig.4.Computational time taken by RK4IP-CQE and RK4IP-LEM against global average error, normalized by the time required to evaluate 103 FFT, for the supercontinuum generation process in highbirefringence PCF.

    The RK4IP-LEM method uses one more FFTs than the RK4IP-CQE at each step as indicated in the above section.If the step sizes of two methods in each iteration process are the same, the computational time of RK4IP-LEM will be twice longer than that of the RK4IP-CQE method.In order to explain the difference in computational time between the RK4IPLEM method and the RK4IP-CQE method, the error estimations between the two consecutive steps for the approximate local error and relative photon number error are calculated by the RK4IP method in different step sizes,furthermore,the valuations of the step size and the error between two consecutive steps in calculation process of the RK4IP-LEM method and the RK4IP-CQE method under different error limits are also calculated.The results are shown in Figs.5-7,respectively.

    Figure 5 shows the approximate local error and relative photon number error between two consecutive steps calculated by the RK4IP method in steps of 10μm,20μm,40μm,and 80 μm.As shown in Fig.5(a), the approximate local error curves are similar when the step size is 40 μm and 80 μm,respectively.They both fluctuate heavily in a propagation distance range of 0 m-0.05 m.When the pulse propagating distance is more than 0.05 m,the two error curves rise monotonically.The reason of the fluctuations can be found in Fig.2.While the step size decreases to 10μm and 20μm,the fluctuation between 0 m-0.05 m disappear,which is different from that in steps of 40 μm and 80 μm.As shown in Fig.5(b),except for different error amplitudes,the relative photon number curves are all nearly the same in steps of 80 μm, 40 μm,20 μm, and 10 μm.They all fluctuate heavily in the propagation distance of 0 m-0.05 m and rise monotonically for the propagation distance large than 0.05 m.

    Fig.5.Variations of (a) approximated local error (Eq.(11)) and (b)relative photon number error(Eq.(17))with different propagation distances,calculated by RK4IP method in steps of 10μm,20μm,40μm,80μm,with y axis being logarithmic.

    Figure 6 shows the variations of step size with the propagation distance in the process by using the RK4IP-LEM method and the RK4IP-CQE method under different approximate local error limitsηGand the relative photon number error limitsηPrespectively.In Fig.6(a), except small oscillations near 0.01 m and 0.02 m,the step size increases until the propagation distance reaches 0.05 m at the approximate local error limitηG=10-5.The step size decreases monotonically after 0.05 m.The small oscillations near 0.01 m and 0.02 m disappear gradually and the step size increases monotonically before 0.05 m and then decreases monotonically as theηGdecreases to 10-6,10-7,and 10-8.The smaller theηG,the more gently the change of the step size is.It is shown in Fig.6(b)that the step size curves with different relative photon number limitsηP=10-12; 10-13; 10-14, 10-15all oscillate heavily in a propagation distance range of 0 m-0.03 m; the step size increases monotonically in 0.03 m-0.05 m and the step size decreases monotonically in 0.05 m-0.1 m.

    Fig.6.Step sizes versus propagation distances obtained by(a)RK4IPLEM)and(b)RK4IP-CQE under different error limits.

    Fig.7.(a) Approximated local error of RK4IP-LEM and (b) relative photon number error of RK4IP-CQE between consecutive computational steps under different error limits.

    Figure 7 is the approximated local error(Fig.7(a))and the relative photon number error(Fig.7(b))between the consecutive computational steps varying with the propagation distance in solving the C-GNLSE by the RK4IP-LEM method and the RK4IP-CQE method with different error limits.In Fig.7(a)the approximate local errors are all under the presetting error limits atηGequating 10-5,10-6,10-7,and 10-8.The fluctuations of the approximate local error curves become gentle as the change time of the step (ηG) decreases.In Fig.7(b), except within the propagation distance between 0.01 m-0.02 m,the relative photon number errors are all under the presetting error limits atηPequating 10-12, 10-13, 10-14, and 10-15.The fluctuations of the relative photon number error are nearly the same as those as theηPdecreases, which means that the change of the step is independent of the value ofηP.

    From the above analyses, the difference between computational time taken by the RK4IP-LEM method and the computational time taken by the RK4IP-CQE method at the same global average error level in Fig.4 can be qualitatively explained by the results of Figs.5-7.Owing to the nonconserved qualitatively approximated local error,the approximated local error curves under different step sizes are not similar(see Fig.5(a)), which means that convergence rate of the approximated local error is much different from the error limitηGat every step of the propagation distance.The different convergence rates make the change of step size and approximated local error in the process of RK4IP-LEM different(see Figs.6(a) and 7(a)).The non-similarity of the change of the step size makes global average error of RK4IP-LEM not uniformly converge.However, the relative photon number error curves under different step sizes are similar because the relative photon number error is conserved quantity(see Fig.5(b)),and the change of step size and the relative photon number in the process of RK4IP-CQE method under different error limits are similar (see Figs.6(b) and 7(b)).The similarity of the changing of the step size makes the global average error of RK4IP-CQE method converge uniformly.The difference between the convergences of the relative photon number error and the approximated local error induces the large difference in computational time at the same global average error in Fig.4.

    5.Conclusions

    By mapping the C-GNLSE in the normal picture into the interaction picture in the frequency domain, the conservation quantity error adaptive step-control method and the local error adaptive step-control method are developed based on a vector form of the fourth-order Runge-Kutta in interaction picture.To prove the efficiency of the adaptive step-control methods, the two adaptive step-control methods and the RK4IP method are used to simulate the SC generation in the high birefringence PCF.The calculation accuracy and efficiency for each of these two adaptive step-control methods are discussed.At the same global average error, the computational time of RK4IP-CQE has been improved 20 times compared with that of RK4IP-LEM due to the convergences of the relative photon number error and the approximated local error.The methods will be useful for simulating the vector pulses transmission and the supercontinuum generation in the nonlinear fiber and waveguides, the pulse propagating in the multimode optical fiber,and the interaction between different pulses.

    Appendix A

    LetAnbe the pulse envelope for the polarizationn, then the photon numberPduring propagation will be defined as

    Calculating each integral term in Eq.(A3),the following equation are obtained:

    LetΩ=ω1,Ω1=ω,Ω2=ω2+ω1-ωand use the expression ofRn(Ω1-Ω)=R?n(Ω-Ω1), then equations(A4)and(A5)will change into Eqs.(A8)and(A9),i.e.,

    Substituting Eqs.(A6)-(A9)into Eq.(A3),then the expression of?P/?z=0 is obtained.

    Acknowledgement

    Project supported by the National Key Research and Development Program of China (Grant Nos.2021YFC2201803 and 2020YFC2200104).

    猜你喜歡
    陳磊河山
    容易到摳腳的相對論
    容易到摳腳的相對論
    陳磊
    河山
    中國寶玉石(2021年5期)2021-11-18 07:34:50
    楚漢之爭(七)
    楚 漢 之 爭(八)
    故鄉(xiāng)
    北方音樂(2020年7期)2020-06-01 07:26:13
    情系河山
    中華詩詞(2019年12期)2019-09-21 08:53:06
    情系河山
    中華詩詞(2018年5期)2018-11-22 06:46:10
    情系河山
    中華詩詞(2018年1期)2018-06-26 08:46:30
    欧美成人性av电影在线观看| 国产精品三级大全| 欧美乱码精品一区二区三区| 国产成人欧美在线观看| 欧美黄色淫秽网站| 老司机午夜十八禁免费视频| 毛片女人毛片| 欧美一区二区亚洲| 一夜夜www| 国产精品自产拍在线观看55亚洲| 俄罗斯特黄特色一大片| 女生性感内裤真人,穿戴方法视频| 一个人免费在线观看的高清视频| 欧美性猛交╳xxx乱大交人| 两个人视频免费观看高清| 一本久久中文字幕| 成年人黄色毛片网站| 精品无人区乱码1区二区| 人妻久久中文字幕网| 国产精品 欧美亚洲| 黑人欧美特级aaaaaa片| 久久精品国产综合久久久| 欧美日韩瑟瑟在线播放| 99国产精品一区二区三区| 看免费av毛片| 久久久久久久久中文| 岛国在线观看网站| 91在线观看av| 国产亚洲精品av在线| 亚洲欧美日韩高清在线视频| 真实男女啪啪啪动态图| 看免费av毛片| 久久精品亚洲精品国产色婷小说| 亚洲午夜理论影院| 老司机在亚洲福利影院| 欧美一区二区精品小视频在线| 久久人人精品亚洲av| 草草在线视频免费看| 哪里可以看免费的av片| 国产不卡一卡二| 精品人妻1区二区| 久久久久久大精品| 国产97色在线日韩免费| 亚洲欧美日韩东京热| 欧美一区二区精品小视频在线| 国产不卡一卡二| 搡老妇女老女人老熟妇| 国产成人欧美在线观看| av天堂中文字幕网| 国产一区二区在线观看日韩 | 69av精品久久久久久| 欧美中文日本在线观看视频| 国产精品国产高清国产av| 3wmmmm亚洲av在线观看| 岛国在线免费视频观看| 法律面前人人平等表现在哪些方面| 婷婷亚洲欧美| avwww免费| 免费搜索国产男女视频| 国产高清三级在线| 国内少妇人妻偷人精品xxx网站| 久久香蕉国产精品| 亚洲一区高清亚洲精品| 一个人看视频在线观看www免费 | 日日夜夜操网爽| 人妻夜夜爽99麻豆av| www.999成人在线观看| 国产亚洲av嫩草精品影院| 国产又黄又爽又无遮挡在线| 久久久久久人人人人人| 香蕉丝袜av| 成人鲁丝片一二三区免费| 亚洲一区二区三区不卡视频| av欧美777| 亚洲黑人精品在线| 日韩欧美免费精品| 亚洲成a人片在线一区二区| 欧美乱码精品一区二区三区| 国产一区二区在线观看日韩 | 久久久久免费精品人妻一区二区| 亚洲片人在线观看| 一个人观看的视频www高清免费观看| 欧洲精品卡2卡3卡4卡5卡区| 国产午夜福利久久久久久| 天堂√8在线中文| 可以在线观看的亚洲视频| 天堂av国产一区二区熟女人妻| 日本免费一区二区三区高清不卡| 国产精品自产拍在线观看55亚洲| 日本三级黄在线观看| 三级男女做爰猛烈吃奶摸视频| 久久99热这里只有精品18| www.www免费av| 男女那种视频在线观看| 久久精品人妻少妇| 俄罗斯特黄特色一大片| 精品99又大又爽又粗少妇毛片 | 欧美日韩国产亚洲二区| 久久99热这里只有精品18| 久久久久九九精品影院| 国产精品电影一区二区三区| 亚洲乱码一区二区免费版| 亚洲七黄色美女视频| 欧美中文综合在线视频| 国产一区二区三区视频了| 亚洲精品粉嫩美女一区| 性欧美人与动物交配| 久久久久国产精品人妻aⅴ院| 亚洲成人中文字幕在线播放| 在线观看午夜福利视频| 欧美另类亚洲清纯唯美| 三级国产精品欧美在线观看| 欧美一区二区国产精品久久精品| 狂野欧美激情性xxxx| 少妇高潮的动态图| 国产高清视频在线观看网站| 成人av在线播放网站| 中文字幕av在线有码专区| 女人高潮潮喷娇喘18禁视频| 我要搜黄色片| 国产 一区 欧美 日韩| 国产极品精品免费视频能看的| 国产精品三级大全| 欧美日韩亚洲国产一区二区在线观看| 成年女人看的毛片在线观看| 国产精品女同一区二区软件 | 成年人黄色毛片网站| 麻豆一二三区av精品| 日本与韩国留学比较| 两个人视频免费观看高清| 日本三级黄在线观看| 成年女人看的毛片在线观看| 亚洲性夜色夜夜综合| 日本黄色片子视频| 欧美日韩综合久久久久久 | 国产精品一区二区三区四区免费观看 | 麻豆国产97在线/欧美| 免费在线观看成人毛片| 国产精品98久久久久久宅男小说| 国产一区二区亚洲精品在线观看| 熟女少妇亚洲综合色aaa.| 在线a可以看的网站| 五月玫瑰六月丁香| 成人鲁丝片一二三区免费| 亚洲av二区三区四区| 亚洲av免费在线观看| 黄色片一级片一级黄色片| 国产精品99久久久久久久久| 在线免费观看的www视频| 亚洲人与动物交配视频| 国产乱人伦免费视频| 国产91精品成人一区二区三区| 99在线视频只有这里精品首页| 真人做人爱边吃奶动态| 午夜a级毛片| 午夜精品在线福利| 国产伦一二天堂av在线观看| 色吧在线观看| 99热6这里只有精品| 免费观看精品视频网站| 午夜福利欧美成人| 亚洲人与动物交配视频| 变态另类成人亚洲欧美熟女| 欧美性猛交黑人性爽| 老司机福利观看| 欧美3d第一页| 欧美三级亚洲精品| 亚洲av第一区精品v没综合| 级片在线观看| 亚洲成人精品中文字幕电影| 好男人在线观看高清免费视频| 欧美高清成人免费视频www| 久久精品国产自在天天线| 国产亚洲av嫩草精品影院| 亚洲成av人片在线播放无| av欧美777| 国产淫片久久久久久久久 | 国内精品一区二区在线观看| 十八禁网站免费在线| 少妇人妻精品综合一区二区 | 内射极品少妇av片p| 国产精品久久久人人做人人爽| 亚洲成人久久爱视频| 看黄色毛片网站| 亚洲自拍偷在线| 久久天躁狠狠躁夜夜2o2o| 成人欧美大片| 国产不卡一卡二| 欧美乱妇无乱码| 久久精品亚洲精品国产色婷小说| 99精品欧美一区二区三区四区| 国内精品久久久久久久电影| 国产亚洲精品久久久com| 国产激情欧美一区二区| 色综合亚洲欧美另类图片| 亚洲人与动物交配视频| 亚洲国产高清在线一区二区三| or卡值多少钱| 精品久久久久久久久久免费视频| 五月伊人婷婷丁香| 热99re8久久精品国产| 日韩精品中文字幕看吧| 琪琪午夜伦伦电影理论片6080| 亚洲欧美精品综合久久99| 亚洲国产高清在线一区二区三| 亚洲性夜色夜夜综合| 成人18禁在线播放| 免费看a级黄色片| 欧美成人一区二区免费高清观看| 特级一级黄色大片| 国产亚洲欧美在线一区二区| 色尼玛亚洲综合影院| 精品人妻偷拍中文字幕| 国产精华一区二区三区| 国产精品一区二区三区四区免费观看 | 久久精品国产99精品国产亚洲性色| 日本黄色视频三级网站网址| 丝袜美腿在线中文| 91在线观看av| 有码 亚洲区| 欧美另类亚洲清纯唯美| 日本五十路高清| 一本久久中文字幕| 免费无遮挡裸体视频| 丰满乱子伦码专区| 日韩大尺度精品在线看网址| 久久久成人免费电影| 午夜激情福利司机影院| 色哟哟哟哟哟哟| 女人十人毛片免费观看3o分钟| 国产色婷婷99| 亚洲激情在线av| aaaaa片日本免费| 又紧又爽又黄一区二区| 久久久久久久精品吃奶| 亚洲国产日韩欧美精品在线观看 | 中文字幕av在线有码专区| 国产精品久久久人人做人人爽| 免费在线观看亚洲国产| 欧美日韩黄片免| 成人午夜高清在线视频| 亚洲成av人片在线播放无| 精品乱码久久久久久99久播| 欧美国产日韩亚洲一区| 一级a爱片免费观看的视频| 麻豆成人午夜福利视频| 亚洲中文字幕日韩| 一个人免费在线观看电影| 免费在线观看日本一区| 久久久久久久久久黄片| 日本在线视频免费播放| 一级a爱片免费观看的视频| 欧美日韩福利视频一区二区| 欧美三级亚洲精品| 国模一区二区三区四区视频| 国产精品一区二区三区四区免费观看 | 久久伊人香网站| 亚洲精品亚洲一区二区| 99在线视频只有这里精品首页| 婷婷精品国产亚洲av| 亚洲性夜色夜夜综合| 午夜精品一区二区三区免费看| 色噜噜av男人的天堂激情| 少妇人妻精品综合一区二区 | 国产野战对白在线观看| 一级作爱视频免费观看| 精品国产超薄肉色丝袜足j| 69av精品久久久久久| netflix在线观看网站| 美女高潮喷水抽搐中文字幕| 国产综合懂色| 国产精品av视频在线免费观看| 午夜激情福利司机影院| 亚洲专区中文字幕在线| 麻豆成人午夜福利视频| 日本黄大片高清| 夜夜爽天天搞| 欧美激情久久久久久爽电影| 日本免费a在线| 国产欧美日韩精品一区二区| 18禁国产床啪视频网站| 校园春色视频在线观看| 国产成人系列免费观看| 在线看三级毛片| 国产一级毛片七仙女欲春2| 男女视频在线观看网站免费| 99国产精品一区二区三区| 淫秽高清视频在线观看| 看片在线看免费视频| 久久久久久久久久黄片| 久久人妻av系列| 热99在线观看视频| 精品日产1卡2卡| 日韩欧美国产一区二区入口| 狂野欧美白嫩少妇大欣赏| 全区人妻精品视频| 18美女黄网站色大片免费观看| 内射极品少妇av片p| 90打野战视频偷拍视频| 看黄色毛片网站| 亚洲精品美女久久久久99蜜臀| 法律面前人人平等表现在哪些方面| 无遮挡黄片免费观看| 18禁黄网站禁片午夜丰满| 动漫黄色视频在线观看| 男人的好看免费观看在线视频| 欧美激情久久久久久爽电影| av视频在线观看入口| 香蕉久久夜色| av在线天堂中文字幕| 日日摸夜夜添夜夜添小说| 99精品欧美一区二区三区四区| 尤物成人国产欧美一区二区三区| www.色视频.com| 婷婷丁香在线五月| 欧美av亚洲av综合av国产av| 最新在线观看一区二区三区| 精品一区二区三区人妻视频| 男人和女人高潮做爰伦理| 黄色成人免费大全| 欧美黑人巨大hd| 国内精品一区二区在线观看| 免费观看人在逋| 亚洲国产欧美网| 国产一区二区在线av高清观看| 国产在线精品亚洲第一网站| 国产精品免费一区二区三区在线| 黑人欧美特级aaaaaa片| 欧美黄色片欧美黄色片| 淫妇啪啪啪对白视频| 免费电影在线观看免费观看| 国产综合懂色| 国产成年人精品一区二区| svipshipincom国产片| 五月伊人婷婷丁香| 亚洲人成网站在线播| 在线视频色国产色| 亚洲第一欧美日韩一区二区三区| 美女大奶头视频| 国产视频内射| 国产三级在线视频| 美女高潮的动态| 女人高潮潮喷娇喘18禁视频| 非洲黑人性xxxx精品又粗又长| 午夜福利高清视频| 亚洲成人久久爱视频| 两个人的视频大全免费| 午夜精品久久久久久毛片777| 精品国产亚洲在线| 日韩亚洲欧美综合| 麻豆久久精品国产亚洲av| 给我免费播放毛片高清在线观看| 午夜福利在线观看免费完整高清在 | 欧美日韩一级在线毛片| 亚洲 国产 在线| 在线观看日韩欧美| 日本免费一区二区三区高清不卡| 51国产日韩欧美| 成人av一区二区三区在线看| 午夜精品久久久久久毛片777| 两个人的视频大全免费| bbb黄色大片| 久久久久久人人人人人| 非洲黑人性xxxx精品又粗又长| 成人国产一区最新在线观看| 日本撒尿小便嘘嘘汇集6| 伊人久久大香线蕉亚洲五| bbb黄色大片| 久久精品人妻少妇| 在线看三级毛片| 亚洲真实伦在线观看| 99热6这里只有精品| 午夜福利在线在线| 性欧美人与动物交配| 亚洲国产精品999在线| 狂野欧美激情性xxxx| 亚洲精品日韩av片在线观看 | 欧美+亚洲+日韩+国产| 热99re8久久精品国产| 男人舔奶头视频| 很黄的视频免费| 欧美又色又爽又黄视频| 97超级碰碰碰精品色视频在线观看| 国产av在哪里看| 国产亚洲欧美98| 无遮挡黄片免费观看| 蜜桃亚洲精品一区二区三区| 男人舔女人下体高潮全视频| 国产在视频线在精品| 在线免费观看的www视频| 国产成人a区在线观看| 亚洲熟妇中文字幕五十中出| 国产精品野战在线观看| 极品教师在线免费播放| 国产精品乱码一区二三区的特点| 啪啪无遮挡十八禁网站| 九九在线视频观看精品| 久9热在线精品视频| 一进一出抽搐gif免费好疼| 18禁黄网站禁片午夜丰满| 午夜福利在线在线| 91麻豆av在线| 国产伦精品一区二区三区视频9 | 国内揄拍国产精品人妻在线| 最新美女视频免费是黄的| 美女高潮喷水抽搐中文字幕| 免费一级毛片在线播放高清视频| 噜噜噜噜噜久久久久久91| 在线播放无遮挡| 亚洲av一区综合| 日韩国内少妇激情av| 亚洲av熟女| 黄色日韩在线| 欧美成狂野欧美在线观看| 免费在线观看影片大全网站| 热99re8久久精品国产| 2021天堂中文幕一二区在线观| 亚洲一区高清亚洲精品| 久久精品夜夜夜夜夜久久蜜豆| 在线播放国产精品三级| 亚洲国产欧洲综合997久久,| 色综合婷婷激情| 俄罗斯特黄特色一大片| 欧美日韩精品网址| 午夜精品在线福利| 神马国产精品三级电影在线观看| 又爽又黄无遮挡网站| 一a级毛片在线观看| www.熟女人妻精品国产| 国产精品一区二区三区四区久久| 精品久久久久久久人妻蜜臀av| 亚洲性夜色夜夜综合| 亚洲欧美日韩东京热| 亚洲五月天丁香| 午夜两性在线视频| 久久九九热精品免费| 国产一区在线观看成人免费| 麻豆久久精品国产亚洲av| 99久久无色码亚洲精品果冻| 脱女人内裤的视频| 亚洲精品色激情综合| svipshipincom国产片| 日韩 欧美 亚洲 中文字幕| 美女 人体艺术 gogo| 精品一区二区三区人妻视频| 日韩欧美精品免费久久 | 国产激情欧美一区二区| 国产精品久久久人人做人人爽| 成年女人毛片免费观看观看9| 久久欧美精品欧美久久欧美| 男人和女人高潮做爰伦理| 在线观看免费视频日本深夜| 乱人视频在线观看| 99热精品在线国产| 久久久久久久久久黄片| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦免费观看视频1| 国产69精品久久久久777片| 久久久久亚洲av毛片大全| 无人区码免费观看不卡| 全区人妻精品视频| 久久亚洲真实| 国产伦一二天堂av在线观看| 琪琪午夜伦伦电影理论片6080| 久久久精品大字幕| 国产欧美日韩一区二区三| 精品久久久久久成人av| 人人妻人人澡欧美一区二区| 别揉我奶头~嗯~啊~动态视频| 精品不卡国产一区二区三区| 一个人观看的视频www高清免费观看| 国产午夜精品论理片| 国产精品日韩av在线免费观看| 一级毛片女人18水好多| 久久久久久久久大av| 国产精品 欧美亚洲| eeuss影院久久| 国产精品亚洲av一区麻豆| 午夜福利在线在线| 18禁黄网站禁片午夜丰满| 一进一出抽搐gif免费好疼| 久久久色成人| 亚洲国产高清在线一区二区三| 两个人视频免费观看高清| 欧美乱色亚洲激情| 国产一区二区三区在线臀色熟女| 啦啦啦韩国在线观看视频| 国产高清视频在线观看网站| 99久久综合精品五月天人人| 久久久久久人人人人人| 亚洲欧美日韩高清专用| 国产免费一级a男人的天堂| 国产欧美日韩一区二区精品| 国内精品一区二区在线观看| 一夜夜www| 小蜜桃在线观看免费完整版高清| a级毛片a级免费在线| 精品久久久久久久人妻蜜臀av| 少妇的逼好多水| 亚洲人成网站高清观看| avwww免费| 亚洲av电影不卡..在线观看| 国产成人系列免费观看| 国产精品亚洲av一区麻豆| 午夜福利18| 欧美丝袜亚洲另类 | 精品一区二区三区视频在线 | 亚洲成av人片免费观看| 亚洲成人免费电影在线观看| a在线观看视频网站| 九九在线视频观看精品| 十八禁人妻一区二区| 国产老妇女一区| 国产精品久久视频播放| 国语自产精品视频在线第100页| 国产高清有码在线观看视频| 欧美日韩瑟瑟在线播放| 免费人成视频x8x8入口观看| 黄色成人免费大全| 国产精品久久视频播放| 日本黄色视频三级网站网址| 最近在线观看免费完整版| 女人高潮潮喷娇喘18禁视频| 日韩欧美国产在线观看| 国产精品爽爽va在线观看网站| 激情在线观看视频在线高清| 国产真实乱freesex| 久久精品国产自在天天线| 啦啦啦韩国在线观看视频| 两个人视频免费观看高清| 我的老师免费观看完整版| 精品午夜福利视频在线观看一区| 久久精品影院6| 在线十欧美十亚洲十日本专区| 青草久久国产| 日韩欧美精品v在线| 国产高清三级在线| 性色av乱码一区二区三区2| 国产极品精品免费视频能看的| 国产单亲对白刺激| 亚洲美女视频黄频| 精品人妻一区二区三区麻豆 | 一区二区三区国产精品乱码| 19禁男女啪啪无遮挡网站| 亚洲人成网站高清观看| 国产三级黄色录像| 国产亚洲精品一区二区www| 久久6这里有精品| av天堂中文字幕网| 国模一区二区三区四区视频| 亚洲成人免费电影在线观看| 男人的好看免费观看在线视频| 熟女电影av网| 欧美色视频一区免费| 在线观看av片永久免费下载| 亚洲成人久久爱视频| 国产精品久久久久久亚洲av鲁大| 99久久精品国产亚洲精品| 日韩欧美精品v在线| 欧美成人免费av一区二区三区| 搡女人真爽免费视频火全软件 | www.熟女人妻精品国产| 国产精品一及| 免费观看精品视频网站| 午夜福利免费观看在线| 亚洲国产欧美网| 亚洲七黄色美女视频| 久久国产精品影院| 日韩亚洲欧美综合| 神马国产精品三级电影在线观看| 成年女人毛片免费观看观看9| 日本 av在线| 中文在线观看免费www的网站| 亚洲熟妇熟女久久| 国产亚洲精品一区二区www| 欧美成狂野欧美在线观看| eeuss影院久久| 一级毛片高清免费大全| 在线观看午夜福利视频| 亚洲欧美日韩无卡精品| 夜夜躁狠狠躁天天躁| 亚洲黑人精品在线| 99国产极品粉嫩在线观看| 真实男女啪啪啪动态图| 91在线精品国自产拍蜜月 | 99热这里只有精品一区| 丰满乱子伦码专区| 亚洲电影在线观看av| 亚洲欧美精品综合久久99| 国产精品日韩av在线免费观看| 精品不卡国产一区二区三区| www国产在线视频色| 久久香蕉国产精品| 一级黄色大片毛片| 成年女人毛片免费观看观看9| 女生性感内裤真人,穿戴方法视频| 久久国产精品影院| 免费看日本二区| 亚洲av成人av| 亚洲色图av天堂| 国产麻豆成人av免费视频| 五月伊人婷婷丁香| 日本一本二区三区精品| 欧美日韩乱码在线| 日韩免费av在线播放| 99热这里只有精品一区| 免费高清视频大片| 91九色精品人成在线观看| www.www免费av| www日本黄色视频网| 午夜免费男女啪啪视频观看 | 亚洲美女黄片视频| 成人欧美大片| 桃红色精品国产亚洲av| 欧美在线黄色|