• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evolution of microstructure,stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy

    2023-03-13 09:19:42ChuangWang王闖XiaoDongGao高曉冬DiDiLi李迪迪JingJingChen陳晶晶JiaFanChen陳家凡XiaoMingDong董曉鳴XiaodanWang王曉丹JunHuang黃俊XiongHuiZeng曾雄輝andKeXu徐科
    Chinese Physics B 2023年2期
    關(guān)鍵詞:陳家晶晶

    Chuang Wang(王闖) Xiao-Dong Gao(高曉冬) Di-Di Li(李迪迪) Jing-Jing Chen(陳晶晶)Jia-Fan Chen(陳家凡) Xiao-Ming Dong(董曉鳴) Xiaodan Wang(王曉丹)Jun Huang(黃俊) Xiong-Hui Zeng(曾雄輝) and Ke Xu(徐科)

    1School of Nano-Tech and Nano-Bionics,University of Science and Technology of China,Hefei 230026,China

    2Suzhou Institute of Nano-tech and Nano-bionics,Chinese Academy of Sciences,Suzhou 215123,China

    3Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application,School of Physical Science and Technology,Suzhou University of Science and Technology,Suzhou 215009,China

    4Shenyang National Laboratory for Materials Science,Jiangsu Institute of Advanced Semiconductors,Suzhou 215000,China

    5Suzhou Nanowin Science and Technology Co.,Ltd.,Suzhou 215123,China

    Keywords: hydride vapor phase epitaxy (HVPE), AlN, threading dislocations, nano-patterned sapphire substrate

    1.Introduction

    AlGaN-based deep-ultraviolet (DUV) optoelectronic devices have attracted much attention in the field of air and water purification,sterilization,and medical applications.[1-4]At present, AlGaN based DUV devices are fabricated on AlN templates due to the lack of native substrates.[5]Hydride vapor phase epitaxy(HVPE)is currently one of the most promising methods to produce industrial grade AlN templates due to the high growth rate and low impurity concentration.[6-8]However,the large lattice and thermal mismatch between sapphire and AlN always result in very high threading dislocation density (TDD) as well as large strain in AlN films.The performance of the AlGaN-based devices is seriously limited by the quality of the template.[9-11]A high-quality AlN thick film will be beneficial to reducing the stress and dislocation density of the following AlGaN epitaxial layer.Therefore, it is crucial to grow high-quality AlN thick films for improving the performance of the AlGaN-based devices.

    Many growth techniques/methods have been developed to improve the quality of AlN thick films on sapphire substrates,such as multilayers via growth mode alternation technique,[12]migration-enhanced metal-organic chemical vapor deposition(MEMOCVD),[13]sapphire nitridation pretreatment,[14]lateral overgrowth on patterned sapphire substrates,[15]hightemperature annealing[16]andin situetching method.[17]Among these methods, the lateral overgrowth method on NPSSs has attracted much attention for its effectivity in reducing dislocation density and stress.[18,19]It is reported that the AlN epilayer grown on hole-type NPSS by metal-organic chemical vapor deposition (MOCVD) can achieve higher quality attributed to the center-closed growth mode.[20]Although the growth of parasitic grains on the additional surface introduced by NPSS can affect coalescence and possibly seriously affect the crystallinity of the epitaxial layer,[21-23]the voids caused by the lateral growth process of the AlN columns on the mesa provide a channel for the gradual release of the stress.[24]However, there are few reports about HVPE-AlN layers grown on hole-type NPSSs and the stress and dislocation evolution process remain unclear.

    In this report,AlN thick films were grown on hexagonally arranged concave truncated cones shaped hole-type NPSSs in a home-built horizontal HVPE system.The surface morphology, crystal quality, and the evolution behavior of stress and threading dislocations are investigated in detail,which would be beneficial for the growth of high-quality AlN films.

    2.Experiments

    Commercially available 2-inch c-plane-oriented NPSSs were used in this work.Figure 1(a) shows a typical AFM image of NPSSs with hexagonally-arranged hole-type pattern.The pattern period is~1 μm.The cross-sectional profile is shown in Fig.1(b).The inside structure of the hole is an inverted truncated cone.The depth and diameter of holes are approximately 500 nm and 815 nm, respectively.The AlN thick films with about 4.5μm thickness were grown on NPSSs in a home-built HVPE setup.In the experiments, the substrates were heated at 1500°C in a mixed carrier gas flow(N2:H2=1:1).As a reactive gas, AlCl3was generated in the reactor (source zone) by the reaction between Al metal and HCl gas at 550°C, and was then reacted with NH3in the growth zone.The HCl and NH3flow rates are 60 sccm and 800 sccm,respectively.And the carrier gas flow rate of mixed N2and H2is fixed at 2000 sccm.

    The surface morphology and structure of the AlN films were characterized by atomic force microscopy(AFM)in tapping mode.The cross-sectional morphologies of samples were examined by scanning electron microscopy (SEM) by using Hitachi S4800.The crystallinity and stress of the AlN films were determined by high-resolution x-ray diffraction(HRXRD) and Raman scattering (Raman line scan was performed every 0.1μm for a test point),respectively.Transmission electron microscopy(TEM)and scanning TEM(STEM)measurements were performed through a TALOS F200X operating at 200 kV.The cross-sectional specimens were prepared along the[11ˉ20]AlN direction by mechanical polishing, and then by Ar+ions milling.

    Fig.1.(a)AFM image of hole type NPSSs.(b)Cross-section profile of the patterns at the white solid line in(a).

    3.Results and discussion

    Figure 2 exhibits that the full width at half-maximum(FWHM) values of symmetric (0002)- and asymmetric(10ˉ12)-planes x-ray rocking curves (XRCs) of the AlN thick films are 405 arcsec and 647 arcsec, respectively.An estimation of the dislocation densityρshould be calculated by the equationρ=β2/4.35b2,[25]whereβtilt andβtwist are the FWHMs of the(0002)and(10ˉ12)XRC,respectively,and the Burgers vectorbis equal toc-axial anda-axial lattice constants, respectively.The screw- and edge-type dislocation densities were calculated to be about 6.62×108cm-2and 3.08×109cm-2,respectively.

    Fig.2.XRCs for(0002)and(10ˉ12)planes.

    Figures 3(a) and 3(b) show the surface morphology of AlN layers grown on NPSSs.As shown in Fig.3(a), the surface of the AlN layer has complete coalesced and shows multiple growth spirals.This may be due to the periodically distributed TD source below the coalesced surface.[26]The root mean square (RMS) value of surface roughness for a 10×10 μm2area is 1.35 nm.In addition, the smooth and uniform step-flow morphology is observed in Fig.3(b).The RMS value for a 2×2μm2area is 0.24 nm.Figure 3(c)shows the cross-sectional morphology of epilayer.It is found that the epilayer prefers to merge on the patterned regions and voids are formed over the hole of NPSSs.The average coalescence thickness is about 2μm,which is similar to previous reports.In addition, the void deviates from the center of the pattern,which may correspond to the coalescence process of the surface.On the other hand,misaligned crystallites were observed on the sidewall of sapphire,which is confirmed by TEM measurement later.It is reported that the HVPE-AlN layers nucleate and grow simultaneously both on the mesa and sidewall of NPSSs.[27]The parasitic AlN crystallites which orientation is different from the orientation of the AlN layer on the c-plane mesa decelerated the coalescence process of layers, and resulted in the void deviates from the center of the pattern.

    In order to study the surface coalescence behaviors, the sample was obliquely dissociated.Figure 4(a) shows the oblique cross-sectional morphology image of the AlN layer,which can demonstrate the evolution of void outlines at different thickness.It is found that a large number of the triangular hollow profiles are periodically distributed on the plane.The cycle of the voids is consistent with the period of the NPSSs pattern exactly.The extended outlines are at an angle of 120 degrees to each other, and one of them is parallel to [11ˉ20]direction.And the area of voids decreased gradually with increasing of epilayer thickness during the growth process.Figure 4(b) presents a magnified image at the AlN/NPSSs interface.The three-fold distributed inclined grains grown on the slopes of the NPSSs were observed on the interface,and have the same spatial distribution as the void.It is speculated that the undesired AlN crystal grown on the sidewalls of the holes may hinder the growth of c-oriented AlN on the mesa area,and thus, the coalescence of the holes presents a triangular void morphology.

    Fig.3.(a)AFM image of the surface morphology.(b)Magnified morphology in(a).(c)Cross-sectional SEM image.

    Fig.4.(a)Oblique cross-sectional SEM images of AlN layers.(b)SEM images of three-fold distributed misaligned crystal on AlN/Sapphire interface.

    Figure 5(a) shows the cross-sectional bright-field STEM image underg= [0002] condition.It can be seen that the profile of nanohole is different from the original morphology due to the decomposition of sapphire at high temperature.[28]The crystal orientation on three positions (marked by yellow circles) is confirmed by the selected area electron diffraction(SAED).Positions 1 and 2 are located at the region of crystal grown on the left and right sidewall of the hole, respectively,and position 3 is at the mesa region.The SAED results reveal that the orientation of grains grown on these positions is completely different.As shown in Figs.5(b)and 5(c),[11ˉ20]and [0002] orientation AlN were grown on the right and left sidewall, respectively.This phenomenon is similar to other group III nitrides growing on different orientation sapphire substrate.[29,30]As shown in Fig.5(d),a c-plane AlN layer was grown with a 30°rotation around the[0001]axis with respect to the sapphire,and the epitaxial relationships are AlN(0002)||sapphire(0006)and AlN(10ˉ10)||sapphire(11ˉ20).[31]

    Fig.5.(a) Cross-sectional bright-field STEM image under g=[0002] condition.(b)-(d) The SAEDs of three positions as marked in (a).(e)Illustration of crystal orientation parasitic grains.

    The angle between the inclined non-c-plane sidewall of NPSSs and the c-plane is close to that between r- or n-plane sapphire and c-plane sapphire, indicating that the r- and nplane sapphire facets may be contained in the NPSSs.The AlN nucleation on NPSSs takes place not only on the c-plane mesa areas but also on the inclined sidewalls of the hole containing r-and n-facets(misaligned crystallites).[22]In the initial stage of growth, the parasitic crystallites formed on the sidewall of nano-hole are competing with AlN crystals grown on the mesa and are eliminated during the subsequent lateral growth of the epitaxial layer.Figure 5(e)shows a schematic of the crystal orientation of parasitic AlN crystals grown on the upper inclined plane of NPSSs.Based on the SAED measurements, the AlN crystallites which hinder surface coalescence are assigned to the misaligned grains formed on the three-fold n-plane of sapphire substrates.[32]So,it can be concluded that the appearance of unique triangular voids is caused by the presence of parasitic crystallites existed in this specific area.

    Fig.6.(a) Evolution of the E2 (high) phonon mode frequency shift along growth direction.The inset image is a schematic diagram of the Raman line scan measurement.(b) Raman spectra of epilayer at five typical positions.The dashed line corresponds the E2 (high) peak of bulk AlN at 657.4 cm-1.

    The stress evolution of HVPE-AlN films grown on the mesa of NPSSs was characterized through Raman spectroscopy.Figure 6 shows the evolution of E2(high) phonon mode frequency with the growth direction and the Raman spectra of epilayer on five typical positions,which reveals the stress evolution of samples with thickness.It is found that the phonon frequency of E2(high)fluctuates greatly along the growth direction.And the fluctuation can be roughly divided into four stages S1-S4 were given in Fig.6(a).The inset image is a schematic diagram of the Raman line scan measurement.Since the peak of the E2(high)phonon mode of stressfree AlN locates at 657.4 cm-1,there is residual compressive stress in the AlN layer.[33]Just above the heterointerface, the compressive stress of AlN increases continuously and reaches its peak position (1 μm), which is resulted from the combination of thermal expansion coefficient (TEC) mismatch between AlN and sapphire and the competitive growth process in the early stages of growth.It is found that the E2(high)phonon frequency decreases gradually from 659.4 cm-1to 658.6 cm-1in the S2 stage,which corresponds to the coalescence evolution process of the AlN layer as discussed above.The presence of nanovoids act as a stress releasing channel in the growth direction.[24]The E2(high) phonon mode frequency in the S3 stage with a certain rebound may be caused by the misorientations of the adjacent regions at the coalescence region.And it enters a stable state after fully completing the coalescence.

    In order to examine the dislocation annihilation mechanism of AlN layers, the cross-sectional dark-field TEM images were taken as shown in Fig.7.Figures 7(a)and7(b)show the same area of the AlN epilayer on NPSSs under two-beam condition withg=[0002]and[11ˉ20],respectively.According to the invisibility criterion rule,g·b=0, the edge, mix, and screw dislocations were identified by comparing the two TEM images of the same area under different diffraction conditions.The screw-type and edge-type TDs are visible withg=[0002]and [11ˉ20], respectively.[34]The mix-type TDs generated on the coalescence position is countable and is caused by the misorientation of the adjacent regions.In contrast, the number of edge-type dislocations is relatively higher and many of them can propagate into the upper AlN epilayer, as shown in Fig.7(b).It is noted that there is a significant strain contrast above the mesa,which is associated with large compress stress caused by the competitive growth between the parasitic crystallites and AlN grown on the mesa area.

    To illustrating the evolution process of the TDs more clearly, the magnified images of the heterointerface enclosed in the red rectangle were presented in Figs.7(c) and 7(d).It is clear that there is a lot of inversion domains(IDs)as shown in Fig.7(c).The Burgers vector of these IDs is similar to the Burns vector of the spiral dislocations, making it difficult to determine the origin of the spiral dislocations generated on the mesa.[35]As shown in Fig.7(d),the edge TDs(type-D)generated at the AlN/sapphire interface interacted with each other,resulting in a decrease in the threading dislocations density(TDD)above the mesa regions.A part of dislocations with different signs spontaneously form dislocation loops.Due to the image force effects,the rest of the TDs near the nanohole bend toward and terminate the boundary.In addition,the connection of TDs with the same signs generated at the crystal boundary(type-C) results in the appearance of horizontal dislocation.These mechanisms all lead to the effectively reduction of dislocations.However,the TDD increases apparently during the subsequent epitaxy process.It is because the probability of dislocation reaction is inversely proportional to the spacing between them.A large number of edge-type TDs generated on the boundary of misaligned crystallites (type-B) hardly interact with each other,extend directly to the upper AlN epilayer.

    Fig.7.Cross-sectional dark-field TEM images under two-beam conditions(a)g=[0002],(b)g=[11ˉ20].(c)and(d)The magnified images of selected typical zones in(a)and(b),respectively.

    Fig.8.Illustrations of TDs distribution in AlN epilayers grown on NPSSs.

    Figure 8 is the schematic diagram of the distribution of dislocation.There are two type of TD that propagated into the surface of epilayers.The mixed-types TDs(type-A)is caused by the misorientation of the adjacent regions during the coalescence of voids.And the pure edge-type TDs(type-B)are originated from the boundary between the misaligned grains and the AlN on mesa.It is reported that the effects of image force and misorientation should be taken into account for decreasing the TDD in AlN epilayers grown on NPSSs.[36]However,for the NPSSs with inverted truncated cone-shaped pattern,the misaligned crystallites should also be considered.The type-B TDs formed at the boundary becomes a crucial factor leading to the deterioration of the crystalline quality of AlN films.It is supposed that the crystal quality of AlN thick films will be improved by decreasing the dimension of misaligned grains.

    4.Conclusion and perspectives

    In summary,the formation mechanism of triangular voids in the HVPE-AlN epilayer grown on concave truncated coneshaped NPSSs and its effect on crystal quality are investigated.It is found that c-orientation AlN grown on the mesa are hindered by the undesired parasitic nucleation on the three-fold n-plane facet sapphire,which results in the presentence of the holes with a triangular outlines morphology.The Raman measurements indicate that the appearance of voids can effectively relieve compressive stress produced by the undesired grain growth and the coalescence of misaligned AlN.In addition,reduction of parasitic growth on the sidewall of pattern is also essential for decreasing TDD in the upper AlN epilayer.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant No.61974158)and the Natural Science Fund of Jiangsu Province,China(Grant No.BK20191456).

    猜你喜歡
    陳家晶晶
    SOME PROPERTIES OF THE INTEGRATION OPERATORS ON THE SPACES F(p,q,s)*
    昆蟲才藝表演
    巧算最小表面積
    PbI2/Pb5S2I6 van der Waals Heterojunction Photodetector
    Digging for the past
    炎熱的夏天
    The Impact of Dignity on Design Behavior
    青年生活(2019年3期)2019-09-10 16:57:14
    銀億股份:于無聲處聽驚雷
    我的家鄉(xiāng)最美之賀州
    陳家泵站新舊混凝土銜接處理
    三级毛片av免费| 亚洲黑人精品在线| 日韩国内少妇激情av| 欧美一级毛片孕妇| 免费在线观看黄色视频的| 久久人人精品亚洲av| 国产精品亚洲美女久久久| 亚洲人成网站高清观看| 亚洲第一欧美日韩一区二区三区| 亚洲人成伊人成综合网2020| 毛片女人毛片| 久久九九热精品免费| 嫁个100分男人电影在线观看| 午夜免费激情av| 日韩大码丰满熟妇| 18禁裸乳无遮挡免费网站照片| 啪啪无遮挡十八禁网站| a级毛片在线看网站| 欧美成人一区二区免费高清观看 | 久久精品综合一区二区三区| 午夜福利在线观看吧| 99久久精品国产亚洲精品| 欧美一级a爱片免费观看看 | 一级作爱视频免费观看| 中文在线观看免费www的网站 | 欧美成狂野欧美在线观看| 国产成人啪精品午夜网站| 欧美日韩国产亚洲二区| 日本黄大片高清| 久久中文看片网| 亚洲一码二码三码区别大吗| 两人在一起打扑克的视频| 国产1区2区3区精品| 国产午夜福利久久久久久| 免费av毛片视频| 久久久久久久精品吃奶| 久久草成人影院| 男男h啪啪无遮挡| 国产精品久久久久久久电影 | 亚洲av成人不卡在线观看播放网| 国产欧美日韩精品亚洲av| 丝袜人妻中文字幕| 国产精品 欧美亚洲| 国产精品国产高清国产av| 在线视频色国产色| 免费看美女性在线毛片视频| 亚洲人成电影免费在线| 国产单亲对白刺激| 久久婷婷成人综合色麻豆| 国产午夜精品论理片| 色播亚洲综合网| 欧美极品一区二区三区四区| av超薄肉色丝袜交足视频| 亚洲国产精品成人综合色| 久久九九热精品免费| 午夜福利成人在线免费观看| 中文在线观看免费www的网站 | 两性夫妻黄色片| 国产欧美日韩一区二区三| 一区福利在线观看| 国产精品免费一区二区三区在线| 男女床上黄色一级片免费看| 国产精品九九99| 久久精品综合一区二区三区| 久久中文字幕人妻熟女| 两个人视频免费观看高清| 麻豆av在线久日| 亚洲成av人片免费观看| 在线观看日韩欧美| 久久久久久亚洲精品国产蜜桃av| 精品久久久久久成人av| 制服丝袜大香蕉在线| 国产高清视频在线播放一区| netflix在线观看网站| 亚洲国产日韩欧美精品在线观看 | 变态另类成人亚洲欧美熟女| 国产麻豆成人av免费视频| 午夜亚洲福利在线播放| 一个人免费在线观看电影 | 亚洲七黄色美女视频| 免费看十八禁软件| av视频在线观看入口| 一个人观看的视频www高清免费观看 | 免费在线观看完整版高清| а√天堂www在线а√下载| 欧美性猛交╳xxx乱大交人| 亚洲国产欧美网| 99国产精品一区二区蜜桃av| 一区二区三区高清视频在线| 国产久久久一区二区三区| 亚洲精品国产精品久久久不卡| 成年版毛片免费区| 日韩精品中文字幕看吧| 色哟哟哟哟哟哟| 免费看a级黄色片| 精品电影一区二区在线| 国产精品综合久久久久久久免费| 丁香欧美五月| 亚洲国产欧洲综合997久久,| 亚洲狠狠婷婷综合久久图片| a级毛片在线看网站| 久久久久性生活片| 欧美国产日韩亚洲一区| 成人精品一区二区免费| 又紧又爽又黄一区二区| 亚洲国产精品成人综合色| 九色成人免费人妻av| 日韩欧美一区二区三区在线观看| 老汉色∧v一级毛片| 欧美日本视频| 久久久精品大字幕| 亚洲成av人片免费观看| 日韩欧美免费精品| 一区福利在线观看| 小说图片视频综合网站| 久久人妻av系列| 国产精华一区二区三区| 免费看a级黄色片| 亚洲午夜精品一区,二区,三区| 午夜福利成人在线免费观看| 麻豆国产97在线/欧美 | 美女高潮喷水抽搐中文字幕| 男女做爰动态图高潮gif福利片| 国产高清激情床上av| 他把我摸到了高潮在线观看| 男女床上黄色一级片免费看| 亚洲精品久久成人aⅴ小说| 亚洲欧美日韩无卡精品| xxxwww97欧美| 亚洲激情在线av| 搞女人的毛片| 国产激情偷乱视频一区二区| 精品免费久久久久久久清纯| 国产精品综合久久久久久久免费| 精品少妇一区二区三区视频日本电影| 国产精品乱码一区二三区的特点| 色老头精品视频在线观看| 一本大道久久a久久精品| 老司机在亚洲福利影院| 国产精品久久久久久久电影 | 亚洲国产欧美人成| 91麻豆精品激情在线观看国产| 91麻豆精品激情在线观看国产| 亚洲国产欧洲综合997久久,| 国产午夜精品久久久久久| 亚洲国产欧美人成| 国内毛片毛片毛片毛片毛片| 久久精品国产亚洲av高清一级| 欧美成人性av电影在线观看| 日韩高清综合在线| 亚洲欧美日韩高清专用| 99精品久久久久人妻精品| 日本一区二区免费在线视频| 欧美中文日本在线观看视频| 午夜成年电影在线免费观看| 给我免费播放毛片高清在线观看| 亚洲精华国产精华精| 精品乱码久久久久久99久播| 久久亚洲精品不卡| 国产精品免费一区二区三区在线| 久久精品影院6| 免费观看人在逋| 亚洲成av人片免费观看| 成年女人毛片免费观看观看9| 制服人妻中文乱码| 99国产精品99久久久久| 国产成+人综合+亚洲专区| 日本成人三级电影网站| 又粗又爽又猛毛片免费看| 国产蜜桃级精品一区二区三区| 午夜福利免费观看在线| 精品国产乱码久久久久久男人| 久久精品91无色码中文字幕| 三级毛片av免费| 久久午夜综合久久蜜桃| 久久 成人 亚洲| 午夜激情av网站| 午夜福利高清视频| 国产不卡一卡二| 亚洲国产欧洲综合997久久,| cao死你这个sao货| 在线观看免费午夜福利视频| 国产精品久久电影中文字幕| 中文字幕高清在线视频| 国产乱人伦免费视频| 精品国产亚洲在线| 欧美av亚洲av综合av国产av| 床上黄色一级片| 久久精品91无色码中文字幕| 97超级碰碰碰精品色视频在线观看| 高清在线国产一区| 一本综合久久免费| 久久久久久人人人人人| 久久婷婷人人爽人人干人人爱| 亚洲av日韩精品久久久久久密| 国产成人精品久久二区二区91| 1024手机看黄色片| 国产精品久久电影中文字幕| 日韩大尺度精品在线看网址| 欧美日韩国产亚洲二区| 久久婷婷成人综合色麻豆| 日韩精品免费视频一区二区三区| 免费电影在线观看免费观看| 91av网站免费观看| 亚洲色图 男人天堂 中文字幕| 又爽又黄无遮挡网站| 亚洲精品av麻豆狂野| 日本黄色视频三级网站网址| 亚洲成人中文字幕在线播放| 久久久国产精品麻豆| 午夜精品久久久久久毛片777| 美女扒开内裤让男人捅视频| 搡老熟女国产l中国老女人| 久久久久久免费高清国产稀缺| 国产精品av视频在线免费观看| 我要搜黄色片| 日韩有码中文字幕| 日韩大尺度精品在线看网址| 国产精品国产高清国产av| 婷婷精品国产亚洲av在线| 日本精品一区二区三区蜜桃| 免费搜索国产男女视频| 可以免费在线观看a视频的电影网站| 精品高清国产在线一区| 亚洲一区二区三区色噜噜| 久久精品国产亚洲av香蕉五月| a级毛片a级免费在线| 给我免费播放毛片高清在线观看| 亚洲国产中文字幕在线视频| 91在线观看av| 欧美三级亚洲精品| 久久99热这里只有精品18| 99国产综合亚洲精品| 最近在线观看免费完整版| 日本三级黄在线观看| 欧美乱妇无乱码| 99久久99久久久精品蜜桃| 欧美成人午夜精品| 国产av在哪里看| 久久精品影院6| 免费搜索国产男女视频| 99热6这里只有精品| 国产成人av激情在线播放| 久久国产精品影院| 巨乳人妻的诱惑在线观看| 中文字幕熟女人妻在线| 久久久国产成人免费| 日本在线视频免费播放| 中文资源天堂在线| 国产亚洲av高清不卡| 一区福利在线观看| 91成年电影在线观看| 桃红色精品国产亚洲av| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩东京热| 大型黄色视频在线免费观看| 波多野结衣高清作品| 麻豆av在线久日| 老司机午夜福利在线观看视频| 午夜日韩欧美国产| 伊人久久大香线蕉亚洲五| 国产精品av视频在线免费观看| 国产黄色小视频在线观看| 国产熟女午夜一区二区三区| 精品第一国产精品| 婷婷亚洲欧美| 欧美日本亚洲视频在线播放| 露出奶头的视频| 操出白浆在线播放| 最新美女视频免费是黄的| 国产成+人综合+亚洲专区| 国产精品亚洲一级av第二区| 三级男女做爰猛烈吃奶摸视频| 欧美一区二区精品小视频在线| 此物有八面人人有两片| 国产不卡一卡二| 91成年电影在线观看| 国产精品美女特级片免费视频播放器 | 日本黄大片高清| 丰满的人妻完整版| 久久久久久大精品| 一进一出抽搐动态| 国产av麻豆久久久久久久| 成人av一区二区三区在线看| 99精品欧美一区二区三区四区| 最近最新中文字幕大全免费视频| 欧美色视频一区免费| 99热这里只有精品一区 | 欧美另类亚洲清纯唯美| 欧美最黄视频在线播放免费| 亚洲欧美日韩无卡精品| 国产日本99.免费观看| a级毛片在线看网站| 欧美成狂野欧美在线观看| 欧美一级毛片孕妇| 一本大道久久a久久精品| 亚洲欧美日韩无卡精品| 欧美性猛交╳xxx乱大交人| 桃色一区二区三区在线观看| 精品久久久久久久人妻蜜臀av| 男人舔女人的私密视频| 亚洲无线在线观看| 成人av在线播放网站| 免费观看精品视频网站| 亚洲国产高清在线一区二区三| 精华霜和精华液先用哪个| 巨乳人妻的诱惑在线观看| 国产av不卡久久| 又大又爽又粗| 制服人妻中文乱码| 女同久久另类99精品国产91| 男人舔女人下体高潮全视频| 中亚洲国语对白在线视频| 日韩欧美在线二视频| 一二三四在线观看免费中文在| 亚洲激情在线av| 丝袜人妻中文字幕| 亚洲av成人精品一区久久| 老司机靠b影院| 午夜免费观看网址| 亚洲国产欧美一区二区综合| 美女 人体艺术 gogo| 香蕉久久夜色| 啦啦啦免费观看视频1| 亚洲国产精品成人综合色| 丰满人妻熟妇乱又伦精品不卡| 日本成人三级电影网站| 免费在线观看完整版高清| tocl精华| 成人欧美大片| 成人国产一区最新在线观看| 亚洲av成人av| 亚洲人成电影免费在线| 免费在线观看日本一区| 三级国产精品欧美在线观看 | 无遮挡黄片免费观看| 国产成人精品无人区| 欧美中文综合在线视频| 国产视频一区二区在线看| 天堂动漫精品| 成人手机av| 黄色毛片三级朝国网站| 国产男靠女视频免费网站| 我要搜黄色片| 两人在一起打扑克的视频| 国产免费男女视频| 99久久精品热视频| 国产亚洲av嫩草精品影院| 淫妇啪啪啪对白视频| 久久久久久免费高清国产稀缺| 一二三四社区在线视频社区8| 国产欧美日韩一区二区精品| 精品国产乱子伦一区二区三区| 国产乱人伦免费视频| 国产精品久久久人人做人人爽| 亚洲色图 男人天堂 中文字幕| 亚洲成av人片在线播放无| 美女免费视频网站| 99久久无色码亚洲精品果冻| 91老司机精品| 大型黄色视频在线免费观看| 听说在线观看完整版免费高清| 首页视频小说图片口味搜索| 成人国产综合亚洲| 美女高潮喷水抽搐中文字幕| 黄色片一级片一级黄色片| 国产亚洲精品av在线| 精华霜和精华液先用哪个| a级毛片在线看网站| 人妻丰满熟妇av一区二区三区| 国产精品综合久久久久久久免费| 精品国产乱码久久久久久男人| 亚洲第一电影网av| 免费在线观看影片大全网站| 国产三级黄色录像| 国产亚洲欧美98| 欧美精品啪啪一区二区三区| 午夜免费观看网址| 日本一区二区免费在线视频| 国产伦在线观看视频一区| 久久天堂一区二区三区四区| 男女视频在线观看网站免费 | 日日夜夜操网爽| 久久 成人 亚洲| 18禁黄网站禁片免费观看直播| 最近最新免费中文字幕在线| 观看免费一级毛片| 男人舔女人的私密视频| 一个人免费在线观看电影 | 日本撒尿小便嘘嘘汇集6| netflix在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久视频播放| 一本精品99久久精品77| 一区二区三区高清视频在线| 国产精品爽爽va在线观看网站| 狂野欧美激情性xxxx| 久久香蕉精品热| 嫩草影院精品99| 亚洲欧美精品综合久久99| 日本黄色视频三级网站网址| 国产精品自产拍在线观看55亚洲| 国产激情久久老熟女| 国产精品久久久久久久电影 | 露出奶头的视频| 成熟少妇高潮喷水视频| www日本在线高清视频| 2021天堂中文幕一二区在线观| 亚洲av第一区精品v没综合| 两个人看的免费小视频| 午夜视频精品福利| 欧美成人性av电影在线观看| 亚洲精品国产一区二区精华液| 国产一级毛片七仙女欲春2| АⅤ资源中文在线天堂| 18禁黄网站禁片午夜丰满| 欧美性长视频在线观看| 精品国产美女av久久久久小说| 久久香蕉激情| 欧美乱色亚洲激情| 宅男免费午夜| 精品无人区乱码1区二区| 老司机在亚洲福利影院| 在线免费观看的www视频| 亚洲人与动物交配视频| 免费在线观看视频国产中文字幕亚洲| 国产精品免费一区二区三区在线| 国产成人一区二区三区免费视频网站| 国产伦在线观看视频一区| 1024视频免费在线观看| 亚洲性夜色夜夜综合| 国产激情久久老熟女| 好男人电影高清在线观看| 日韩高清综合在线| 久久精品国产综合久久久| 久久天堂一区二区三区四区| 国产日本99.免费观看| 国产精品亚洲一级av第二区| 舔av片在线| 久久久久久久久免费视频了| 午夜福利18| 在线观看免费日韩欧美大片| 欧美绝顶高潮抽搐喷水| 男女做爰动态图高潮gif福利片| 狂野欧美白嫩少妇大欣赏| 国语自产精品视频在线第100页| 亚洲精品色激情综合| 免费看日本二区| 午夜视频精品福利| 亚洲国产精品成人综合色| 中文字幕高清在线视频| 久久亚洲精品不卡| 国产欧美日韩一区二区精品| 久久精品亚洲精品国产色婷小说| 国产精品一区二区三区四区久久| 高清在线国产一区| 中文字幕人成人乱码亚洲影| 国产精品美女特级片免费视频播放器 | 好男人在线观看高清免费视频| 少妇熟女aⅴ在线视频| 国产黄a三级三级三级人| 成人18禁在线播放| 日本五十路高清| 一级作爱视频免费观看| 亚洲欧美精品综合一区二区三区| 亚洲av电影在线进入| 久久伊人香网站| 婷婷精品国产亚洲av在线| 成年人黄色毛片网站| 国产在线精品亚洲第一网站| 久久国产乱子伦精品免费另类| 别揉我奶头~嗯~啊~动态视频| 欧美精品亚洲一区二区| 亚洲人成77777在线视频| 久久热在线av| 男女下面进入的视频免费午夜| 亚洲成av人片免费观看| 免费在线观看视频国产中文字幕亚洲| 久久精品综合一区二区三区| 最近最新中文字幕大全电影3| 在线视频色国产色| 久久香蕉激情| 国产亚洲av高清不卡| 搡老妇女老女人老熟妇| 99精品在免费线老司机午夜| 少妇被粗大的猛进出69影院| 久久久国产成人精品二区| 国产一级毛片七仙女欲春2| 99国产精品一区二区蜜桃av| 9191精品国产免费久久| 免费在线观看完整版高清| 午夜福利成人在线免费观看| 亚洲美女黄片视频| 在线观看免费午夜福利视频| 亚洲精品在线美女| 色播亚洲综合网| 女人爽到高潮嗷嗷叫在线视频| 亚洲中文av在线| 亚洲人成网站高清观看| 18禁黄网站禁片免费观看直播| xxxwww97欧美| 伊人久久大香线蕉亚洲五| 久久天躁狠狠躁夜夜2o2o| 好看av亚洲va欧美ⅴa在| 亚洲,欧美精品.| 成熟少妇高潮喷水视频| 欧美又色又爽又黄视频| 1024手机看黄色片| 亚洲一区二区三区色噜噜| 日本a在线网址| 可以免费在线观看a视频的电影网站| 男人舔女人的私密视频| 午夜精品在线福利| 精品少妇一区二区三区视频日本电影| av视频在线观看入口| 熟妇人妻久久中文字幕3abv| 国产午夜精品久久久久久| 男女那种视频在线观看| 亚洲美女视频黄频| 99精品久久久久人妻精品| 亚洲中文字幕日韩| 中国美女看黄片| 欧美日韩瑟瑟在线播放| 我要搜黄色片| 国产亚洲精品av在线| 亚洲无线在线观看| 成人欧美大片| 变态另类丝袜制服| xxx96com| 1024香蕉在线观看| 亚洲欧洲精品一区二区精品久久久| 午夜a级毛片| 精品欧美一区二区三区在线| 久久久久亚洲av毛片大全| 精品熟女少妇八av免费久了| 在线观看www视频免费| 青草久久国产| 日本成人三级电影网站| 麻豆av在线久日| 国产精品99久久99久久久不卡| а√天堂www在线а√下载| 国产成+人综合+亚洲专区| 中文字幕熟女人妻在线| 男男h啪啪无遮挡| 九九热线精品视视频播放| 国产激情偷乱视频一区二区| 免费高清视频大片| 久久久久久久久免费视频了| 1024香蕉在线观看| 午夜久久久久精精品| 精品乱码久久久久久99久播| 两个人看的免费小视频| 亚洲av美国av| 一本精品99久久精品77| 久久中文看片网| 久久热在线av| 黄色视频不卡| 国产97色在线日韩免费| 日韩欧美精品v在线| 首页视频小说图片口味搜索| 久久人人精品亚洲av| 狂野欧美激情性xxxx| 搡老岳熟女国产| 久久久国产成人精品二区| 美女大奶头视频| 老司机福利观看| 国产又色又爽无遮挡免费看| 国产精品 欧美亚洲| 色综合亚洲欧美另类图片| 久久国产精品人妻蜜桃| 亚洲18禁久久av| 窝窝影院91人妻| 中文字幕熟女人妻在线| 香蕉久久夜色| 亚洲av电影在线进入| 国产伦一二天堂av在线观看| 俄罗斯特黄特色一大片| 香蕉久久夜色| 制服丝袜大香蕉在线| 99久久99久久久精品蜜桃| 欧美日韩亚洲综合一区二区三区_| netflix在线观看网站| 丝袜美腿诱惑在线| 岛国在线观看网站| 欧美黑人巨大hd| 国产亚洲精品久久久久久毛片| 两性夫妻黄色片| 欧美一区二区精品小视频在线| 成人av在线播放网站| 亚洲av成人不卡在线观看播放网| 亚洲人与动物交配视频| 国产三级中文精品| 夜夜夜夜夜久久久久| 亚洲国产精品sss在线观看| 亚洲一区高清亚洲精品| 免费看a级黄色片| 99久久综合精品五月天人人| 亚洲成人中文字幕在线播放| svipshipincom国产片| 黄片小视频在线播放| 精品久久久久久久久久久久久| 亚洲激情在线av| 欧美一级a爱片免费观看看 | 成人国语在线视频| 精华霜和精华液先用哪个| 成人18禁在线播放| 日韩欧美三级三区| 亚洲 欧美一区二区三区| 亚洲无线在线观看| 精品高清国产在线一区| 一个人免费在线观看的高清视频| 亚洲专区字幕在线| 免费人成视频x8x8入口观看| 一区二区三区激情视频| 久99久视频精品免费|