• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of thickness of antimony selenide film on its photoelectric properties and microstructure

    2023-03-13 09:20:12XinLiLiu劉欣麗YueFeiWeng翁月飛NingMao毛寧PeiQingZhang張培晴ChangGuiLin林常規(guī)XiangShen沈祥ShiXunDai戴世勛andBaoAnSong宋寶安
    Chinese Physics B 2023年2期
    關(guān)鍵詞:寶安常規(guī)

    Xin-Li Liu(劉欣麗) Yue-Fei Weng(翁月飛) Ning Mao(毛寧) Pei-Qing Zhang(張培晴)Chang-Gui Lin(林常規(guī)) Xiang Shen(沈祥) Shi-Xun Dai(戴世勛) and Bao-An Song(宋寶安)

    1Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo 315211,China

    2The Research Institute of Advanced Technologies,Ningbo University,Ningbo 315211,China

    3Key Laboratory of Photoelectric Detecting Materials and Devices of Zhejiang Province,Ningbo 315211,China

    4Ningbo Institute of Oceanography,Ningbo University,Ningbo 315211,China

    5Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province,Ningbo 315211,China

    Keywords: antimony selenide films,photoelectric properties,Levenberg-Marquardt method and spectral fitting method(LM-SFM),microstructure

    1.Introduction

    Antimony selenide (Sb2Se3) has emerged as an alternative absorber material due to its high absorption coefficient,appropriate optical band gap,nontoxicity,low cost and earthabundant.[1-3]It is the promising candidate for important applications in diverse areas such as solar energy conversion,thermoelectric cooling, photo detector technology, thermoelectric power generation and opto-electronics in the nearinfrared region.[4]Particularly, it has been a promising absorber layer for solar cells and displays good photovoltaic properties.[5]With the development of magnetron sputtering (MS), thermal evaporation (TE), pulsed laser deposition(PLD)and other film preparation technologies,the Sb2Se3has attracted more and more attention in the field of solar cells in recent years.[6-8]The film thickness affects its optical,electrical properties and microstructure.It is very important to find the law of film properties changing with its thickness for the preparation of high-quality optoelectronic devices.

    The research on the Sb2Se3thin films prepared by TE has been widely reported.M.M.Alligavathyet al.studied the structure,morphology and optical properties of the Sb2Se3films prepared by TE.[9,10]Chen Chaoet al.systematically analyzed the photovoltaic relevant physical properties of the Sb2Se3films.[11]R.T.Ananth Kumaret al.compared the structure of Sb2Se3films after annealing.[12]Researchers had also begun to pay attention to the properties of Sb2Se3films prepared by PLD and MS.Yang Keet al.researched the structure,morphology,composition and photoelectric properties of the Sb2Se3films prepared by PLD.[13]Chen Shiminget al.and Liang Guangxinget al.discussed the material and photovoltaic properties of the Sb2Se3films prepared by MS at different substrate temperatures.[14,15]Alapan Duttaet al.analyzed the influence of growth angle(0°-87°range)on the photoelectric properties of the Sb2Se3thin films prepared by MS.[16]However, there still lacks of detailed and systematic study on the change of optical and electrical properties of the Sb2Se3film with its thickness prepared by MS.

    The optical and electrical properties of the Sb2Se3films with different thicknesses prepared by MS are analyzed and studied systematically.Firstly, the method and principle of obtaining the properties of the films are presented, and Levenberg-Marquardt method and spectral fitting method(LM-SFM) calculation accuracy is analyzed by simulation.Then,the refractive index(RI),absorption coefficient and optical band gap of the Sb2Se3films with different thicknesses prepared by MS are calculated by LM-SFM,and the variation laws of film properties with thickness are revealed.Finally,energy dispersive x-ray spectrometer(EDS)and Raman spectroscopy are used to analyze the reason why the optical and electronic properties of the film change with its thickness.

    2.Principle and simulation

    2.1.Principle

    The schematic diagram of accurately calculating the RI and absorption coefficient of the Sb2Se3films is shown in Fig.1.By optimizing the square root error between the calculated valuesTfitand the measured valuesT, the RI and absorption coefficient of the film in the whole transmission spectrum can be obtained accurately.The detailed analyses are as follows.

    The transmittanceTof the film can be expressed as

    whereA=16n2s,B=(n+1)3(n+s2),C=2(n2-1)(n2-s2),D=(n-1)3(n-s2),φ=4πnd/λ,x=e-αd,λis the wavelength,φis the phase,nandsare the refractive indices of the film and substrate, respectively,dis the film thickness,αis the absorption coefficient of the film.The initial value of the absorption coefficientα0is calculated by using the following expression:

    Bothdandn0can be calculated by SFM[17]and Cauchy model.Tis the measured transmittance.Three calculated parametersd,n0andα0are substituted into Eq.(1) to obtain the calculated transmittanceT0, and the square root errore0betweenT0andTis calculated.

    LM algorithm is used for global optimization to obtainnandαof thin films in strong absorption region.The iteration parameters Δαand Δnare calculated by following equation:

    wheregαis the first partial derivative ofTwith respect toα,gnis the first partial derivative ofTwith respect ton,Hαis the Hessian matrix ofα,Hnis the Hessian matrix ofn,μis the step size for optimization.The two optimized parameters areα=α0+Δα,n=n0+Δn.The transmittanceTfitis fitting data from discrete calculated values.These two parametersαandncan be calculated accurately by continuously optimizing the errorebetweenTfitandTthrough iterative calculation.

    Fig.1.Schematic diagram of the LM-SFM.(a) Transmission spectrum.(b) Initial RI.(c) Initial absorption coefficient.(d) The calculated value T0 and the measured value T.(e)Transmittance error e.(f)RI and absorption coefficient.

    2.2.Simulation

    The simulation results are shown in Fig.2.Figures 2(a)-2(c) show the calculated absorption coefficient, refractive index and transmittance, respectively.Figures 2(d)-2(f) depict the corresponding calculation errors, respectively.It can be seen from the figure thatnandαin the whole transmission spectrum are accurately calculated.The calculation accuracy of the refractive index and the absorption coefficient is better than 0.03%and better than 3%by using the LM-SFM,respectively.

    Fig.2.Simulation results.(a) Absorption coefficient.(b) RI.(c) Transmission spectra.(d) Absorption coefficient error.(e) RI error.(f)Transmittance error.

    3.Experiment

    3.1.Preparation of thin films

    The glass target was prepared by using the traditional melting quenching method.In this experiment, high purity Sb and Se powders was used as raw materials.They were weighed accurately on an electronic balance according to the designed composition ratio and placed in quartz glass tubes.The purity of Sb and Se was 99.999%.The quartz tube with raw material was pre-heated to 100°C to remove the water in the raw material.Then vacuumed the quartz tube until the vacuum degree was below 10-3Pa.It was fused with hydrogen and oxygen flame and put into the rocking furnace and heated to 1000°C for 10 h, then took out and quenched in water.After glass demolding,it was annealed slowly to room temperature in the annealing furnace.Finally, the glass was processed into a double-sided polished sample with the size of Φ76.2 mm×3 mm as the target material.

    The Sb2Se3thin films were deposited on the SiO2glass substrate by magnetron sputtering.During the preparation process, the chamber pressure was evacuated to lower than 10-5Pa, Ar gas flow was 50 sccm and then the sputtering pressure was 0.5 Pa.The sputtering power was maintained at 40 W.The substrate upon which thin film was deposited and rotated at a speed of 20 r/min and maintained at 25°C during the deposition.The sputtering time was 15 min, 35 min,55 min,75 min and 100 min,respectively.After preparation,the film was placed in a vacuum annealing furnace and annealed at 100°C for 1 h.

    3.2.Characterization of thin films

    The transmission spectra of the films was measured by spectrophotometer(PerkinElmer Lambda 950), and the spectral range was 500 nm-2500 nm.The phase x-ray diffractometer(XRD)of Bruker D2 and micro-Raman spectrometer were used to measure and analyze the structure of the thin films.The Raman laser wavelength was 785 nm and the laser power was 0.1 MW.The compositions of the thin film samples were characterized by using an EDS installed in a Tescan VEGA3 SB-Easyprobe scanning electron microscope.All tests were conducted at room temperature.

    4.Results and discussion

    4.1.Optical properties of Sb2Se3 thin films

    Figure 3(a) is the transmission spectra of the film.The initial RIn0of the Sb2Se3thin films in absorption region is calculated by SFM and Cauchy dispersion model, and obtained initial absorption coefficientsα0by Eq.(2).Then, according to the LM method, continuously optimize the error between calculated valueTfitand measured valueTthrough iterative calculation.WhenTfitis consistent withT,αandnare obtained accurately as shown in Fig.3(b).TheTfitandTin absorption region are compared as shown in Fig.3(c).Figure 3(d) is the deviation betweenTfitandTin absorption region and the overall deviation is less than 1.5%.

    The optical parameters of the films are measured and calculated as shown in Fig.4.Figure 4(a) is the transmission spectra of the films which shows that the absorption cutoff edge moves to the long-wave direction with the increase of the thicknesses of the thin films.Figure 4(b)shows the change of film RI with wavelength.The results indicate that the RI of the thin film decreases with the increase of wavelength and increases with the increase of film thickness at the same wavelength.The absorption coefficientsαof the Sb2Se3thin films of different thicknesses are shown in Fig.4(c) which shows that, at lower wavelength values, and before the absorption edge of samples, the absorption coefficientαhas higher values.These highα-values attribute to the resonance impacts which may occur between the incident photons and the electronic polarizability.Also,theαfor all film samples are found to decrease dramatically at the absorption edge,which due to the occurrence of coupling of the electrons.The absorption depends mainly on the photon energyhνaccording to the Urbach relation

    wherea0is a constant andEuis the width of localized tail states which represents the degree of disorder in the noncrystalline material.[32]hνdecreases as the wavelength broadens,soαdecreases as the wavelength broadens.

    Based on the magnitudes ofα,the extinction coefficientskof the Sb2Se3films can be deduced from the following relation:

    Thekof the Sb2Se3thin film is shown in Fig.4(d).It can be seen thatkdecreases with the increase of wavelength and increases with the increase of thin film thickness.

    The relation between absorption coefficient and optical band gap for direct transition is given by the Tauc equation

    wherehνis the photon energy,Egis the optical band gap,andB1/2is the Tauc parameter.Plotting(αhν)1/2againsthνand extending the linear part to(αhν)1/2=0 to calculateEgof the thin films,as shown in Fig.4(e).The results illustrate that theEgdecreases gradually with the thickness of the film increases.Tauc parameter is the slope of the line after linear fitting.Egand Tauc values are listed in Table 1.

    In addition, RI dispersion values of the Sb2Se3thin films with different thicknesses have also been analyzed using the single oscillator model expressed by the Wemple and DiDomenico(WDD)as follows:[19,20]

    whereE0is the single oscillator energy.Edis the dispersion energy.Plotting(n2-1)-1against(hν)2and fitting a straight line with a slope of(E0Ed)-1and an intercept of(E0/Ed),as shown in Fig.4(f).The calculated parametersE0andEdare listed in Table 1.It is clear from this table that bothE0andEddecrease with the increase of film thickness.According to the WDD model,the static RIn0and the static dielectric constantε∞of the film are calculated, which are summarized in Table 1 and their values increase with the increase of the film thickness.

    Fig.3.The RI and absorption coefficient α of the Sb2Se3 film by LM-SFM.(a)Transmission spectrum.(b)The RI and α.(c)Comparison of Tfit and T.(d)The deviation between Tfit and T.

    Fig.4.Optical properties of the Sb2Se3 thin films.(a)Transmission spectrum.(b)RI.(c)Absorption coefficient.(d)Extinction coefficient.(e)Optical band gap.(f)The dependence of(n2-1)-1 on(hν)2.

    Table 1.Optical parameters of the Sb2Se3 films of different thicknesses.

    4.2.Electrical properties of the Sb2Se3 thin films

    In the transparent region, the dielectric constant is attributed to free and bound electrons.According to the Spitzer-Fan model, the lattice dielectric constant,εL, and the ratio of the charge carrier concentrations to the effective mass,Nopt/m?, of the Sb2Se3films with different thicknesses are estimated[21,22]

    whereeis the electronic charge,cis the speed of light,andε0is the dielectric constant of vacuum.The magnitudes ofεLandNopt/m?of the Sb2Se3thin films with different thicknesses are estimated by plotting the relation betweenn2andλ2,the values ofεLandNopt/m?can be evaluated from the slopes and intercepts,respectively,and are listed in Table 2.

    Table 2.Electrical parameters of the Sb2Se3 thin films of differentthicknesses.

    Figure 5(a)displays the relation curve between theεLandNopt/m?, there is an exponential relationship between theεLandNopt/m?.

    Fig.5.Electrical properties of the Sb2Se3 thin films.(a) The dependence of Nopt/m?on εL of the Sb2Se3 thin films.(b) The dependence of ξopt on(hν)2 of the Sb2Se3 thin films.

    Optical electronegativity,ξopt, is an important parameter to reflect the tendency of an atom to attach electrons from anionic bands.Theξoptof the Sb2Se3films is estimated by[23]

    whereAis a constant with a magnitude of 25.54 andnis the RI.Figure 5(b)shows the dependence of theξopton the photon energy(hν)2of the Sb2Se3thin films with different thicknesses, theξoptdecreases with the increase of photon energy and film thickness.

    The plasma frequencyωpis known as the frequency of the resonance of the electron free oscillations around their positions of equilibrium and is defined by[24]the results are listed in Table 2, theωpincreases with the increase of the film thickness.

    Fig.6.Microscopy and spectroscopy of the Sb2Se3 thin films.(a1) SAED image of thickness 176.6 nm.(a2) HRTEM image of thickness 176.6 nm.(b)XRD spectra.(c)Raman spectra.

    4.3.Structure analysis of Sb2Se3 thin films

    Figure 6(a) shows the SAED and HRTEM images of the Sb2Se3films with thickness of 176.6 nm.The SAED image shows that the film has characteristic of amorphous structure.Furthermore, there is no regular lattice fringe in the HRTEM image and XRD spectra without sharp peak, as shown in Fig.6(c),which also indicates the film is amorphous.The wide and small ridges at low angle are due to the glassy properties of the glass substrate.[25]The broad peak becomes stronger with thickness, indicating a higher degree of shortrange order.

    Although a higher thickness of the Sb2Se3film still reveals an amorphous structure,the relaxation of internal strains and/or the homogenization of defect concentration between amorphous regions may occur,[26]which leads to fewer defects in the film and consequently a higher degree of short-range order.The components of the Sb2Se3films with different thicknesses are measured by EDS.The results are given in Table 3,which shows that the relative content of Se decreases,and the relative content of Sb increases with the increase of film thickness.This is due to the easy evaporation and volatilization of Se.In the preparation process,the longer the sputtering time,the easier Se volatilizes.

    Table 3.Components of the Sb2Se3 films with different thicknesses.

    The Raman spectra of the Sb2Se3films with different thicknesses in Fig.6(d) shows that the Raman peaks are mainly in M1:120 cm-1, M2:153 cm-1, M3:190 cm-1and M4:210 cm-1.The peak at 120 cm-1is associated with the Se-Se bonds vibration, and the peak at 153 cm-1is closely related to the Sb-Sb bonds vibration between(Se2Sb-SbSe2)structural unit.[27-29]There is only one main peak at 190 cm-1for the film with the thickness of 176.6 nm,mainly because the Se-Se bonds and Sb-Sb bonds are disordered at a lower thickness not easily to detect, the bonds get order as the thickness increases and Se-Se bonds and Sb-Sb bonds are observed.[30]The intensity of Sb-Sb bonds increases with the film thickness, which because the relative content of Sb increases with the increase of film thickness,resulting in the number of Sb-Sb bonds increases.The main Raman peak and the lower intensity Raman peaks are observed at 190 cm-1.210 cm-1is assigned to the Sb-Se bonds stretching vibration in the SbSe3/2-pyramids.[30]SbSe3/2-pyramids are the basic structural unit of the Sb2Se3phase.[31]With the increase of film thickness, the chemical bond changes from disorder to order,and the structure of the film tends to be stable, which is consistent with the XRD results and the slope of Tauc increases with the increase of thickness.

    4.4.The dependence of optical and electrical properties of Sb2Se3 films on the film thickness

    The dependence is shown in Fig.7.As shown in Figs.7(a)and 7(b), thenandαincrease exponentially with the film thickness.Figure 7(c) shows that theEgof these films and their thickness maintain a linear relationship.The above two exponential relationships and the linear relationship can be expressed as

    The refractive index depends on the density and the average polarizability of the film.As described by the Lorentz-Lorenz equation[32,33]

    whereNAis the Avogadro constant,Mrepresents the molar mass,ρrepresents the density, andarepresents the average polarizability.With the increase of film thickness,the relative content of Sb increases,while that of Se decreases.Sb cation has higher polarizability than that of other cations, so the RI of the film increases with the thickness of the film.

    Raman analysis shows that the film is more orderliness with film thickness,the greater the orderliness and the smaller band-tail width energyEu.Equation(5)shows that at the same wavelength,Eudecreases with film thickness,butαincreases.The decrease of theEgwith film thickness can be explained by the state density model proposed by Mott and Davis,[34]which shows that the localized state width near the mobility edge is strongly depended on the degree of disorder and the presence of defects in the amorphous structure.The increase of Sb relative content leads to the increase of local state concentration.As the electronegativity of Sb is lower than Se,the band tail and band gap decrease,and the localized states width increases with the increase of Sb relative content.

    It is known that the Tauc parameter is a measure of the disorder in the thin films, and the smaller theB1/2is, the disorder will be.Figure 7(d) shows thatB1/2increases with film thickness,indicating the orderliness of the film increases.Meanwhile, the increase of heteropolar bond in Raman spectrum also indicates the increase of the order degree of the film.[6,30]When the thickness is greater than 500 nm,B1/2does not change significantly with the increase of thickness,indicating that thickness has little influence on the internal disorder degree of films with thickness greater than 500 nm.

    Fig.7.The dependence of optical and electrical properties of the Sb2Se3 films on the film thickness.(a)n changes as a function of d.(b)α changes as a function of d.(c)Eg changes as a function of d.(d)B1/2 changes as a function of d.(e)Ed and E0 change as a function of d.(f)εL and Nopt/m?change as a function of d.

    The dependence of dispersion energyEdand single oscillator energyE0on the thickness is displayed in Fig.7(e).The results show that both of them decrease with the increase of the film thickness.Figure 7(f) shows that the relationship between theεL, theNopt/m?and film thicknessd.Both of them increase with the increase of film thickness.This is because the increase of Sb leads to the decrease of the density of strong heteropolar bonds in the film, while the density of weak monopole bonds (such as Sb-Sb bonds) increases.Weaker bonds respond more easily to electric fields than that of stronger bonds, so as the relative Sb content increases, the density of weak bonds increases, leading to dielectric constant increases.

    5.Conclusion

    The optical and electrical properties of the Sb2Se3films with the thicknesses ranging from 100 nm to 1200 nm are studied in detail by using the LM-SFM proposed in this paper.The thicknessdand optical constantsn,k,α,Egare calculated accurately, the WDD parameters (E0andEd) are also estimated.The dielectric constantεL, optical electronegativityξopt, plasma frequencyωpand the ratio of the charge carrier concentrations to the effective massNopt/m?of the Sb2Se3films with different thicknesses have also been obtained.The results show thatnandαincrease exponentially with the increase of the film thickness.TheEgof the film and its thickness maintain a linear relationship.When the film thickness is greater than 500 nm, Tauc parameters remain almost unchanged with the increase of film thickness.The WDD parameters decrease andNopt/m?increases with the increase of film thickness respectively.Finally,XRD,EDS and Raman spectra analysis indicate that with the increase of the film thickness,the relative content of Se decreases, and the relative content of Sb increases,which is the main reason why the optical and electrical properties change with the thickness.The results lay a foundation for further application of the Sb2Se3thin films in phase change memory and solar cells.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.62075109,62135011,62075107,and 61935006)and K.C.Wong Magna Fund in Ningbo University.

    猜你喜歡
    寶安常規(guī)
    常規(guī)之外
    探討常規(guī)課的高效課堂
    活力(2019年15期)2019-09-25 07:23:12
    安順文聯(lián) 寶安文聯(lián) 聯(lián)姻共促兩地文藝繁榮
    南風(fēng)(2019年14期)2019-08-26 09:10:08
    第十五屆文博會舉行頒獎大會,寶安收獲滿滿 盡情展示魅力 喜獲六座獎杯
    南風(fēng)(2019年14期)2019-08-26 09:10:08
    寶安藝術(shù)家赴漢中取經(jīng)
    南風(fēng)(2019年14期)2019-08-26 09:10:06
    朗誦名家寶安“獻聲”掀熱潮
    南風(fēng)(2019年14期)2019-08-26 09:10:06
    饒凱玉 寶安刻紙畫藝術(shù)第一人
    南風(fēng)(2019年14期)2019-08-26 09:09:52
    緊急避孕不是常規(guī)避孕
    別受限于常規(guī)
    “我在路上,還沒干夠呢”
    www日本黄色视频网| 综合色av麻豆| 99riav亚洲国产免费| 国产单亲对白刺激| 日本熟妇午夜| 深夜a级毛片| 97超视频在线观看视频| 亚洲va在线va天堂va国产| 成熟少妇高潮喷水视频| 欧美不卡视频在线免费观看| 国内揄拍国产精品人妻在线| 综合色丁香网| 99热6这里只有精品| 乱码一卡2卡4卡精品| 日韩,欧美,国产一区二区三区 | 日韩人妻高清精品专区| 久久精品国产清高在天天线| 美女cb高潮喷水在线观看| 亚洲精品乱码久久久v下载方式| 国产探花极品一区二区| 人人妻人人澡欧美一区二区| 免费大片18禁| 中出人妻视频一区二区| 欧美激情久久久久久爽电影| 精品人妻视频免费看| 亚洲最大成人av| 熟女人妻精品中文字幕| 中文字幕av在线有码专区| 高清午夜精品一区二区三区 | 亚洲欧美日韩高清在线视频| 日本黄大片高清| 高清日韩中文字幕在线| 春色校园在线视频观看| 午夜精品一区二区三区免费看| 99视频精品全部免费 在线| 成人国产麻豆网| 日日干狠狠操夜夜爽| 欧美3d第一页| 色5月婷婷丁香| 国产亚洲5aaaaa淫片| 国国产精品蜜臀av免费| 人妻系列 视频| 国产在线男女| 日产精品乱码卡一卡2卡三| 亚洲精品国产成人久久av| 精品人妻熟女av久视频| 日韩一区二区视频免费看| 悠悠久久av| 国产精品国产三级国产av玫瑰| 亚洲精品久久国产高清桃花| 亚洲在线自拍视频| 精品人妻偷拍中文字幕| 综合色av麻豆| 免费看日本二区| 欧美人与善性xxx| 亚洲国产精品sss在线观看| 成人漫画全彩无遮挡| 日本撒尿小便嘘嘘汇集6| 亚洲人成网站在线观看播放| 日本五十路高清| 亚洲最大成人av| 午夜激情欧美在线| 中国美白少妇内射xxxbb| 亚洲av中文av极速乱| 久久久精品94久久精品| 久久精品夜色国产| 久久久久久久久中文| 中文字幕av成人在线电影| 国产一区二区在线av高清观看| 久久久久网色| 99久久精品一区二区三区| 一区二区三区高清视频在线| 久久久精品欧美日韩精品| 日韩一区二区三区影片| 看免费成人av毛片| 日日撸夜夜添| 久久久国产成人免费| 国产色婷婷99| 2022亚洲国产成人精品| 两个人视频免费观看高清| 人妻久久中文字幕网| 国产精品一区二区三区四区免费观看| 久久精品国产清高在天天线| 国产黄色视频一区二区在线观看 | 边亲边吃奶的免费视频| 亚洲最大成人av| 日本黄色片子视频| .国产精品久久| 美女国产视频在线观看| 人妻少妇偷人精品九色| 伦精品一区二区三区| 国产真实伦视频高清在线观看| 综合色丁香网| 亚洲天堂国产精品一区在线| 精品人妻偷拍中文字幕| 国产黄片视频在线免费观看| 精品日产1卡2卡| 黄色一级大片看看| 我的女老师完整版在线观看| 国产麻豆成人av免费视频| 日韩欧美在线乱码| 中文欧美无线码| 日韩成人av中文字幕在线观看| 成熟少妇高潮喷水视频| 一级黄色大片毛片| 久久精品国产清高在天天线| 狂野欧美白嫩少妇大欣赏| 日韩在线高清观看一区二区三区| 2021天堂中文幕一二区在线观| 美女xxoo啪啪120秒动态图| 麻豆精品久久久久久蜜桃| 亚洲人成网站在线观看播放| 亚洲一区二区三区色噜噜| 亚洲美女视频黄频| 欧美一区二区亚洲| 国产老妇伦熟女老妇高清| 国产色婷婷99| 91av网一区二区| 亚洲国产精品成人综合色| 别揉我奶头 嗯啊视频| 国产老妇女一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品乱码一区二三区的特点| 我的女老师完整版在线观看| 99热6这里只有精品| 精品少妇黑人巨大在线播放 | 99久久无色码亚洲精品果冻| 午夜精品一区二区三区免费看| 又粗又爽又猛毛片免费看| 青青草视频在线视频观看| 国产精品蜜桃在线观看 | 日韩成人av中文字幕在线观看| 九九爱精品视频在线观看| 在线a可以看的网站| 亚洲欧美成人综合另类久久久 | 国产色爽女视频免费观看| 91久久精品电影网| 亚洲av成人av| 麻豆av噜噜一区二区三区| 色综合色国产| av又黄又爽大尺度在线免费看 | 免费黄网站久久成人精品| 美女脱内裤让男人舔精品视频 | 精品人妻一区二区三区麻豆| 日韩欧美 国产精品| 国产精品爽爽va在线观看网站| 如何舔出高潮| 两个人的视频大全免费| 岛国在线免费视频观看| 精品国内亚洲2022精品成人| 亚洲精品成人久久久久久| 国模一区二区三区四区视频| 欧美高清成人免费视频www| 国产真实伦视频高清在线观看| 欧美成人a在线观看| 亚洲欧美日韩高清在线视频| 国产真实伦视频高清在线观看| 久久午夜福利片| 天堂网av新在线| 国产精品综合久久久久久久免费| 色播亚洲综合网| 国产高清三级在线| 精华霜和精华液先用哪个| 亚洲精品国产av成人精品| 成人午夜精彩视频在线观看| 国产精品av视频在线免费观看| 久久九九热精品免费| 91精品一卡2卡3卡4卡| 26uuu在线亚洲综合色| 亚洲四区av| 免费av观看视频| 哪个播放器可以免费观看大片| 欧美xxxx黑人xx丫x性爽| 亚洲丝袜综合中文字幕| 亚洲美女视频黄频| 国产精品一二三区在线看| 白带黄色成豆腐渣| 国国产精品蜜臀av免费| 亚洲天堂国产精品一区在线| 哪个播放器可以免费观看大片| 国产成人影院久久av| 天堂av国产一区二区熟女人妻| 欧美日韩在线观看h| 最后的刺客免费高清国语| 欧美潮喷喷水| 精品一区二区免费观看| 又爽又黄无遮挡网站| 在线观看66精品国产| 精品久久国产蜜桃| 天堂影院成人在线观看| 免费观看a级毛片全部| 插阴视频在线观看视频| 国产探花极品一区二区| 久久人人爽人人爽人人片va| 日本三级黄在线观看| 国产高潮美女av| 校园人妻丝袜中文字幕| 国产伦精品一区二区三区四那| 日韩中字成人| 51国产日韩欧美| 婷婷亚洲欧美| 中国国产av一级| 在线播放国产精品三级| 日本五十路高清| 日韩高清综合在线| 国产成人freesex在线| 久久久久久久久久黄片| 国产一级毛片在线| 亚洲激情五月婷婷啪啪| 亚洲四区av| 两性午夜刺激爽爽歪歪视频在线观看| 欧美一区二区国产精品久久精品| 中文在线观看免费www的网站| 欧美又色又爽又黄视频| 欧美成人一区二区免费高清观看| 国产成人一区二区在线| 免费电影在线观看免费观看| 午夜福利成人在线免费观看| 身体一侧抽搐| av视频在线观看入口| av专区在线播放| 搡女人真爽免费视频火全软件| 久久精品夜色国产| 成年女人看的毛片在线观看| 性插视频无遮挡在线免费观看| 麻豆一二三区av精品| 一区福利在线观看| 亚洲一区高清亚洲精品| 欧美精品一区二区大全| 性插视频无遮挡在线免费观看| 国产午夜精品一二区理论片| 免费不卡的大黄色大毛片视频在线观看 | 亚洲电影在线观看av| 黄色视频,在线免费观看| 国产在视频线在精品| 国产亚洲5aaaaa淫片| 久久久久九九精品影院| 国产伦理片在线播放av一区 | 国产91av在线免费观看| 欧美+亚洲+日韩+国产| 亚洲高清免费不卡视频| 天天一区二区日本电影三级| 嫩草影院精品99| 久久久a久久爽久久v久久| 久久国产乱子免费精品| 一级黄片播放器| 99视频精品全部免费 在线| 免费观看人在逋| 国产日韩欧美在线精品| 亚洲欧美成人综合另类久久久 | 国产伦在线观看视频一区| 亚洲精品色激情综合| 国产精品久久久久久久久免| 免费看a级黄色片| 99久国产av精品国产电影| 黄色一级大片看看| 一个人免费在线观看电影| 精品国内亚洲2022精品成人| 亚州av有码| 晚上一个人看的免费电影| 91午夜精品亚洲一区二区三区| 18禁裸乳无遮挡免费网站照片| 国产精品99久久久久久久久| 狂野欧美激情性xxxx在线观看| 十八禁国产超污无遮挡网站| 久久久久久久久大av| 啦啦啦啦在线视频资源| 1000部很黄的大片| 国产亚洲av嫩草精品影院| 91午夜精品亚洲一区二区三区| 久久午夜福利片| 欧美+日韩+精品| 一边亲一边摸免费视频| 久久久a久久爽久久v久久| 久久精品国产自在天天线| 欧美xxxx性猛交bbbb| 亚洲国产高清在线一区二区三| 岛国在线免费视频观看| 久久精品国产亚洲av涩爱 | 免费看光身美女| a级毛片免费高清观看在线播放| 国产在视频线在精品| 精华霜和精华液先用哪个| 国产中年淑女户外野战色| 中文亚洲av片在线观看爽| 亚洲av第一区精品v没综合| 国产精品野战在线观看| 国产亚洲av嫩草精品影院| 欧美不卡视频在线免费观看| 岛国在线免费视频观看| 免费看光身美女| a级毛片a级免费在线| 99热这里只有是精品50| 久久中文看片网| 中文字幕免费在线视频6| 日日啪夜夜撸| 秋霞在线观看毛片| 亚洲精品乱码久久久久久按摩| 国产成人影院久久av| 99久久九九国产精品国产免费| 成人特级av手机在线观看| 丝袜喷水一区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲七黄色美女视频| 免费av观看视频| 国产成人福利小说| 国产高清三级在线| 久久久久久久久久黄片| 又黄又爽又刺激的免费视频.| 成人国产麻豆网| 国产一级毛片在线| 少妇人妻一区二区三区视频| 国产亚洲欧美98| 又粗又爽又猛毛片免费看| 国产精品嫩草影院av在线观看| 欧美日韩综合久久久久久| 69av精品久久久久久| 欧美激情国产日韩精品一区| 观看美女的网站| 在线播放无遮挡| 久久久久久国产a免费观看| 99热这里只有是精品50| 五月玫瑰六月丁香| 成人美女网站在线观看视频| 色吧在线观看| 国产又黄又爽又无遮挡在线| 菩萨蛮人人尽说江南好唐韦庄 | 精品久久久久久久久久免费视频| 国产成年人精品一区二区| 日本在线视频免费播放| 搡女人真爽免费视频火全软件| 特大巨黑吊av在线直播| 26uuu在线亚洲综合色| 亚洲精品456在线播放app| 国产精品福利在线免费观看| 一级黄片播放器| 大型黄色视频在线免费观看| 非洲黑人性xxxx精品又粗又长| 悠悠久久av| 国内精品宾馆在线| 身体一侧抽搐| 午夜爱爱视频在线播放| 国产精品综合久久久久久久免费| 国产成人aa在线观看| 麻豆久久精品国产亚洲av| 久久国内精品自在自线图片| 亚洲第一区二区三区不卡| 一本久久精品| 你懂的网址亚洲精品在线观看 | 国产精品久久电影中文字幕| 日韩精品有码人妻一区| 久久精品国产鲁丝片午夜精品| 国内揄拍国产精品人妻在线| 久久久久久久久久久丰满| 亚洲欧洲国产日韩| av黄色大香蕉| 亚洲精品色激情综合| 国产高清三级在线| 国产亚洲91精品色在线| 国产激情偷乱视频一区二区| 噜噜噜噜噜久久久久久91| 精品久久久久久久人妻蜜臀av| 国产成人福利小说| 久久久久久久久中文| a级毛片免费高清观看在线播放| 免费一级毛片在线播放高清视频| 成人特级av手机在线观看| 波多野结衣巨乳人妻| 国产一区二区激情短视频| 久久这里有精品视频免费| 久久人人爽人人爽人人片va| 波多野结衣巨乳人妻| 久久久久久大精品| 久久亚洲国产成人精品v| 日韩强制内射视频| 亚洲无线观看免费| av在线播放精品| 日韩,欧美,国产一区二区三区 | 欧美另类亚洲清纯唯美| 精品国产三级普通话版| 99久久成人亚洲精品观看| 久久精品国产亚洲av香蕉五月| 99久久人妻综合| 久久这里只有精品中国| av在线老鸭窝| 九色成人免费人妻av| 亚洲丝袜综合中文字幕| 中国国产av一级| 麻豆成人av视频| 一夜夜www| 伊人久久精品亚洲午夜| 99久久无色码亚洲精品果冻| 你懂的网址亚洲精品在线观看 | 日韩视频在线欧美| 丰满乱子伦码专区| 日日摸夜夜添夜夜添av毛片| 国产黄色小视频在线观看| 成人高潮视频无遮挡免费网站| 99国产精品一区二区蜜桃av| 小说图片视频综合网站| 亚洲欧美日韩高清专用| 日韩精品青青久久久久久| a级毛色黄片| 国产真实伦视频高清在线观看| 嘟嘟电影网在线观看| 久久精品国产自在天天线| 亚洲美女搞黄在线观看| 国产精品久久久久久精品电影| 精品久久久久久久久久久久久| 国产精品一及| 成人欧美大片| 免费看美女性在线毛片视频| 国产精品国产高清国产av| 亚洲五月天丁香| 国产老妇女一区| 99久国产av精品国产电影| 成人毛片a级毛片在线播放| 最近的中文字幕免费完整| 午夜福利在线在线| 精品日产1卡2卡| 九九久久精品国产亚洲av麻豆| 最近最新中文字幕大全电影3| 波多野结衣高清作品| 免费一级毛片在线播放高清视频| 一级毛片久久久久久久久女| 国语自产精品视频在线第100页| 亚洲精品久久国产高清桃花| 国产高潮美女av| 秋霞在线观看毛片| 黄片wwwwww| 亚洲图色成人| 日韩三级伦理在线观看| 看黄色毛片网站| 欧美一区二区亚洲| 91麻豆精品激情在线观看国产| 成年av动漫网址| 亚洲av男天堂| 欧美最黄视频在线播放免费| 我要看日韩黄色一级片| 婷婷亚洲欧美| 国内精品宾馆在线| 99国产极品粉嫩在线观看| 免费观看a级毛片全部| 又爽又黄无遮挡网站| 精品国产三级普通话版| 精品久久久噜噜| 欧美一区二区国产精品久久精品| 不卡视频在线观看欧美| 午夜老司机福利剧场| 国产免费一级a男人的天堂| 非洲黑人性xxxx精品又粗又长| 亚洲精品日韩av片在线观看| av黄色大香蕉| 色综合站精品国产| 一个人看视频在线观看www免费| 欧美在线一区亚洲| 国产成人精品久久久久久| 国产精品美女特级片免费视频播放器| 91aial.com中文字幕在线观看| 亚洲不卡免费看| 日韩三级伦理在线观看| 亚洲欧美成人精品一区二区| 99国产精品一区二区蜜桃av| 国产一级毛片七仙女欲春2| 美女 人体艺术 gogo| 五月伊人婷婷丁香| 又黄又爽又刺激的免费视频.| 色综合站精品国产| 欧美激情久久久久久爽电影| 午夜精品在线福利| 国产三级在线视频| 女人被狂操c到高潮| 久久99热这里只有精品18| 午夜精品一区二区三区免费看| 中文字幕熟女人妻在线| 人人妻人人澡人人爽人人夜夜 | 哪里可以看免费的av片| 在线国产一区二区在线| 男女视频在线观看网站免费| 精品一区二区三区人妻视频| 干丝袜人妻中文字幕| 国产高清激情床上av| 国产色婷婷99| 一夜夜www| 全区人妻精品视频| 99热全是精品| 久久这里只有精品中国| 美女被艹到高潮喷水动态| 国产黄色小视频在线观看| 一级黄色大片毛片| 美女 人体艺术 gogo| 男人舔女人下体高潮全视频| 国产色婷婷99| 日本爱情动作片www.在线观看| 日本成人三级电影网站| 非洲黑人性xxxx精品又粗又长| 色噜噜av男人的天堂激情| 十八禁国产超污无遮挡网站| 美女xxoo啪啪120秒动态图| 在线观看66精品国产| 可以在线观看的亚洲视频| 亚洲精品成人久久久久久| 久久久久久久亚洲中文字幕| 免费大片18禁| 在线天堂最新版资源| 秋霞在线观看毛片| 日韩欧美一区二区三区在线观看| 美女被艹到高潮喷水动态| 狠狠狠狠99中文字幕| 国产午夜福利久久久久久| 色视频www国产| 色综合亚洲欧美另类图片| 国产在线男女| 亚洲婷婷狠狠爱综合网| 91午夜精品亚洲一区二区三区| 99热这里只有精品一区| 国产精品三级大全| 成年版毛片免费区| 精品一区二区三区视频在线| 国产 一区精品| 一本精品99久久精品77| 国产一区二区三区在线臀色熟女| 波野结衣二区三区在线| 午夜激情福利司机影院| 色综合亚洲欧美另类图片| 人人妻人人看人人澡| 夜夜爽天天搞| 又粗又爽又猛毛片免费看| 欧美高清性xxxxhd video| 亚洲国产欧美人成| 看十八女毛片水多多多| 最近的中文字幕免费完整| 搡女人真爽免费视频火全软件| 天堂av国产一区二区熟女人妻| 亚洲国产精品成人综合色| 午夜福利高清视频| 欧美高清性xxxxhd video| 国国产精品蜜臀av免费| 亚洲av二区三区四区| 三级毛片av免费| 久久这里只有精品中国| 午夜免费男女啪啪视频观看| 亚洲五月天丁香| 国产精品久久久久久亚洲av鲁大| 国产精品永久免费网站| 国产视频首页在线观看| 熟女电影av网| 男人狂女人下面高潮的视频| 久久人人爽人人爽人人片va| 少妇高潮的动态图| 国产美女午夜福利| 婷婷六月久久综合丁香| 在线播放无遮挡| 亚洲精品国产av成人精品| 91aial.com中文字幕在线观看| 国产成人a区在线观看| 午夜亚洲福利在线播放| 12—13女人毛片做爰片一| 国产精品久久电影中文字幕| 亚洲精品国产成人久久av| 精品不卡国产一区二区三区| 成人鲁丝片一二三区免费| 97超视频在线观看视频| 日韩,欧美,国产一区二区三区 | 赤兔流量卡办理| 一边摸一边抽搐一进一小说| 蜜臀久久99精品久久宅男| 久久久a久久爽久久v久久| 搡老妇女老女人老熟妇| 色哟哟哟哟哟哟| 精品久久久久久成人av| 久久久精品94久久精品| 99视频精品全部免费 在线| 干丝袜人妻中文字幕| 长腿黑丝高跟| 亚洲经典国产精华液单| a级毛色黄片| 国产高清视频在线观看网站| 老熟妇乱子伦视频在线观看| 最近2019中文字幕mv第一页| 91麻豆精品激情在线观看国产| 特级一级黄色大片| 久久久国产成人免费| 草草在线视频免费看| 国产精品人妻久久久久久| 最近手机中文字幕大全| 婷婷色综合大香蕉| 久久久久久久久中文| 最近手机中文字幕大全| www日本黄色视频网| 午夜视频国产福利| 久久久久九九精品影院| www日本黄色视频网| 赤兔流量卡办理| 国产精华一区二区三区| 欧美日韩精品成人综合77777| 欧美变态另类bdsm刘玥| 国产精华一区二区三区| 少妇丰满av| 国产精品不卡视频一区二区| 老司机影院成人| 搡女人真爽免费视频火全软件| 亚洲无线观看免费| 国产淫片久久久久久久久| 亚洲欧美成人综合另类久久久 | 国产亚洲5aaaaa淫片| 丝袜喷水一区| 日韩av在线大香蕉| 亚洲精品久久久久久婷婷小说 | 亚洲无线观看免费| 日本欧美国产在线视频| 搡女人真爽免费视频火全软件| 国产成人一区二区在线| 久99久视频精品免费| 美女国产视频在线观看|