• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice

    2023-03-13 09:19:44YuanShuoLiu劉元碩HaoSun孫浩ChunShengHu胡春生YunJingWu仵允京andChangWenZhang張昌文
    Chinese Physics B 2023年2期
    關(guān)鍵詞:孫浩春生

    Yuan-Shuo Liu(劉元碩), Hao Sun(孫浩), Chun-Sheng Hu(胡春生),Yun-Jing Wu(仵允京), and Chang-Wen Zhang(張昌文)

    School of Physics and Technology,University of Jinan,Jinan 250022,China

    Keywords: quantum anomalous Hall effect,spin-polarizationm Chern insulator,first-principles calculations

    1.Introduction

    In 1988 Haldane theoretically predicted the quantum anomalous Hall effect (QAHE),[1,2]which is one of the typical representatives of topological phase.QAHE refers to the phenomenon of anomalous Hall conductivity quantization due to the coupling between spin-orbit coupling(SOC)and intrinsic magnetization.This is different from the spin-degenerate chiral edge state integer quantum Hall effect, whose timereversal symmetry (TRS) is broken by an external magnetic field.The spinless/spinful chiral edge state is an important hallmark of QAHE, which originates from the bulk topology of the quantum anomalous Hall(QAH)system.Precisely because of its dissipative chiral edge state,QAHE is ideal for the transmission of electronic and spintronic devices,can be used to make a new generation of low-power or even power-free electronic devices and provide the right platform for studying new quantum phenomena such as topological electromagnetic effects and topological superconductivity.So far, there have been many schemes to implement QAHE proposed.The first observable QAHE was in Cr-dopedX2Te3(X=Bi, Sb)films at 30 mK.[3]Similar to the magnetic adatoms on nonmagnetic Dirac materials,[4]the enhanced SOC of QAHE can be achieved by depositing atomic layers of heavy elements(MnX;X=S,Se,Te)on the surface of magnetic insulators.[5]It is clear that the low observed temperature is far from practical application.Some articles claim that magnetic dopants will cause uneven magnetic distribution, which is not conducive to the occurrence of QAHE, resulting in low observation temperature.[6,7]For this reason,the method of increasing the observation temperature has become to search for intrinsically magnetic topological insulators, and non-dissipative electronic conduction at room temperature is a key research direction in condensed matter physics science.[8,9]Spin can be actively manipulated in spin-polarized transport-based devices, such as the spin-FET proposed by Datta and Das.[10]Two-dimensional (2D) Dirac semimetal materials have received high attention because of higher magnetoresistance,higher carrier mobility and topologically non-trivial properties, which originate from characteristic linear band dispersion near the Fermi surface and Massless fermions.In search of new 2D Dirac materials, a great deal of research has been carried out,both experimentally[11,12]and theoretically.[13-17]This is a novel ferromagnetic system with 100% spin polarization, and its conduction around the Fermi energy level is driven by one of the spin components, while the other has the suitable gap, which enables reduced device size and nonvolatile memory.[18-20]The semimetal containing the Dirac cone in the conductive channel is the Dirac semi-metallic material,which has potential application prospects in high-speed spintronic devices.

    Chern insulators are also known as quantum anomalous Hall insulators.[21-23]When Dirac semimetals have strong spin orbital couplings,they can lead to Chern insulators[24-26]or valley electron materials.[10,27-29]When there is no external magnetic field, Chern insulators exhibit a QAHE with quantized Hall conductivitye2/h, enabling dissipative-free transport of chiral edge channels in novel electronic devices.Up to now, many QAHE candidates have been proposed, in particular magnetically doped or functionalized topological insulators whose lattice shapes are honeycomb or square.[4,30-33]Relatively speaking,the monolayer(ML)Co2Te structure proposed in this paper is relatively new,which may provide some preparation for future work on this type of structure.

    In this paper, we demonstrate ML Co2Te as a new QAH stage based on the first-principles calculations.In this system,each spin-polarized Co cation contributes a magnetic moment of 2μBoriginating from the d orbital.The band structures with/without SOC are calculated,indicating that the ML Co2Te structure is a non-trivial QAH insulator with a bandgap of 96 meV.Then, by calculating the edge states and anomalous Hall conductance of ML Co2Te, it is verified that it has the non-zero Chern numberC= 1.At the same time, the Curie temperature of this material is confirmed to reach 573 K through Monte Carlo (MC) simulations of the unit cell.Our discovery provides a promising material for the practical application of QAHE in spintronics.

    2.Computational details

    We carry out the approach of first-principles calculations as implemented in Viennaab initiosimulation package based on the density-functional theory (DFT).The projector-augmented-wave (PAW) potential,[34,35]Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional,[36]and the plane-wave basis with a kinetic energy cut of 400 eV are employed.The Brillouin zone is sampled by using an 9×9×1 Gamma-centered Monkhorst-Pack grid, and SOC is included by a second variational procedure on a fully selfconsistent basis.Since the correlation effects of Co-3d electrons, we employed the GGA+Umethod and set theU=5.0 eV(J=0.0 eV).In the process of structure optimization,the positions and lattice parameters of all atoms have been completely relaxed, and the maximum force allowed on each atom is less than 0.001 eV/°A.What is more,the Berry curvature is calculated by the maximally localized Wannier function method implemented in WANNIER90 package,[37,38]and Cod orbitals are chosen as projected orbitals.[39]Finally,we use the iterative Green’s function method to study the edge state to further prove its QAHE.[40]

    3.Results and discussion

    The geometry of ML Co2Te is depicted in Fig.1(a).The calculated lattice constant isa=b= 4.6037 °A.Each Co atom is surrounded by three Te atoms, and the Co-Te-Co has a bond angle of 120°.Firstly, we calculate the formation energy to verify the stability of the structure, ΔEf=ECo2Te-2ECo-ETe, whereECo2Te,ECo, andETeare the total energies of Co2Te, Co, and Te crystals, respectively.The resulting value,-1.83 eV/atom,is in the same order of magnitude as those of ML C3Ca2(-2.60 eV/atom)[41]and graphene(-8.66 eV/atom),[42]which indicates that ML Co2Te is a relatively strong bonding planar network.We also calculate the electronic localization function(ELF)and results are depicted in Fig.1(b).The value of ELF ranges from 0 to 1, and can usually be used to determine the characteristics of electronic bonds and the degree of electronic localization, where ELF=0,0.5,1 denote no electron distribution,homogeneous electron gas, and complete local electrons at specific sites,respectively.In the figure, we can clearly see that the electrons are mainly located around the Te atoms,and only a small amount is located near the Co atoms,which indicates that the typical ionic bond between Co and Te is formed.The calculation of the calculated elastic constant also has important reference significance for checking the mechanical stability of the structure.Using Voigt notation, the elastic tensorCwithD6hpoint-group symmetry for 2D materials can be reduced into

    The calculated results show thatC11andC12are 324.7143 kbar(1 bar=105Pa) and 252.1783 kbar, respectively.The calculatedCijsatisfy the Born criterion of mechanical stability:C11&gt;0 andC11-C12&gt;0,confirming the mechanical stability of ML Co2Te with the potential for experimental preparation and room temperature survival.

    Fig.1.(a)Top and side views of ML Co2Te.The rhombus shows the unit cell.Among them, blue balls and brown balls represent Co atoms and Te atoms, respectively.(b) ELF image of ML Co2Te viewed from the side.(c)First Brillouin zone with high symmetry points Γ,M,and K.

    To find the preferred magnetic ground state of the system, we have considered three possible configurations of the unit cell, including FM, AFM, and NM, as shown in Fig.2(a).The calculation dates show that the energy of FM state(ΔEFM=EAFM-EFM)is 1.301 eV and 4.913 eV lower than that of AFM and NM states,respectively.The total magnetic moment of each unit of ML Co2Te single molecule layer is predicted to be 4μB,of which Co atoms contribute the vast majority,which is a low-bucked honeycomb lattice.The magnetocrystalline anisotropy energy(MAE)is defined as the energy required to rotate the magnetization from the easy axis to the hard axis of a ferromagnet,which determines the difficulty of spin flipping.It plays a critical role in establishing 2D FM ordering.For the lattice, the MAE(θ,φ)in any direction(θ,φ)is as follows:

    whereK1andK2are system-dependent anisotropy constants andθis the azimuthal angle of rotation.We can find in the calculation that MAE(θ,φ)has almost nothing to do with the in-plane azimuthφ, that is to sayK3=0.The results show that the MAE(θ,φ)reaches its minimum value in the in-plane axis,demonstrating that this structure is in-plane magnetized,as depicted in Fig.2(c).

    Fig.2.(a)Different magnetic configurations.(b)The variation of the magnetic moment with temperature for each cell with temperature according to MC simulations.(c) Magnetocrystalline anisotropy energy (MAE) for Co2Te by rotating the spin with in z-x and x-y planes, respectively.The orange line in panel represents the fitted curves.MAE(θ)=K1 cos2 θ+K2 cos4 θ and MAE(θ)=0,respectively.

    In the practical application of spintronic devices, the Curie temperature (Tc) is also an important parameter.It is easy to adjust the direction of the magnetic axis to be outplane.At this time,the Heisenberg model we use to calculate the Curie temperatureTcis

    in whichSi/SjandSziare the spin vectors of each Co atom and the spin component parallel to thezdirection,J=6.78 meV andA=-115.31μeV are the nearest neighbor exchange parameter and MAE.TheJwith normalized spin vector can be attained by comparingEAFMandEFM,which has the following expression:J=(EAFM-EFM)/2zS2,wherezis the number of the nearest neighbor Co atoms,andSis the spin value of a single Co atom.AndAis calculated fromA=(E100-E001)/S2.To make the FM-paramagnetic transition clearer,we next calculate the heat capacity(Cv)as follows:

    Here, ΔETis the change of the total energy as the temperature changes fromTtoT+ΔT.Figure 2(b)shows the variation of the magnetic moment of each unit cell with temperature.It can be noticed that the magnetic moment starts to decrease sharply from 4μBto 0 K at 573 K,which means state transition from FM to AFM.This temperature is much higher than that observed in recent years for ML CrI3(45 K)[43]and Cd2N3(225 K),[44]so this system is expected to be a potential candidate for high-temperature QAHE in spintronic applications.

    Fig.3.(a) The electronic band structures of ML Co2Te without (w/o) and with (w) SOC, red and blue lines of the graph without SOC represent the spin-up and spin-down channels,respectively.(b)Energy band composition analysis of Co and Te atoms in ML Co2Te.

    Next,we will explore the electronic nature of this aspect.The structure of the single-molecular-layer spin polarization band of ML Co2Te is depicted in Fig.3(a).We can see that the spin-up channel and the spin-down channel are not related without considering the SOC, where the former has no bandgap, but the latter opens a large bandgap of 272 meV.Such single-spin channel hybridizations differ from conventional QAHE, which arise from hybridizations between two different spin states near the Fermi surface.The consideration of SOC makes the system of ML Co2Te open a sizable bandgap of 96 meV at PBE level towards spin-up channel,which provides the possibility to achieve QAHE.

    One prominent feature for realization of QAHE is band topology.To further determine the components of atoms near Fermi level,we plot the atom-resolved band structures of ML Co2Te.It can be observed from Fig.3(b)that the band structure of the spin channel near the Fermi surface are mainly contributed by the magnetic Co atoms.Then we narrow calculation interval to obtain the orbital-resolved band structure of Co atoms near the Fermi surface.As depicted in Figs.4(a) and 4(b),we can apparently find that the band structure is considerably contributed by Co-dx2-y2/dxyand Co-s orbitals.With considering SOC,as depicted in Figs.4(c)and 4(d),part of the orbitals of Co-dx2-y2and Co-dxyare interchanged in conduction band and valence band,respectively.This orbital reversal indicates the existence of band topology of ML Co2Te.And large gap of 96 meV due to SOC are indicating a wide platform of anomalous Hall conductivity.

    Fig.4.(a)The main orbitals of Co atoms without SOC.(b)The s,dxy,and dx2-y2 orbitals of Co atoms without SOC.(c)The main orbitals of Co atoms with SOC.(d)The s,dxy,and dx2-y2 orbitals of Co atoms with SOC.The gray part in the figure represents the contribution of Co atoms on other orbitals(px,py,pz,dyz,dxz,dz2).

    The Kubo formula[45,46]states that the QAH phase can be determined using the Chern number (C) calculated from thek-space integral of the Berry curvature(Ω(k))of all states below the Fermi level,as shown below:

    Here,Enis the eigenvalue of the Bloch function|Ψnk〉,fnis the Fermi-Dirac distribution function, andνxandνyare the velocity operators.Figure 5(c)shows the Berry curvature for the whole valence bands along the high symmetry directions in momentum space.By integrating(Ω(k))over the first Brillouin Zone,the Chern number(C)

    is equal to 1.Thus, the anomalous Hall conductivity shows a quantized charge Hall plateau, with valueσxy=e2/h, located in the insulating gap of the spin-up Dirac cone,as shown in Fig.5(d).Such a presence of a topological protection chiral edge state is a prominent feature of QAHE.We computed the edge states of a semi-infinitely large ML Co2Te to reveal the non-trivial topological properties of the system at a deeper level.Since the existence of chiral the edge state is completely determined by the bulk topology,we calculated the band structure of the ML Co2Te edge using the Wannier charge center method,[47]where the maximally localized Wannier function is constructed from the WANNIER90 TB package.[48]Figure 5(a) shows the fitted DFT and TB bands, and it can be seen that the energy bands fitted by Wannier and PBE are very similar.Notably, the texture of edge state in Fig.5(b) shows that it is fully spin-polarized in thezdirection, which indicates the semi-metallic nature of this material.The edge states connecting the valence and conduction bands can clearly be seen from the figure traversing the insulating gap of spin channel,which confirms its non-trivial topological properties.The semi-metallic behavior exhibited here differs from that of conventional semimetals, which may highly suppress spin polarization when SOC is considered.[49-52]

    Fig.6.(a) Top and side views of the epitaxial growth of the Co2Te lattice on BN substrate.The interlayer distance is 3.66 °A.Among them, green balls and gray balls represent B atoms and N atoms, respectively.(b) The corresponding energy band structure Co2Te/BN.(c) A model of a feasible topological field transistor device.The ML Co2Te is deposited on a dielectric substrate sandwiched between two electrodes.The red arrows represent the spin direction of the electron in the edge state,while black arrows represent the electron transport direction.

    Finally, a key point is whether the QAHE of ML Co2Te can be maintained on the substrate, which is unavoidable in device applications.As we all know, single-layer BN material is chemically inert and not easy to combine with other molecules, so we use it as a protective film for ML Co2Te growth.So, the Co2Te/BN has been constructed, as shown in Fig.6(a).In this structure, the QAH effect in the Co2Te lattice is essentially maintained.Figure 6(b) shows the calculated band structure of SOC.It can be seen that there is still a SOC-induced band gap atΓpoint near the Fermi level,which is consistent with what we would expect.Considering that 2D h-BN substrate electrically insulates the QSH layer adjacent to ML Co2Te and protects the parallel spiral edge channel from interlayer hybridization gaps, Co2Te/BN is an ideal superconductor to support dissipative charge/spin transport in quantum devices.It indicates that it is feasible to construct quantum devices using Co2Te/BN heterostructures, as depicted in Fig.6(c).

    4.Conclusion

    In summary, we calculated electronic band structure of ML Co2Te based on first-principles, characterized by a large gap in the spin-down channel and a Dirac cone in the spin-up channel.When considering spin-orbit coupling, the spin-up channel opens a 96-meV gap, and the non-zero Chern number and edge state features further reveal its topological nontriviality.The Curie temperature is 573 K through MC simulations.Thus, these results suggest that ML Co2Te as a material with QAHE provides a promising platform for the fabrication of dissipation-free, all-spin-polarized and high-speed spintronic devices.

    Acknowledgements

    Project supported by the Taishan Scholar Program of Shandong Province,China(Grant No.ts20190939),the Independent Cultivation Program of Innovation Team of Jinan City(Grant No.2021GXRC043),and the National Natural Science Foundation of China(Grant No.52173238).

    猜你喜歡
    孫浩春生
    Magnetic properties and magnetocaloric effects of Tm1?xErxCuAl(x=0.25,0.5,and 0.75)compounds
    Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5(RE=Er and Tm)amorphous ribbons
    曹春生作品
    占春生作品
    轉(zhuǎn)化求三角,事半又功倍
    The Analysis and Evaluation of New Standard English Student’s Book One
    曹春生
    不認(rèn)賬
    雜文選刊(2014年12期)2014-11-17 03:53:48
    對(duì)不起,我不能再接受你
    到底是誰(shuí)毀了我們的愛情
    幸福家庭(2013年1期)2013-02-27 02:48:30
    欧美成人一区二区免费高清观看| 直男gayav资源| 免费人成在线观看视频色| 一个人看视频在线观看www免费| 亚洲中文字幕一区二区三区有码在线看| 丁香欧美五月| 一个人免费在线观看电影| 精品熟女少妇八av免费久了| 亚洲欧美日韩高清在线视频| 国产一级毛片七仙女欲春2| 国内揄拍国产精品人妻在线| 69人妻影院| 亚洲欧美激情综合另类| 精品久久久久久久人妻蜜臀av| 精品福利观看| 国产精品av视频在线免费观看| a级毛片a级免费在线| 亚洲av免费高清在线观看| 亚洲国产精品久久男人天堂| 国产精品98久久久久久宅男小说| 亚洲片人在线观看| 一个人观看的视频www高清免费观看| 国产视频内射| 91在线观看av| 美女大奶头视频| or卡值多少钱| 美女 人体艺术 gogo| 日韩大尺度精品在线看网址| 老熟妇仑乱视频hdxx| 精品午夜福利在线看| 夜夜爽天天搞| 午夜久久久久精精品| 国产黄片美女视频| 男女做爰动态图高潮gif福利片| 最近中文字幕高清免费大全6 | 97热精品久久久久久| 人妻久久中文字幕网| 欧美+日韩+精品| 波多野结衣高清无吗| 有码 亚洲区| 一本一本综合久久| 欧美最黄视频在线播放免费| 每晚都被弄得嗷嗷叫到高潮| АⅤ资源中文在线天堂| 99精品久久久久人妻精品| 亚洲av成人精品一区久久| 在线天堂最新版资源| 他把我摸到了高潮在线观看| 亚洲av免费高清在线观看| 久久精品国产亚洲av天美| 中出人妻视频一区二区| 宅男免费午夜| 久久久久久久久久黄片| 十八禁网站免费在线| 国产精品自产拍在线观看55亚洲| 久久亚洲真实| 国产成人aa在线观看| 人妻久久中文字幕网| 免费一级毛片在线播放高清视频| 婷婷精品国产亚洲av在线| 一个人免费在线观看的高清视频| 性欧美人与动物交配| 日日夜夜操网爽| 熟女电影av网| 免费电影在线观看免费观看| 国产亚洲av嫩草精品影院| 欧美日韩亚洲国产一区二区在线观看| 少妇高潮的动态图| 热99在线观看视频| 一个人观看的视频www高清免费观看| 变态另类成人亚洲欧美熟女| 精品一区二区免费观看| 欧美成人一区二区免费高清观看| 午夜久久久久精精品| 欧美日韩综合久久久久久 | 国产午夜精品论理片| 老熟妇仑乱视频hdxx| 五月玫瑰六月丁香| 国产精品嫩草影院av在线观看 | 亚洲人成伊人成综合网2020| 国产精品电影一区二区三区| ponron亚洲| 一二三四社区在线视频社区8| 性插视频无遮挡在线免费观看| 国产69精品久久久久777片| 赤兔流量卡办理| 一进一出抽搐gif免费好疼| 黄片小视频在线播放| 日本 欧美在线| 亚洲av电影不卡..在线观看| 亚洲av五月六月丁香网| 丰满的人妻完整版| 一本一本综合久久| 波多野结衣巨乳人妻| 大型黄色视频在线免费观看| 国产精品爽爽va在线观看网站| 亚洲av免费高清在线观看| 真实男女啪啪啪动态图| 成人毛片a级毛片在线播放| 深夜精品福利| 91在线精品国自产拍蜜月| 欧美性感艳星| 99久久久亚洲精品蜜臀av| 一进一出抽搐gif免费好疼| 日本黄大片高清| 国产一级毛片七仙女欲春2| 一进一出抽搐gif免费好疼| 亚洲乱码一区二区免费版| 久久中文看片网| 久久久精品欧美日韩精品| 在线观看午夜福利视频| 最新在线观看一区二区三区| 欧美最黄视频在线播放免费| 久久国产乱子伦精品免费另类| 国产伦人伦偷精品视频| 国产综合懂色| 每晚都被弄得嗷嗷叫到高潮| 欧美成人性av电影在线观看| 日本一本二区三区精品| 国产精品久久久久久亚洲av鲁大| 夜夜爽天天搞| 赤兔流量卡办理| 久久国产乱子伦精品免费另类| 亚洲aⅴ乱码一区二区在线播放| 亚洲美女搞黄在线观看 | 又黄又爽又刺激的免费视频.| 色哟哟哟哟哟哟| 欧美一区二区国产精品久久精品| 色综合欧美亚洲国产小说| 亚洲经典国产精华液单 | 丁香六月欧美| 亚洲精品成人久久久久久| 久久午夜福利片| 精品一区二区三区av网在线观看| 亚洲精品亚洲一区二区| 久久亚洲真实| 啦啦啦韩国在线观看视频| 此物有八面人人有两片| 国模一区二区三区四区视频| 国产精品人妻久久久久久| 97人妻精品一区二区三区麻豆| 91久久精品国产一区二区成人| 丰满人妻熟妇乱又伦精品不卡| 欧美三级亚洲精品| 一级毛片久久久久久久久女| 九色国产91popny在线| 在线观看av片永久免费下载| 亚洲av熟女| av黄色大香蕉| 国产免费一级a男人的天堂| 90打野战视频偷拍视频| 成人鲁丝片一二三区免费| 伦理电影大哥的女人| 亚洲av美国av| 成年免费大片在线观看| 在线a可以看的网站| 床上黄色一级片| 欧美黄色淫秽网站| 欧美日韩黄片免| 亚洲av电影在线进入| 老司机午夜福利在线观看视频| av天堂中文字幕网| 久久久久久大精品| 高清在线国产一区| 国产精品久久久久久亚洲av鲁大| 亚洲精品久久国产高清桃花| 9191精品国产免费久久| 国产主播在线观看一区二区| 亚洲人成伊人成综合网2020| 夜夜看夜夜爽夜夜摸| 亚洲av成人av| 蜜桃久久精品国产亚洲av| 日本黄大片高清| 深爱激情五月婷婷| 国产高清三级在线| 精品久久久久久,| 日韩欧美精品免费久久 | 日日干狠狠操夜夜爽| 欧美黄色淫秽网站| 国产69精品久久久久777片| 高清日韩中文字幕在线| 色哟哟·www| 国产成人影院久久av| 欧美国产日韩亚洲一区| 日韩av在线大香蕉| av黄色大香蕉| 久久久久亚洲av毛片大全| 国产精品久久久久久人妻精品电影| 观看免费一级毛片| 婷婷精品国产亚洲av在线| 日本 欧美在线| 国产av麻豆久久久久久久| 国产午夜精品久久久久久一区二区三区 | 精品日产1卡2卡| 久久精品91蜜桃| 国产亚洲欧美在线一区二区| 直男gayav资源| 好男人电影高清在线观看| 亚洲欧美日韩卡通动漫| 亚洲av电影不卡..在线观看| 亚洲三级黄色毛片| 久久久久久久精品吃奶| 真人一进一出gif抽搐免费| 中亚洲国语对白在线视频| 亚洲成a人片在线一区二区| 一本精品99久久精品77| 国内精品一区二区在线观看| 亚洲精品日韩av片在线观看| 美女xxoo啪啪120秒动态图 | .国产精品久久| 免费电影在线观看免费观看| 亚洲第一欧美日韩一区二区三区| 欧美+亚洲+日韩+国产| 毛片一级片免费看久久久久 | 久久久久久久久久成人| 亚洲国产欧美人成| 国产在线精品亚洲第一网站| 一a级毛片在线观看| 99精品久久久久人妻精品| 少妇高潮的动态图| 欧美一区二区国产精品久久精品| 尤物成人国产欧美一区二区三区| 日韩成人在线观看一区二区三区| 能在线免费观看的黄片| 日本黄色视频三级网站网址| 免费搜索国产男女视频| 国产伦在线观看视频一区| 色吧在线观看| 亚洲男人的天堂狠狠| 久久热精品热| 美女cb高潮喷水在线观看| 色5月婷婷丁香| 久久久久久久久久黄片| 亚洲美女搞黄在线观看 | 国产一区二区三区视频了| 51午夜福利影视在线观看| 亚洲欧美日韩高清在线视频| 亚洲综合色惰| 久久久国产成人精品二区| 国内精品美女久久久久久| 女人十人毛片免费观看3o分钟| 国产探花在线观看一区二区| 国产精品免费一区二区三区在线| 一卡2卡三卡四卡精品乱码亚洲| 成人毛片a级毛片在线播放| 老鸭窝网址在线观看| 国产在线男女| 免费高清视频大片| 中文字幕人妻熟人妻熟丝袜美| av中文乱码字幕在线| 桃红色精品国产亚洲av| 色综合婷婷激情| 欧美在线黄色| 国产69精品久久久久777片| 欧美日韩黄片免| 亚洲aⅴ乱码一区二区在线播放| 小蜜桃在线观看免费完整版高清| 精品午夜福利在线看| 精品久久久久久成人av| 精华霜和精华液先用哪个| 亚洲成人久久爱视频| 黄色日韩在线| 免费人成视频x8x8入口观看| 欧美丝袜亚洲另类 | 国产亚洲欧美98| 99热精品在线国产| 熟女电影av网| 亚洲,欧美精品.| 最近在线观看免费完整版| 真人做人爱边吃奶动态| 此物有八面人人有两片| 国产亚洲精品久久久com| 伊人久久精品亚洲午夜| 免费看美女性在线毛片视频| 日韩欧美在线乱码| 久久国产乱子免费精品| 哪里可以看免费的av片| 三级男女做爰猛烈吃奶摸视频| 成人三级黄色视频| 免费人成视频x8x8入口观看| 精品久久久久久久久久久久久| 韩国av一区二区三区四区| av在线观看视频网站免费| 岛国在线免费视频观看| 午夜久久久久精精品| av在线蜜桃| 欧美一区二区国产精品久久精品| 麻豆av噜噜一区二区三区| 日韩精品中文字幕看吧| 观看美女的网站| 国产激情偷乱视频一区二区| 亚洲精品粉嫩美女一区| 啦啦啦观看免费观看视频高清| 搡女人真爽免费视频火全软件 | 亚洲成人精品中文字幕电影| 丰满人妻一区二区三区视频av| 亚洲av二区三区四区| 婷婷色综合大香蕉| 免费大片18禁| 国产成人aa在线观看| 国内精品久久久久精免费| 日韩欧美国产一区二区入口| 最近视频中文字幕2019在线8| 午夜福利成人在线免费观看| 国产视频一区二区在线看| 亚洲自偷自拍三级| 91麻豆av在线| 人人妻人人澡欧美一区二区| 很黄的视频免费| 亚洲中文字幕日韩| 国产一区二区激情短视频| 国产成人影院久久av| 18禁在线播放成人免费| 午夜福利视频1000在线观看| 日本三级黄在线观看| 久久久久国产精品人妻aⅴ院| 免费电影在线观看免费观看| 亚洲成人久久爱视频| 成人永久免费在线观看视频| 日韩欧美一区二区三区在线观看| 一本一本综合久久| 国产精品久久久久久久电影| 十八禁人妻一区二区| 99久久九九国产精品国产免费| 日韩欧美免费精品| 熟妇人妻久久中文字幕3abv| 制服丝袜大香蕉在线| 色综合婷婷激情| 国产一区二区激情短视频| 中文字幕久久专区| 十八禁网站免费在线| 老女人水多毛片| 草草在线视频免费看| 成年女人毛片免费观看观看9| 最好的美女福利视频网| xxxwww97欧美| 村上凉子中文字幕在线| 国产成人av教育| 悠悠久久av| 国产v大片淫在线免费观看| 国产三级中文精品| 国产成人aa在线观看| 日本黄大片高清| 亚洲成av人片免费观看| 一区二区三区激情视频| 久久午夜亚洲精品久久| 亚洲成人久久性| 亚洲最大成人手机在线| 两个人的视频大全免费| 欧美xxxx黑人xx丫x性爽| 亚洲色图av天堂| 亚洲七黄色美女视频| 内射极品少妇av片p| 国产精品自产拍在线观看55亚洲| 亚洲无线观看免费| 亚洲最大成人av| 久久久精品大字幕| 国产成人福利小说| 成人精品一区二区免费| 黄色视频,在线免费观看| netflix在线观看网站| 欧美一区二区国产精品久久精品| 在线播放无遮挡| or卡值多少钱| 欧美乱色亚洲激情| 欧美zozozo另类| 欧美激情久久久久久爽电影| 欧美黑人巨大hd| 99国产精品一区二区三区| 嫩草影院新地址| 国产精品亚洲美女久久久| 超碰av人人做人人爽久久| 91九色精品人成在线观看| 俄罗斯特黄特色一大片| 人妻制服诱惑在线中文字幕| 久久久久久久精品吃奶| 在线a可以看的网站| 97热精品久久久久久| 在线观看免费视频日本深夜| 欧美成狂野欧美在线观看| 日本黄大片高清| 亚洲欧美日韩高清专用| 国产乱人视频| 两人在一起打扑克的视频| 欧美日本亚洲视频在线播放| 久久久国产成人精品二区| 亚洲精品日韩av片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 黄片小视频在线播放| 亚洲在线观看片| 亚洲国产欧洲综合997久久,| 午夜视频国产福利| av在线天堂中文字幕| 欧美乱色亚洲激情| 99久久无色码亚洲精品果冻| 成人特级黄色片久久久久久久| 久久性视频一级片| 每晚都被弄得嗷嗷叫到高潮| 午夜激情欧美在线| 精品人妻视频免费看| 国产精品伦人一区二区| 在线观看一区二区三区| 国产 一区 欧美 日韩| 亚州av有码| 亚洲在线自拍视频| 成人特级av手机在线观看| 欧美高清成人免费视频www| 亚洲精品粉嫩美女一区| 亚洲无线观看免费| 91久久精品国产一区二区成人| 亚洲专区国产一区二区| 亚洲欧美日韩高清专用| 午夜福利在线在线| 色综合欧美亚洲国产小说| 男女做爰动态图高潮gif福利片| 中文字幕人妻熟人妻熟丝袜美| 欧美黄色片欧美黄色片| 精品久久久久久久人妻蜜臀av| 最近视频中文字幕2019在线8| 久久久久久久久久成人| 日本 欧美在线| 日韩中文字幕欧美一区二区| 国产人妻一区二区三区在| 国产精品久久久久久亚洲av鲁大| 如何舔出高潮| 国产91精品成人一区二区三区| 国内精品久久久久精免费| 琪琪午夜伦伦电影理论片6080| 亚洲国产日韩欧美精品在线观看| 国产黄色小视频在线观看| 精品福利观看| 久久久色成人| 国产男靠女视频免费网站| 又爽又黄无遮挡网站| 欧美bdsm另类| 国产高清三级在线| 露出奶头的视频| 伊人久久精品亚洲午夜| 最后的刺客免费高清国语| 欧美日韩黄片免| 亚洲人与动物交配视频| 亚洲成人精品中文字幕电影| 直男gayav资源| 日本精品一区二区三区蜜桃| 91在线观看av| 久久亚洲真实| 人妻夜夜爽99麻豆av| 很黄的视频免费| 五月伊人婷婷丁香| 观看免费一级毛片| 综合色av麻豆| 一级黄片播放器| 人人妻人人澡欧美一区二区| 精品久久久久久成人av| 国产精品一区二区三区四区久久| 91在线观看av| 欧美成人a在线观看| 全区人妻精品视频| 99热6这里只有精品| 婷婷色综合大香蕉| 日本一本二区三区精品| a级毛片免费高清观看在线播放| 亚洲,欧美,日韩| 最近最新免费中文字幕在线| 99久久久亚洲精品蜜臀av| 夜夜夜夜夜久久久久| av欧美777| 九色国产91popny在线| 久久精品综合一区二区三区| 黄色配什么色好看| 给我免费播放毛片高清在线观看| 国产三级中文精品| 内地一区二区视频在线| 久久精品影院6| 亚洲一区二区三区不卡视频| 97热精品久久久久久| 成人毛片a级毛片在线播放| 首页视频小说图片口味搜索| 国产精品一及| 国产精品人妻久久久久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲电影在线观看av| 很黄的视频免费| 最新中文字幕久久久久| 天堂网av新在线| 18禁在线播放成人免费| 在线观看免费视频日本深夜| 国产中年淑女户外野战色| 五月伊人婷婷丁香| 成人美女网站在线观看视频| 18禁在线播放成人免费| 99视频精品全部免费 在线| 欧美xxxx性猛交bbbb| 少妇被粗大猛烈的视频| 精品国内亚洲2022精品成人| 日本a在线网址| 亚洲中文字幕日韩| 97超级碰碰碰精品色视频在线观看| 搡女人真爽免费视频火全软件 | 91在线精品国自产拍蜜月| 亚洲人成网站在线播放欧美日韩| 一级黄片播放器| 搡女人真爽免费视频火全软件 | 一个人观看的视频www高清免费观看| 成人高潮视频无遮挡免费网站| 免费看美女性在线毛片视频| 啦啦啦韩国在线观看视频| 97超视频在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 色噜噜av男人的天堂激情| 国产精品久久久久久久久免 | 最近中文字幕高清免费大全6 | 国产探花在线观看一区二区| 男女之事视频高清在线观看| 女同久久另类99精品国产91| 国产中年淑女户外野战色| 国产精品av视频在线免费观看| 可以在线观看毛片的网站| 欧美成人性av电影在线观看| 1000部很黄的大片| 亚洲av不卡在线观看| 免费高清视频大片| 久久久久国产精品人妻aⅴ院| 精品欧美国产一区二区三| 亚洲欧美日韩无卡精品| 观看免费一级毛片| 在线观看美女被高潮喷水网站 | 亚洲国产精品成人综合色| 日本黄大片高清| 久久草成人影院| 99热只有精品国产| 国产成+人综合+亚洲专区| 亚洲五月婷婷丁香| 亚洲欧美日韩无卡精品| 夜夜躁狠狠躁天天躁| 午夜亚洲福利在线播放| 我的老师免费观看完整版| 又爽又黄无遮挡网站| 日本精品一区二区三区蜜桃| 日韩国内少妇激情av| 九色国产91popny在线| 俄罗斯特黄特色一大片| 亚洲 欧美 日韩 在线 免费| 老司机午夜福利在线观看视频| 天堂动漫精品| 欧美激情久久久久久爽电影| 国产精品美女特级片免费视频播放器| 色噜噜av男人的天堂激情| 丁香六月欧美| 国产精品久久视频播放| av天堂在线播放| 久久久久精品国产欧美久久久| 亚洲狠狠婷婷综合久久图片| 日韩中文字幕欧美一区二区| 国产精品伦人一区二区| 99在线人妻在线中文字幕| 99国产精品一区二区三区| 国产欧美日韩一区二区精品| 男女下面进入的视频免费午夜| 天堂av国产一区二区熟女人妻| 欧美在线一区亚洲| 亚洲成人久久性| 国产精品久久电影中文字幕| or卡值多少钱| 亚洲 欧美 日韩 在线 免费| 国产v大片淫在线免费观看| 变态另类丝袜制服| .国产精品久久| 欧美色欧美亚洲另类二区| 欧美黄色片欧美黄色片| 国产精品乱码一区二三区的特点| 午夜精品久久久久久毛片777| 日本 av在线| 赤兔流量卡办理| 日韩高清综合在线| 亚洲国产精品999在线| 国产精品电影一区二区三区| 最近最新免费中文字幕在线| 国产三级在线视频| 精品久久久久久久久久免费视频| 国产高清有码在线观看视频| 成人毛片a级毛片在线播放| 国产精品永久免费网站| av在线天堂中文字幕| 日本黄大片高清| 国产精品久久电影中文字幕| 亚洲性夜色夜夜综合| 夜夜看夜夜爽夜夜摸| 色综合欧美亚洲国产小说| a级毛片免费高清观看在线播放| 久久香蕉精品热| 欧美中文日本在线观看视频| 床上黄色一级片| 久久国产精品影院| 最新在线观看一区二区三区| 99在线人妻在线中文字幕| av天堂中文字幕网| 又爽又黄无遮挡网站| 女生性感内裤真人,穿戴方法视频| 小说图片视频综合网站| 一级av片app| 欧美一区二区国产精品久久精品| 全区人妻精品视频| 午夜福利成人在线免费观看| 舔av片在线| 成年女人看的毛片在线观看| 精品久久久久久成人av| av在线天堂中文字幕| 成人av一区二区三区在线看| 亚洲国产精品久久男人天堂| 日韩欧美免费精品| 久久热精品热| 观看免费一级毛片| 91久久精品国产一区二区成人| 免费看a级黄色片|