江姍姍, 唐紅, 汪紅娟, 呂倩憶, 謝燦明, 王瑤, 陳楚淘, 田浩梅△
針刺調(diào)控CIRI大鼠缺血側(cè)海馬組織差異表達(dá)circRNAs的功能研究*
江姍姍1, 唐紅1, 汪紅娟1, 呂倩憶2, 謝燦明1, 王瑤1, 陳楚淘1, 田浩梅1△
(1湖南中醫(yī)藥大學(xué)針灸推拿與康復(fù)學(xué)院,湖南 長沙 410208;2成都市第二人民醫(yī)院,四川 成都 610021)
探討針刺對腦缺血再灌注損傷(CIRI)大鼠腦組織的保護作用,觀察針刺對CIRI大鼠缺血側(cè)海馬組織環(huán)狀RNAs(circRNAs)差異表達(dá)的影響,并對其進行基因本體(GO)分析。6~8周齡SD大鼠54只,運用隨機數(shù)字法隨機分為造模組和假手術(shù)組(sham組),造模成功后再隨機分為模型組(model組)和針刺組(AC組),每組18只。采用改良Longa線栓法制備大腦中動脈閉塞再灌注(MCAO/R)模型,激光散斑成像儀監(jiān)測造模前、MCAO手術(shù)后及再灌注后腦血流量,假手術(shù)組只剝離血管,不插入線栓;干預(yù)期間模型組和假手術(shù)組只捆綁不針刺,針刺組捆綁+針刺。采用改良加西亞(Garcia)評分法對神經(jīng)功能進行評定,TTC染色法檢測腦梗死面積,Western blot法檢測神經(jīng)元核抗原(NeuN)的表達(dá),尼氏染色法觀察缺血側(cè)海馬組織神經(jīng)元損傷程度,基因芯片微陣列分析篩選出缺血側(cè)海馬組織差異表達(dá)的circRNAs,并對模型組/假手術(shù)組、針刺組/模型組共同差異表達(dá)circRNAs的來源基因進行GO分析。與假手術(shù)組比較,模型組大鼠腦梗死面積比顯著升高(<0.01),Garcia神經(jīng)功能評分、NeuN表達(dá)量和海馬CA1區(qū)尼氏染色陽性細(xì)胞數(shù)顯著降低(<0.05或<0.01);與模型組比較,針刺組腦梗死面積比顯著降低(<0.01),神經(jīng)功能評分、NeuN表達(dá)量和尼氏染色陽性細(xì)胞數(shù)顯著升高(<0.05或<0.01)。芯片篩選結(jié)果顯示,與假手術(shù)組比較,模型組上調(diào)的circRNAs個數(shù)為288,下調(diào)個數(shù)為315;與模型組比較,針刺組上調(diào)的差異表達(dá)circRNAs個數(shù)為33,下調(diào)個數(shù)為18(FC>1.25,<0.05);其中模型組/假手術(shù)組、針刺組/模型組共同差異表達(dá)的circRNAs個數(shù)為23個;GO分析顯示共同差異表達(dá)circRNAs的來源基因功能涉及神經(jīng)系統(tǒng)發(fā)育,神經(jīng)元的產(chǎn)生、發(fā)育、分化及投射,頭部、大腦及海馬的發(fā)育,突觸的形成、發(fā)育、延伸及運輸?shù)?。CIRI大鼠缺血側(cè)海馬組織circRNAs在造模后及針刺干預(yù)后均存在差異表達(dá)。針刺能顯著改善CIRI大鼠的神經(jīng)功能和腦梗死面積,減輕海馬組織神經(jīng)元損傷,其機制可能與針刺調(diào)控缺血側(cè)海馬組織多種circRNAs的差異表達(dá)及激發(fā)其促進神經(jīng)元發(fā)育分化、抗神經(jīng)損傷等功能有關(guān)。
針刺;腦缺血再灌注損傷;神經(jīng)元損傷;環(huán)狀RNA;差異表達(dá)
腦缺血再灌注損傷(cerebral ischemia reperfusion injury, CIRI)是指腦組織經(jīng)歷一段時間缺血后,恢復(fù)缺血區(qū)的血液灌注,但在某些情況下缺血后恢復(fù)血流并不能恢復(fù)組織功能,反而使組織損傷及功能障礙更加嚴(yán)重[1],這種情況可誘發(fā)興奮毒性、氧化應(yīng)激損傷、炎癥反應(yīng)等而發(fā)生一系列的神經(jīng)細(xì)胞中毒事件,而加重腦組織損傷[2-3]。因此進一步探究與腦缺血再灌注損傷有關(guān)的病理機制,找到有效的靶向治療方法是治療腦缺血再灌注損傷的關(guān)鍵。
環(huán)狀RNA(circularRNA, circRNA)是一類內(nèi)源性非編碼RNA,其通過特殊的剪接機制形成共價鍵結(jié)合的閉合環(huán)狀結(jié)構(gòu),circRNA在真核生物中廣泛表達(dá),具有高度保守性、組織特異性和時空特異性,因其特殊的閉合環(huán)狀結(jié)構(gòu),沒有游離的尾部啟動降解,circRNA對核酸外切酶具有抗性,不易被核酸外切酶降解,較線性RNA穩(wěn)定[4-5]。Mehta等[6]報道了局灶性腦缺血后小鼠腦內(nèi)circRNAs表達(dá)譜的分析結(jié)果顯示,這些circRNAs涉及細(xì)胞通訊,生物調(diào)節(jié),代謝過程以及與蛋白質(zhì)等結(jié)合的生物和分子功能,參與并影響包括細(xì)胞凋亡和自噬,炎癥,內(nèi)質(zhì)網(wǎng)應(yīng)激,氧化應(yīng)激和線粒體功能障礙等多種腦卒中后病理生理過程。這提示干預(yù)circRNAs的表達(dá)有可能成為腦缺血再灌注損傷的有效治療手段。
前期研究證實,CIRI后,針刺大椎、百會和水溝穴對缺血再灌注損傷腦組織具有一定的保護作用[7-8],且針刺調(diào)控circRNA在其它疾病中的研究已有相關(guān)報道[9],因此本研究以circRNA為切入點,通過觀察針刺大椎、百會和水溝穴對CIRI大鼠神經(jīng)功能評分,腦梗死面積比、神經(jīng)元發(fā)育標(biāo)記物神經(jīng)元核抗原(neuron nuclear antigen, NeuN)表達(dá)量、缺血側(cè)海馬組織神經(jīng)元尼氏染色陽性細(xì)胞數(shù)、缺血側(cè)海馬組織circRNAs差異表達(dá)譜的影響,以及針刺干預(yù)后共同差異表達(dá)circRNAs功能的分析,探討針刺對CIRI大鼠腦組織的保護作用與差異表達(dá)circRNAs功能之間存在的聯(lián)系,為探究環(huán)狀RNA介導(dǎo)針刺促CIRI修復(fù)機制、進一步尋找到治療CIRI的靶點提供參考資料。
6~8周齡SPF級雄性SD大鼠54只,體重為220~250 g,由湖南中醫(yī)藥大學(xué)動物實驗中心提供,動物生產(chǎn)合格證號為SCXK(湘)2019-0004,飼養(yǎng)于湖南中醫(yī)藥大學(xué)SPF級動物房。室溫為:24~26 ℃,濕度為:40%~60%,光照12 h/d,自由攝食飲水。適應(yīng)性飼養(yǎng)1周后,采用隨機數(shù)字法,隨機取18只大鼠作為假手術(shù)(sham)組,其余大鼠進行造模,造模后將模型成功的大鼠隨機分為模型(model)組和針刺(AC)組,每組18只。本實驗過程中對動物的處置符合《關(guān)于善待實驗動物的指導(dǎo)性意見》,本實驗研究通過湖南中醫(yī)藥大學(xué)實驗動物福利和倫理委員會審查(批準(zhǔn)編號:LL2021081203)。
TTC染液(索萊寶生物科技有限公司);水合氯醛(中國上海阿拉丁生物試劑有限公司);注射用青霉素鈉(中國華北醫(yī)藥股份有限公司);多聚甲醛(長沙維爾生物科技有限公司);PBS(索萊寶生物科技有限公司);抗體(艾方生物科技有限公司);二甲苯(國藥集團化學(xué)試劑有限公司);甲苯胺藍(lán)染液(武漢塞維爾生物科技有限公司)。
MCAO線栓(北京西濃科技有限公司);針灸針(北京中研太和醫(yī)療器械有限公司);HHS-2型恒溫水浴鍋(上海南陽儀器有限公司);circRNA芯片及芯片標(biāo)記試劑盒(Arraystar);安捷倫G2505C掃描儀(Agilent);包埋機(武漢俊杰電子有限公司);勻漿儀(康濤科技有限公司);病理切片機(上海徠卡儀器有限公司)。
3.1造模方法及腦缺血再灌注損傷模型的建立造模方法采用改良的從頸總動脈插線栓的Longa線栓法[10]制備大腦中動脈閉塞(middle cerebral artery occlusion, MCAO)模型,造模前大鼠禁食不禁水24 h,用10%的水合氯醛按3 mL/kg體重劑量進行腹腔麻醉。取仰臥位將大鼠固定在鼠板上,備皮消毒后,選擇右側(cè)距前正中線3 mm處,作長約10 mm縱行的切口,鈍性剝離皮下筋膜等組織,暴露頸總動脈(common carotid artery,CCA)及分支頸外動脈(external carotid artery,ECA)、頸內(nèi)動脈(internal carotid artery,ICA),鈍性剝離CCA、ECA、ICA及迷走神經(jīng)。分別在CCA、ECA、ICA處掛線,于近心端結(jié)扎CCA、ECA,然后用微動脈夾暫時夾閉ICA。在距CCA分支形成ICA、ECA分叉部3 mm處剪一小口,將線栓由CCA插入至ICA,當(dāng)遇到動脈夾阻擋后松開動脈夾,再迅速向內(nèi)插入(手法宜輕柔,避免戳破血管),進線長度約距頸總動脈分叉處19 mm時,線栓有輕微阻力,結(jié)扎ICA遠(yuǎn)心端的細(xì)線以防止線栓脫出和出血??p合傷口并標(biāo)記線栓外端,予以青霉素抗炎。2 h后,將拴線拔出10 mm左右[11]。假手術(shù)組只分離血管,不插入線栓。造模后待生命體征平穩(wěn),參照Longa[10]五分制評分法進行評分,造模組評分在1~3分的大鼠納入后續(xù)實驗。
為評估大鼠腦缺血再灌注損傷模型的有效性,在造模前、MCAO手術(shù)后30 min以及再灌注后30 min分別實時監(jiān)測大鼠右側(cè)半球腦血流量(cerebral blood flow, CBF)。在麻醉后將大鼠固定于腦立體定位儀上,備皮、消毒后剪開頭皮,充分暴露顱骨,分離骨膜,用生理鹽水保持表面濕潤,用棉簽清除顱骨表面雜質(zhì),用顱骨鉆將右側(cè)顱骨磨薄至清晰可見顱骨下血管,隨后用激光散斑血流成像系統(tǒng)掃描大鼠右側(cè)半球CBF。圖像顯示在MCAO術(shù)后,右側(cè)半球腦血流量顯著降低,再灌注后,腦血流量得到恢復(fù)但不及造模前(見圖1),這提示腦缺血再灌注損傷模型的建立。
Figure 1. Establishment of middle cerebral artery occlusion/reperfusion (MCAO/R) rat model. The scale bar=0.5 mm. A:laser speckle imager showed the cerebral blood flow in the right cerebral hemisphere is full before modeling; B:after MCAO, the cerebral blood flow decreased significantly; C:after reperfusion, the cerebral blood flow recovered.
3.2干預(yù)方法實驗動物造模完成,待大鼠呼吸、心跳等生命體征穩(wěn)定,在造模后2 h進行干預(yù),各組處理如下:假手術(shù)組和模型組:只捆綁30 min,不針刺,每12 h一次,共7次;針刺組:針刺大椎、水溝、百會穴(取穴參照2007年中國中醫(yī)藥出版社出版的《實驗針灸學(xué)》[12]動物穴位圖譜及擬人比照法定位。大椎:第7頸椎與第1胸椎間,直刺5 mm;百會:頂骨正中,平刺2 mm;水溝:唇裂鼻尖下1 mm正中處,向鼻中隔方向斜刺2 mm),留針30 min(期間行捻轉(zhuǎn)手法),每12 h一次,共7次。
3.3取材方法干預(yù)期結(jié)束,所有大鼠完成改良Garcia評分[13]后,經(jīng)10%的水合氯醛腹腔麻醉后迅速斷頭取腦。取全腦組織:將全腦組織至于一次性密封袋放入-20 ℃冰箱內(nèi)冷凍10 min,于冰上去除嗅球、小腦和低位腦干,將腦組織平均切5個冠狀腦切片,每片厚約2 mm,每組5只用于TTC染色;生理鹽水沖洗后,用4%多聚甲醛固定全腦組織24 h以上,每組5只用于尼氏染色。取海馬組織:于冰上迅速分離缺血側(cè)海馬組織,將組織置于凍存管內(nèi)迅速投入液氮中速凍,后轉(zhuǎn)入-80 ℃冰箱保存,每組3只用于基因芯片檢測、每組5只用于Western blot檢測。
3.4改良Garcia評分法評估神經(jīng)功能損傷程度在CIRI后、干預(yù)72 h后兩個時點進行評分;主要從以下6個方面進行判斷:大鼠的自主運動,前肢伸展運動功能,體態(tài)對稱性,攀爬運動,身體雙側(cè)的觸覺,雙側(cè)胡須觸碰反應(yīng)??偡譃?8分,分?jǐn)?shù)區(qū)間為3~18分,得分越低,表示神經(jīng)功能損傷越嚴(yán)重,18分為無神經(jīng)功能缺損。
3.5TTC染色法檢測大鼠腦梗死面積將切片浸沒在37 ℃、2% TTC染液中10 min,隔5 min翻一次面,使切片染色均勻;在染色結(jié)束后,用4%多聚甲醛固定24 h后用相機拍照,用ImageJ軟件測量腦梗死面積,參考Swanson公式[14]算出腦梗死面積百分比。
3.6Western blot法檢測神經(jīng)元特異性核蛋白NeuN的表達(dá)每組取5只-80 ℃冰箱凍存的海馬組織10 mg,步驟如下:(1)組織中加入蛋白抽提液,勻漿及冰浴30 s,組織裂解后12 000×離心15 min,上清轉(zhuǎn)移到新管;(2)參照BCA蛋白定量步驟繪制標(biāo)準(zhǔn)曲線,計算目的蛋白濃度(mg/L);(3)制膠、灌膠,插下齒梳,分別凝膠聚合1 h;(4)拔去齒梳,倒入電泳液,上樣,使用BioRad電泳裝置,4 ℃恒壓80 V電泳至染料靠近分離膠頂部,再改用120 V至溴酚藍(lán)到膠底部;(5)將吸水紙、濾紙、PVDF膜裝配于轉(zhuǎn)移裝置上,在200 mA恒流下4 ℃轉(zhuǎn)膜1.5 h,后將膜浸入5% BSA溶液中封閉2 h;(6)加Ⅰ抗4 ℃過夜,Ⅱ抗孵育1 h,分別TBST洗膜6次×5 min;(7)發(fā)光混合液滴注在膜上,室溫孵育2 min,CCD相機曝光,以ImageJ軟件測量出各條帶的灰度值,以目的蛋白與內(nèi)參GAPDH的比值作為目的蛋白的相對表達(dá)量。
3.7尼氏染色法觀察缺血側(cè)海馬組織神經(jīng)元損傷程度取出4%多聚甲醛固定的全腦組織,每組5只,石蠟切片脫蠟至水后,組織切片入染液5 min,水洗,1%的冰醋酸稍分化,自來水洗終止反應(yīng),顯微鏡下控制分化程度,自來水洗后,將切片置于烤箱烤干,切片入干凈的二甲苯透明5 min,中性樹膠透明封片。使用CaseViewer成像系統(tǒng)掃描圖像,在成像系統(tǒng)500 μm標(biāo)尺下觀察完整海馬結(jié)構(gòu),50 μm標(biāo)尺下觀察海馬CA1區(qū)神經(jīng)元存活情況,每組每張切片隨機采集3張50 μm標(biāo)尺下海馬CA1區(qū)圖片,應(yīng)用ImageJ軟件對缺血側(cè)海馬CA1區(qū)尼氏染色陽性細(xì)胞進行計數(shù)。
3.8基因芯片技術(shù)篩選差異表達(dá)基因及基因本體(gene ontology,GO)功能富集分析每組隨機抽取3只大鼠凍存海馬組織,用NanoDrop nd-1000檢測樣品總RNA的純度和濃度,用RNase R處理每個樣本的總RNA去除線性RNA以富集circRNA,然后根據(jù)Arraystar超級RNA標(biāo)記試劑盒,利用隨機引物法擴增富集的circRNA,并將其轉(zhuǎn)錄為熒光cRNA。將標(biāo)記的cRNA雜交到大鼠circRNA陣列(8×15k,Arraystar),在安捷倫雜交箱中65 ℃孵育17 h。洗滌后,用安捷倫G2505C掃描儀掃描切片,用Feature Extraction軟件提取芯片數(shù)據(jù),用GeneSpring軟件進行數(shù)據(jù)分析,按照差異倍數(shù)(fold change, FC)>1.25、<0.05的篩選標(biāo)準(zhǔn),尋找假手術(shù)組、模型組、針刺組間差異表達(dá)的circRNAs,并對差異表達(dá)circRNAs的來源基因進行GO功能富集分析。
本實驗采用完全隨機設(shè)計,所有數(shù)據(jù)為計量資料,用SPSS 25.0軟件進行統(tǒng)計學(xué)分析,組內(nèi)干預(yù)前后比較:差值符合正態(tài)分布使用配對檢驗;不符合則使用配對秩和檢驗。各組間比較:所有數(shù)據(jù)進行正態(tài)性檢驗,滿足正態(tài)性分布使用單因素方差分析,方差齊者用LSD檢驗,方差不齊者用Tamhane's T2檢驗,數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示;不符合正態(tài)性分布則使用非參數(shù)檢驗,以中位數(shù)與四分位數(shù)間距[median ()]表示。以0.05為差異有統(tǒng)計學(xué)意義。
本實驗共納入大鼠65只,未達(dá)到納入標(biāo)準(zhǔn)大鼠2只,死亡大鼠9只,假手術(shù)組無大鼠死亡,死亡率為0;模型組死亡大鼠4只,死亡率為18.1%;針刺組死亡大鼠5只,死亡率為21.7%;最終各組以18只大鼠納入統(tǒng)計。
造模后,對所有大鼠進行神經(jīng)功能評分,與假手術(shù)組比較,模型組和針刺組Garcia神經(jīng)功能評分顯著降低(<0.01);72 h干預(yù)后,與假手術(shù)組比較,模型組評分顯著降低(<0.01);與模型組比較,針刺組評分顯著升高(<0.01);與干預(yù)前比較,干預(yù)后針刺組評分顯著升高(<0.01),見圖2。
Figure 2. Garcia scoring was used to observe the neurological function of the rats in different groups. Median (Q). n=18. ##P<0.01 vs sham group; **P<0.01 vs model group; &&P<0.01 vs acupuncture (AC) groupbefore intervention.
假手術(shù)組大鼠腦組織未見顯著梗死灶;與假手術(shù)組相比,模型組和針刺組腦梗死面積百分比均顯著升高(<0.01);與模型組相比,針刺組梗死面積比顯著降低(<0.01),見圖3。
Figure 3. TTC staining was used to observe the cerebral infarction area changes of the rats in different groups. A: TTC staining picture; B: percentage of cerebral infarction area. Mean±SD. n=5. ##P<0.01 vs sham group; **P<0.01 vs model group.
與假手術(shù)組比較,模型組大鼠缺血側(cè)海馬組織NeuN表達(dá)量顯著降低(<0.01);與模型組比較,針刺組NeuN表達(dá)量顯著上調(diào)(<0.05),見圖4。
Figure 4. Western blot was used to observe the protein level of NeuN in hippocampal tissues on ischemic side of the rats in different groups. Mean±SD. n=5. ##P<0.01 vs sham group; *P<0.05 vs model group.
大鼠海馬神經(jīng)元尼氏染色結(jié)果顯示,假手術(shù)組細(xì)胞結(jié)構(gòu)完整、密度大,排列整齊且緊密,胞體飽滿,胞漿均勻著色,高倍鏡下細(xì)胞核核仁顯著,尼氏體染色較深,數(shù)量較多;模型組大部分細(xì)胞結(jié)構(gòu)不完整,呈空泡狀改變,尼氏體溶解甚至消失;針刺組細(xì)胞結(jié)構(gòu)較為完整,偶有空泡狀改變,神經(jīng)元損傷較模型組降低,見圖5A。與假手術(shù)組比較,模型組缺血側(cè)海馬CA1區(qū)神經(jīng)元尼氏染色陽性細(xì)胞數(shù)顯著降低(<0.05);與模型組比較,針刺組神經(jīng)元尼氏染色陽性細(xì)胞數(shù)顯著升高(<0.05),見圖5B。
Figure 5. Nissl staining was used to observe neurons in hippocampal CA1 area on ischemic side of the rats in different groups. A: the left picture showed Nissl staining results of the whole hippocampus of the right hemisphere of the brain (scale bar=500 μm), while the right picture is the enlarged result of hippocampal CA1 area in the left picture (scale bar=50 μm); B: Nissl staining positive cells. Mean±SD. n=5. #P<0.05 vs sham group; *P<0.05 vs model group.
6.1大鼠缺血側(cè)海馬組織circRNAs差異表達(dá)譜差異circRNAs火山圖見圖6A、6B,垂直線分別對應(yīng)上下差異倍數(shù)1.25倍,水平線代表0.05的值,因此,圖中的紅點代表具有統(tǒng)計意義的差異表達(dá)的circRNAs。聚類分析圖見圖6C、6D,橫列為差異表達(dá)circRNAs,縱列為樣本名稱,紅色熒光為高表達(dá),綠色為低表達(dá)。
Figure 6. Differential expression profile of circRNAs. A and B: volcano plots. The vertical lines correspond to 1.25-fold up and down, and the horizontal line represents a P-value of 0.05. The red point in the plot represents the differentially expressed circRNAs with statistical significance. A: model group vs sham group; B: acupuncture group vs model group. C and D: heatmaps. The horizontal column is the differentially expressed circRNAs, the vertical column is the sample name, the red fluorescence is the high expression, and the green is the low expression. C: model group vs sham group; D: acupuncture group vs model group. n=3.
6.2大鼠缺血側(cè)海馬組織差異表達(dá)circRNAs數(shù)量與假手術(shù)組比較,模型組上調(diào)的差異表達(dá)circRNAs個數(shù)為288,下調(diào)個數(shù)為315;與模型組比較,針刺組上調(diào)的差異表達(dá)circRNAs個數(shù)為33,下調(diào)個數(shù)為18。其中造模后下調(diào)、針刺后上調(diào)的共同差異表達(dá)circRNAs為16個,分別是rno_circRNA_009775、rno_circRNA_011989、rno_circRNA_003569、mmu_circRNA_002279、rno_circRNA_008343、rno_circRNA_004285、rno_circRNA_011770、rno_circRNA_017109、rno_circRNA_001795、rno_circRNA_004094、rno_circRNA_011768、rno_circRNA_003559、rno_circRNA_006985、rno_circRNA_013175、rno_circRNA_003917、rno_circRNA_011767,見圖7A,造模后上調(diào)、針刺后下調(diào)的共同差異表達(dá)circRNAs為7個,分別為mmu_circRNA_23904、mmu_circRNA_006620、rno_circRNA_006405、rno_circRNA_012390、rno_circRNA_006701、rno_circRNA_007293、rno_circRNA_006893,見圖7B。
Figure 7. The numbers of common differentially expressed circRNAs. A: the blue part is the number of down-regulated circRNAs in model group compared with sham group, the yellow part is the number of up-regulated circRNAs in acupuncture (AC) group compared with model group, and the middle part is the numder of common differentially expressed circRNAs; B: the blue part is the number of up-regulated circRNAs in model group compared with sham group, the yellow part is the number of down-regulated circRNAs in AC group compared with model group, and the middle part is the number of common differentially expressed circRNAs. n=3.
6.3針刺干預(yù)后共同差異表達(dá)circRNAs來源基因的GO功能富集分析通過對共同差異表達(dá)circRNAs來源基因進行的GO分析,可以初步探討共同差異表達(dá)circRNAs在生物體中的潛在功能,GO分析包括生物進程(biological process, BP)、細(xì)胞成分(cellular component, CC)和分子功能(molecular function, MF)三個領(lǐng)域,根據(jù)來源基因的“基因計數(shù)”和GO條目的“富集分?jǐn)?shù)”,針刺干預(yù)后上調(diào)的共同差異表達(dá)circRNAs其來源基因在BP方面,主要富集在神經(jīng)系統(tǒng)發(fā)育、神經(jīng)元的產(chǎn)生、神經(jīng)元發(fā)育、神經(jīng)元分化、神經(jīng)元投射發(fā)育、神經(jīng)發(fā)生和生物發(fā)生等進程;在CC方面,主要富集在突觸、突觸后膜、神經(jīng)元間突觸、細(xì)胞內(nèi)囊泡和神經(jīng)元細(xì)胞體等;在MF方面,主要富集在結(jié)合、蛋白質(zhì)結(jié)合、蛋白激酶活性、酶調(diào)節(jié)活性和微管結(jié)合等,見圖8A。下調(diào)的共同差異表達(dá)circRNAs其來源基因在BP方面,主要富集在大腦皮層發(fā)育、神經(jīng)元投射發(fā)育、神經(jīng)元分化、蛋白質(zhì)代謝過程、生物過程的調(diào)節(jié)、基因表達(dá)的調(diào)控等進程;在CC方面,主要富集在細(xì)胞內(nèi)膜結(jié)合細(xì)胞器、細(xì)胞質(zhì)、細(xì)胞內(nèi)囊泡、內(nèi)質(zhì)網(wǎng)、興奮性突觸等;在MF方面,主要富集在結(jié)合、轉(zhuǎn)移酶活性、神經(jīng)營養(yǎng)素結(jié)合、激酶結(jié)合、轉(zhuǎn)運活性等,見圖8B。
具體GO分析的GOID、GO條目、基因分布計數(shù)、富集分?jǐn)?shù)等詳見表1。
表1 針刺干預(yù)后共同差異表達(dá)circRNAs來源基因的GO分析
GOID代表GO條目的ID,對共同差異表達(dá)circRNAs來源基因富集的GOID數(shù)量統(tǒng)計見圖9,其中富集GOID數(shù)量前三的基因分別為(118個)、(97個)和(84個),其對應(yīng)的circRNA分別為:rno_circRNA_006893、rno_circRNA_009775和rno_circRNA_017109。
Figure 9. The number of GOID enriched by source genes of common differentially expressed circRNAs. n=3. P<0.05.
CIRI是缺血性腦卒中的主要并發(fā)癥,因其發(fā)病癥狀與中醫(yī)中風(fēng)類似,故將其歸屬于中醫(yī)中風(fēng)范疇。中醫(yī)學(xué)認(rèn)為“腦髓損傷,神機失用”、“督脈瘀阻,陽氣不振”是中風(fēng)發(fā)病的病機關(guān)鍵[15],因此中風(fēng)病的診治常選取督脈穴,歷代醫(yī)家也認(rèn)為“督脈痹阻”是中風(fēng)病發(fā)病的經(jīng)絡(luò)學(xué)基礎(chǔ)[16]?!鹅`樞·邪氣臟腑病形》曰:“病變在腦,首取督脈”,本實驗研究所選取的大椎、百會、水溝穴均為督脈要穴,其中大椎穴為督脈入腦的關(guān)鍵穴位,刺之可開通督脈,活血行氣;百會穴位于巔頂,又稱為三陽五會,是百脈聚會之處,是治療內(nèi)外風(fēng)的關(guān)鍵穴位,刺之可使氣血上榮,補益腦髓;水溝穴為督脈和手足陽明經(jīng)的交會穴,刺之可回陽救逆,開竅醒神。課題組前期研究顯示[17-18],針刺大椎、百會、水溝穴治療CIRI療效確切,可有效改善神經(jīng)功能和神經(jīng)元超微結(jié)構(gòu)的病理改變,減輕神經(jīng)損傷,促進機能恢復(fù)和血管新生,從而達(dá)到一定程度的腦保護作用。近年來課題組致力于從基因?qū)W視角研究針刺促CIRI修復(fù)機制,其機制可能是針刺激活多種類微小RNA(microRNA,miRNA)的表達(dá),靶向多條信號轉(zhuǎn)導(dǎo)通路,從多途徑和多網(wǎng)絡(luò)調(diào)控CIRI[19-20],可能與其調(diào)控miR-34c-5p表達(dá),進而調(diào)控細(xì)胞自噬抗凋亡有關(guān)[21]。本實驗研究結(jié)果顯示,在造模后,大鼠Garcia神經(jīng)功能評分顯著降低,腦血流量顯著減少,腦梗死面積顯著增加,針刺干預(yù)后都能在一定程度上改善CIRI大鼠神經(jīng)功能,減少腦梗死面積,減輕神經(jīng)損傷,發(fā)揮腦保護效應(yīng)。
大量circRNAs在哺乳動物腦中的表達(dá)豐富度要高于其他的檢測組織,且circRNA在神經(jīng)發(fā)育過程中,在大腦各個部位均有較高的表達(dá)[22-24]。circRNA在神經(jīng)形成和發(fā)育及突觸可塑性中的高表達(dá),提示circRNA在中樞神經(jīng)系統(tǒng)中的重要作用[25]。circRNA可作為海綿吸附miRNA和RNA結(jié)合蛋白參與轉(zhuǎn)錄后調(diào)控、調(diào)控親本基因的表達(dá)等途徑在神經(jīng)系統(tǒng)疾病中發(fā)揮作用[26]。Han等[27]研究發(fā)現(xiàn)短暫性MCAO模型缺血腦組織中circHECTD1水平顯著增加,在敲減表達(dá)之后,可緩解腦血管閉塞和神經(jīng)元的虧損從而發(fā)揮神經(jīng)保護作用。Chen等[28]研究表明局灶性腦缺血再灌注小鼠模型的腦組織中circUCK2的水平顯著降低,升高的circUCK2水平顯著降低了梗死體積,減輕了神經(jīng)元損傷,并改善了神經(jīng)功能缺損,其機制是circUCK2可以作為內(nèi)源性miR-125b-5p海綿來抑制miR-125b-5p活性,從而導(dǎo)致生長分化因子11的表達(dá)增加,并隨后改善神經(jīng)元損傷。以上研究均表明調(diào)控差異表達(dá)的circRNAs可以實現(xiàn)對腦缺血后神經(jīng)損傷的修復(fù)作用,改善神經(jīng)功能缺損,減輕神經(jīng)元損傷,從而發(fā)揮神經(jīng)保護作用,因此circRNA在CIRI的診療中具有重要的研究意義。目前已有circRNA在大鼠腦缺血后海馬組織中表達(dá)譜的研究[29];但針刺調(diào)控circRNA在CIRI大鼠海馬組織中的差異表達(dá)譜仍未見報道,本研究主要以circRNA為切入點、針刺為干預(yù)手段,探索針刺調(diào)控circRNAs的差異表達(dá)抗腦缺血再灌注損傷。
本實驗研究結(jié)果顯示,造模后及針刺后大鼠缺血側(cè)海馬組織circRNAs表達(dá)譜均發(fā)生改變,且造模后與針刺后存在共同差異表達(dá)的circRNAs,這23個共表達(dá)的基因可能成為針刺調(diào)控circRNA抗CIRI的關(guān)鍵靶點。此外,共同差異表達(dá)circRNAs的來源基因GO分析結(jié)果顯示,其廣泛參與神經(jīng)系統(tǒng)發(fā)育,神經(jīng)元的產(chǎn)生、發(fā)育、分化及投射,頭部、大腦及海馬的發(fā)育,突觸的形成、發(fā)育、延伸及運輸?shù)?,且富集GOID數(shù)量前三的核心基因、和功能多富集在與神經(jīng)系統(tǒng)發(fā)育與神經(jīng)元發(fā)育分化有關(guān)。因此,我們可以推斷出共同差異表達(dá)circRNAs在神經(jīng)系統(tǒng)中具有促進神經(jīng)元發(fā)育分化、減輕神經(jīng)元損傷等功能;本實驗采用尼氏染色法觀察缺血側(cè)海馬組織神經(jīng)元的損傷程度、WB檢測神經(jīng)元特異性核蛋白NeuN的表達(dá)以探究針刺對缺血側(cè)海馬組織神經(jīng)元的作用。因海馬CA1區(qū)神經(jīng)元最為敏感[30],且CIRI后海馬CA1區(qū)神經(jīng)元是損傷率最高的區(qū)域[31],故本實驗采用海馬CA1區(qū)域的染色進行計數(shù),模型組缺血側(cè)海馬CA1區(qū)神經(jīng)元尼氏染色陽性細(xì)胞數(shù)顯著降低、NeuN表達(dá)量顯著降低,針刺干預(yù)后均顯著升高,這表明針刺可以減輕缺血側(cè)海馬組織神經(jīng)元的損傷。以上GO分析的結(jié)果與本實驗針刺所表現(xiàn)出的效應(yīng)相一致。
綜上所述,針刺能顯著改善CIRI大鼠的神經(jīng)功能評分和腦梗死面積比,減輕海馬組織神經(jīng)元損傷,其機制可能與針刺調(diào)控缺血側(cè)海馬組織circRNAs差異表達(dá)以及激發(fā)共同差異表達(dá)circRNAs的促神經(jīng)元發(fā)育分化、抗神經(jīng)損傷等功能有關(guān)。本實驗為探究針刺調(diào)控circRNA表達(dá)抗CIRI提供了關(guān)鍵基因,為進一步治療CIRI提供了關(guān)鍵靶點。但本實驗未對核心circRNA進行驗證,且未在基因?qū)用鎸诵腸ircRNA進行沉默或者過表達(dá)相關(guān)研究。另外,circRNA的差異表達(dá)是通過何種途徑起到的減輕神經(jīng)元損傷的作用,有待進一步研究。
[1] Liu Q, Zhou S, Wang Y, et al. A feasible strategy for focal cerebral ischemia-reperfusion injury: remote ischemic postconditioning[J]. Neural Regener Res, 2014, 9(15):1460.
[2] Wang Y, Ren Q, Zhang X, et al. Neuroprotective mechanisms of calycosin against focal cerebralischemia and reperfusion injury in rats[J]. Cell Physiol Biochem, 2018, 45(2):537-546.
[3]臧瑞, 郭濤, 李旭華, 等. 五味子醇甲通過調(diào)控自噬流減輕大鼠腦缺血再灌注損傷[J]. 中國病理生理雜志, 2021, 37(2):269-276.
Zang Y, Guo T, Li XH, et al. Schisandrin A alleviates cerebral ischemia-reperfusion injury in rats by regulating autophagic flux[J]. Chin J Pathophysiol, 2021, 37(2):269-276.
[4] Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs[J]. Nat Biotechnol, 2014, 32(5):453-461.
[5] Ebbesen KK, Kjems J, Hansen TB. Circular RNAs: identification, biogenesis and function[J]. Biochim Biophys Acta, 2016, 1859(1):163-168.
[6] Mehta SL, Pandi G, Vemuganti R. Circular RNA expression profiles alter significantly in mouse brain after transient focal ischemia[J]. Stroke, 2017, 48(9):2541-2548.
[7]肖姮, 陽仁達(dá), 田浩梅, 等. 針刺聯(lián)合亞低溫對腦缺血/再灌注損傷大鼠Bcl-2、Bax、caspase-3蛋白表達(dá)的影響[J]. 湖南中醫(yī)藥大學(xué)學(xué)報, 2016, 36(2):58-61.
Xiao H, Yang RD, Tian HM, et al. Effect of acupuncture combined hypothermia on Bcl-2, Bax and caspase-3 expressions of cerebral ischemia reperfusion injury rats[J]. J Hunan Univ Chin Med, 2016, 36(2):58-61.
[8]劉琴, 林亞平, 陳文, 等. 針刺聯(lián)合亞低溫對腦缺血再灌注損傷大鼠腦組織p-Raf1、p-ERK1/2的影響[J]. 湖南中醫(yī)藥大學(xué)學(xué)報, 2016, 36(1):58-62.
Liu Q, Lin YP, Chen W, et al. Effect of acupuncture combined with mild hypothermia on p-Raf1 and p-ERK1/2 in brain tissue of rats with cerebral ischemia reperfusion injury[J]. J Hunan Univ Chin Med, 2016, 36(1):58-62.
[9]侯瑜超, 劉璐慜, 陳曉桐, 等. 基于環(huán)狀RNA研究針灸對慢性萎縮性胃炎細(xì)胞凋亡機制的思考[J]. 針刺研究, 2020, 45(8):676-681.
Hou YC, Liu LM, Chen XT, et al. Research strategy thoughts acpuncture-moxibustion treatment of chronic atrophic gastritis by suppressing apoptosis via circular RNA[J]. Acupunct Res, 2020, 45(8):676-681.
[10] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1):84-91.
[11] Wang HL, Liu FL, Li RQ, et al. Electroacupuncture improves learning and memory functions in a rat cerebral ischemia/reperfusion injury model through PI3K/Akt signaling pathway activation[J]. Neural Regener Res, 2021, 16(6):1011.
[12] 李忠仁. 實驗針灸學(xué)[M]. 北京: 中國中醫(yī)藥出版社, 2007:314.
Li ZR. Experimental acupuncture science[M]. Beijing: Chinese Medicine Press, 2007:314.
[13] Garcia JH, Wagner S, Liu KF, et al. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats: statistical validation[J]. Stroke, 1995, 26(4):627-635.
[14] Swanson RA, Morton MT, Tsao-Wu G, et al. A semiautomated method for measuring brain infarct volume[J]. J Cereb Blood Flow Metab, 1990, 10(2):290-293.
[15] 林志誠, 薛偕華, 江一靜, 等. 中醫(yī)康復(fù)臨床實踐指南·腦卒中[J]. 康復(fù)學(xué)報, 2019, 29(6):6-9.
Lin ZC, Xue XH, Jiang YJ, et al. Clinical practice guide of traditional chinese medicine rehabilitation: stroke[J]. Rehabilit Med, 2019, 29(6):6-9.
[16] 何興偉. 中風(fēng)病從督脈論治探討[J]. 中國中醫(yī)基礎(chǔ)醫(yī)學(xué)雜志, 2006, 12(8):561-561.
He XW. Discussion on treatment of apoplexy from the governor vessel[J]. J Basic Chin Med, 2006, 12(8):561-561.
[17] 武姿含, 蔣素容, 陳芯儀, 等. 針刺大椎、百會、人中穴對大鼠腦缺血再灌注損傷后ES蛋白表達(dá)的影響[J]. 湖南中醫(yī)藥大學(xué)學(xué)報, 2019, 39(4):507-510.
Wu ZH, Jiang SR, Chen XY, et al. Effects of acupuncture,,on ES protein expression after cerebral ischemia reperfusion injury in rats[J]. J Hunan Univ Chin Med, 2019, 39(4):507-510.
[18] 賀平, 顏虹, 蔣素容, 等. 針刺大椎、人中、百會穴對腦缺血再灌注損傷大鼠腦線粒體超微結(jié)構(gòu)的影響[J]. 湖南中醫(yī)藥大學(xué)學(xué)報, 2018, 38(1):55-58.
He P, Yan H, Jiang SR, et al. Effects of Acupuncture,,Points on ultrastructure of cerebral mitochondria in rats with cerebral ischemia reperfusio[J]. J Hunan Univ Chin Med, 2018, 38(1):55-58.
[19] 鄭慧娥, 何灝龍, 陳芯儀, 等. 針刺對CIRI大鼠缺血側(cè)海馬組織miRNA表達(dá)及miR-20a-5p和miR-22-5p的影響[J]. 湖南中醫(yī)藥大學(xué)學(xué)報, 2020, 40(10):1226-1231.
Zheng HE, He HL, Chen XY, et al. Effects of acupuncture on miRNA expression and miR-20a-5p and miR-22-5p in ischemic hippocampal tissues in CIRI rats[J]. J Hunan Univ Chin Med, 2020, 40(10):1226-1231.
[20] 何灝龍, 鄭慧娥, 高音來, 等. 針刺調(diào)控腦缺血再灌注損傷大鼠缺血側(cè)海馬差異miRNA信號歸屬通路及mir-34c-3p表達(dá)的研究[J]. 中國康復(fù)醫(yī)學(xué)雜志, 2020, 35(11):1290-1295.
He HL, Zheng HE, Gao YL, et al. Research on acupuncture regulation of differential miRNA signal attribution pathway and mir-34c-3p expression in ischemic hippocampus of rats with cerebral ischemia reperfusion injury[J]. Chin J Rehabil Med, 2020, 35(11):1290-1295.
[21] 盧小葉, 何灝龍, 呂倩憶, 等. 針刺介導(dǎo)miR-34c-5p調(diào)控腦缺血再灌注損傷大鼠海馬神經(jīng)細(xì)胞自噬的研究[J]. 針刺研究, 2022, 47(5):415-421.
Lu XY, He HL, Lyu QY, et al. Research on acupuncture mediated miR-34c-5p regulating autophagy of hippocampal neurons in rats with cerebral ischemia-reperfusion injury[J]. Acupunct Res, 2022, 47(5):415-421.
[22] You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity[J]. Nat Neurosci, 2015, 18(4):603-610.
[23] Rybak-Wolf A, Stottmeister C, Gla?ar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J]. Mol Cell, 2015, 58(5):870-885.
[24] You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity[J]. Nat Neurosci, 2015, 18(4):603-610.
[25] Constantin L. Circular RNAs and neuronal development[J]. Circular RNAs, 2018:205-213.
[26] 劉燕芳, 逯丹, 徐安定. 腦血管病環(huán)狀RNA的轉(zhuǎn)錄后調(diào)控及展望[J]. 中國病理生理雜志, 2018, 34(4):760-763.
Liu YF, Lu D, Xu AD. Post-transcriptional regulation and prospect of circular RNA in cerebrovascular disease[J]. Chin J Pathophysiol, 2018, 34(4):760-763.
[27] Han B, Zhang Y, Zhang Y, et al. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke[J]. Autophagy, 2018, 14(7):1164-1184.
[28] Chen W, Wang H, Feng J, et al. Overexpression of circRNA circUCK2 attenuates cell apoptosis in cerebral ischemia-reperfusion injury via miR-125b-5p/GDF11 signaling[J]. Mol Ther Nucleic Acids, 2020, 22:673-683.
[29] 陳博威, 唐榮梅, 徐雅倩, 等. 大腦中動脈栓塞模型大鼠海馬組織circRNA-miRNA-mRNA三元轉(zhuǎn)錄網(wǎng)絡(luò)分析[J]. 中國病理生理雜志, 2022, 38(3):479-486.
Chen BW, Tang RM, Xu YQ, et al. Analysis of circRNA-miRNA-mRNA ternary transcriptional network in hippocampus of a rat model of middle cerebral artery occlusion[J]. Chin J Pathophysiol, 2022, 38(3):479-486.
[30] Petito CK, Morgello S, Felix JC, et al. The two patterns of reactive astrocytosis in postischemic rat brain[J]. J Cereb Blood Flow Metab, 1990, 10(6):850-859.
[31] Newrzella D, Pahlavan PS, Krüger C, et al. The functional genome of CA1 and CA3 neurons under native conditions and in response to ischemia[J]. BMC genomics, 2007, 8:370.
Research on function of acupuncture regulating differential expression of circRNAs in hippocampus of CIRI rats
JIANG Shanshan1, TANG Hong1, WANG Hongjuan1, Lü Qianyi2, XIE Canming1, WANG Yao1, CHEN Chutao1, TIAN Haomei1△
(1,,,410208,;2,610021,)
To explore the protective effect of acupuncture on brain tissue of rats with cerebral ischemia reperfusion injury (CIRI), observe the effect of acupuncture on the differential expression of circular RNA (circRNA) in the hippocampus of the ischemic side of CIRI rats, and carry out gene ontology (GO) analysis on it.Fifty four 6~8 week old SD rats were randomly divided into modeling group and sham operation group (sham group). CIRI rats were randomly divided into model group(model group) and acupuncture group(AC group) with 18 rats in each group. Establishment of middle cerebral artery occlusion reperfusion (MCAO/R) model by using Longa monofilament method. The cerebral blood flow was monitored by laser speckle imager. In the sham operation group, only the blood vessels were stripped without inserting thread plugs. The acupuncture group was bound+acupuncture every 12 h, 30 minutes for 7 times, during which twirling manipulation was performed. The nerve function was evaluated by the modified Garcia scoring method. Cerebral infarction area was measured by TTC staining. Detection of the expression of neuronal nuclear antigen (NeuN) by Western blot. Observation of neuronal damage in ischemic hippocampus by Nissl staining. Gene chip microarray analysis was used to screen out the circRNA differentially expressed in the hippocampus of ischemic side, and GO analysis was performed on the source genes of common differentially expressed circRNA in model groupsham group and AC groupmodel group.Before intervention, compared with the sham group, the Garcia neural function score in the modeling group was significantly lower (<0.01). After intervention, compared with the sham group, the score of the Model group decreased significantly (<0.01) . Compared with the model group, the score of AC group increased significantly (<0.01). Compared with before intervention, the score of AC group increased significantly after intervention (<0.01). Compared with the sham group, the area ratio of cerebral infarction in the model group was significantly increased (<0.01), the expression of NeuN was significantly decreased (<0.01), and the number of Nielsen staining positive cells in hippocampal CA1 neurons in the ischemic side was significantly decreased (<0.05). Compared with the model group, the area ratio of cerebral infarction in the AC group was significantly reduced (<0.01), the expression of NeuN was significantly increased (<0.05), and the number of neurons with positive Nissl staining was significantly increased (<0.05). The results of circRNA chip screening showed that, compared with the sham group, the number of up regulated circRNA in the model group was 288, and the number of down regulated circRNA was 315. Compared with the model group, the number of differential expression circRNA up-regulated and down-regulated in the AC group was 33 and 18 respectively (FC>1.25,<0.05). The number of common differential expression circRNA in model groupsham group and AC groupmodel group is 23. GO analysis showed that the source genes with common differential expression of circRNA may regulate cerebral ischemia-reperfusion injury by participating in the development of nervous system, the generation, development, differentiation and projection of neurons, the development of head, brain and hippocampus, and the formation, development, extension and transportation of synapses.Acupuncture improves the neurological function score and cerebral infarction area ratio of CIRI rats, and reduce neuronal damage in the hippocampus. The mechanism may be related to acupuncture regulating the differential expression of multiple circRNA in the ischemic hippocampus.
acupuncture; cerebral ischemia reperfusion injury; neuronal injury; circular RNA; differential expression
R743; R363.2
A
10.3969/j.issn.1000-4718.2023.02.004
1000-4718(2023)02-0220-13
2022-08-22
2022-12-23
[基金項目]國家自然科學(xué)基金資助項目(No. 81874508; No. 82274662);湖南省自然科學(xué)基金資助項目(No. 2020JJ4065; No. 2021JJ30490);長沙市科技局自然科學(xué)基金項目(No. kq2014094);湖南省研究生科研創(chuàng)新項目(No. CX20220799);湖南中醫(yī)藥大學(xué)研究生創(chuàng)新課題(No. 2021CX39; No. 2022CX97)
Tel: 13548574270; E-mail: 451358104@qq.com
(責(zé)任編輯:宋延君,李淑媛)