孫艷發(fā),吳瓊,林如龍,陳紅萍,甘秋云,沈玥,王亞茹,薛鵬飛,陳飛帆,劉健濤,周陳鑫,蘭詩(shī)詩(shī),潘浩哲,鄧凡,5,岳穩(wěn),江宵兵,李焰
龍巖山麻鴨蛋品質(zhì)性狀的全基因組關(guān)聯(lián)研究
1龍巖學(xué)院生命科學(xué)學(xué)院,福建龍巖 364012;2龍巖學(xué)院/福建省家畜傳染病防治與生物技術(shù)重點(diǎn)實(shí)驗(yàn)室/預(yù)防獸醫(yī)學(xué)與生物技術(shù)福建省高校重點(diǎn)實(shí)驗(yàn)室,福建龍巖 364012;3龍巖市新羅區(qū)農(nóng)業(yè)局山麻鴨原種場(chǎng),福建龍巖 364031;4福建省畜牧總站,福州 350003;5福建農(nóng)林大學(xué)動(dòng)物科學(xué)學(xué)院(蜂學(xué)學(xué)院),福州 350002
【目的】通過(guò)全基因組關(guān)聯(lián)研究(genome-wide association study,GWAS)技術(shù)篩選和鑒定鴨蛋品質(zhì)性狀的單核苷酸多態(tài)性(single nucleotide polymorphisms,SNPs)位點(diǎn)及候選基因,為龍巖山麻鴨蛋品質(zhì)性狀分子育種提供參考?!痉椒ā吭囼?yàn)測(cè)定產(chǎn)蛋后期235只龍巖山麻鴨母鴨蛋品質(zhì)性狀,包括蛋重(egg weight,EW)、蛋形指數(shù)(egg shaped index,ESI)、蛋殼厚(eggshell thickness,EST)、蛋殼強(qiáng)度(eggshell strength,ESS)、蛋殼顏色L*、a*、b*值(eggshell colour L*, a*, b*,ESCL、ESCA和ESCB)、蛋白高度(albumin height,AH)、哈氏單位(Haugh unit,HU)、蛋黃顏色(egg yolk colour,EYC)、蛋黃重(egg yolk weight,EYW)和蛋黃比例(egg yolk percentage relative to egg weight,EYP)。使用ASReml-R 4.1軟件多性狀動(dòng)物模型對(duì)蛋品質(zhì)性狀進(jìn)行遺傳參數(shù)估計(jì)。使用簡(jiǎn)化基因組測(cè)序技術(shù)對(duì)鴨血液基因組DNA進(jìn)行SNP分型,分型后進(jìn)行蛋品質(zhì)性狀與這些SNPs間的GWAS研究。【結(jié)果】龍巖山麻鴨蛋品質(zhì)性狀中,EW、ESI、EST、ESL、ESA和AU具有中高等的遺傳力,遺傳力在0.21—0.70之間。EW與AU存在較強(qiáng)的正遺傳相關(guān)(g= 0.91±0.37)。ESI與EYC存在較強(qiáng)的遺傳負(fù)相關(guān)(g= -0.98±1.03)。EST與ESS具有表型正相關(guān)(p= 0.41±0.06),與ESA具有遺傳和表型負(fù)相關(guān)(g= -0.86±0.25和p= -0.15±0.07),與ESB具有遺傳和表型正相關(guān)(g= 0.96±0.37和p= 0.18±0.07)。ESA與ESB具有遺傳和表型負(fù)相關(guān)(g= -0.64±0.28和p= -0.31±0.06)。GWAS研究結(jié)果表明,7個(gè)SNPs位點(diǎn)與ESI、EST和EYC達(dá)到5%基因組水平顯著關(guān)聯(lián)(<4.74×10-6),涉及6個(gè)候選基因。與ESI關(guān)聯(lián)的SNP(chr20:11135563:G:C)位點(diǎn)位于20號(hào)染色體含有75A富含亮氨酸重復(fù)序列(leucine rich repeat containing 75A)基因內(nèi)。與EST關(guān)聯(lián)的2個(gè)SNPs(chr13:5766560:A:G和chrZ:968819:C:T)位點(diǎn)分別位于13號(hào)下游6.86 kb處和Z染色體轉(zhuǎn)錄因子4(transcription factor 4)基因內(nèi)。與EYC關(guān)聯(lián)的4個(gè)SNPs位點(diǎn),其中1個(gè)(chr2:38155965:G:A)位于2號(hào)染色體鉀電壓門控通道亞家族H成員8(potassium voltage-gated channel subfamily H member 8)基因內(nèi);3個(gè)SNPs位于9號(hào)染色體上的位點(diǎn),2個(gè)(chr9:22623156:G:A和chr9:22623155:T:C)位于胰島素受體底物1(insulin receptor substrate 1)內(nèi)、1個(gè)(chr9:22490158:A:T)位于內(nèi)。同時(shí)發(fā)現(xiàn)81個(gè)SNPs位點(diǎn)與蛋品質(zhì)性狀達(dá)到基因組水平潛在關(guān)聯(lián)(<9.48×10-5)。13個(gè)與EYC關(guān)聯(lián)的SNPs位點(diǎn)集中在9號(hào)染色體0.84 Mb(22.16—23.00 Mb)區(qū)域內(nèi)。【結(jié)論】估計(jì)了龍巖山麻鴨蛋品質(zhì)性狀的遺傳參數(shù),通過(guò)蛋品質(zhì)性狀GWAS研究鑒定了影響ESI、EST和EYC性狀的7個(gè)顯著的SNPs位點(diǎn)、6個(gè)候選基因和1個(gè)候選基因區(qū)域,這些結(jié)果為龍巖山麻鴨蛋品質(zhì)性狀分子育種提供參考信息。
龍巖山麻鴨;蛋品質(zhì);遺傳參數(shù);單核苷酸多態(tài)性;全基因組關(guān)聯(lián)研究
【研究意義】禽蛋品質(zhì)包括外部品質(zhì)和內(nèi)部品質(zhì)。外部品質(zhì)主要包括蛋重(egg weight,EW)、蛋殼顏色(eggshell color)、蛋形指數(shù)(egg shape index,ESI)、蛋殼厚度(eggshell thickness,EST)和蛋殼強(qiáng)度(eggshell strength,ESS),影響消費(fèi)者的選擇和生產(chǎn)效益;內(nèi)部品質(zhì)主要包括蛋白高度(albumen height,AH)、哈氏單位(Haugh unit,HU)、蛋黃顏色(egg yolk color,EYC)、蛋黃重(egg yolk weight,EYW)、蛋黃比例(egg yolk percentage relative to egg weight,EYP),影響蛋的新鮮程度和營(yíng)養(yǎng)價(jià)值[1]。日糧營(yíng)養(yǎng)水平、飼養(yǎng)管理、產(chǎn)蛋階段以及蛋的存儲(chǔ)時(shí)間等因素影響蛋品質(zhì)。蛋品質(zhì)為數(shù)量性狀,受微效多基因控制[2-3]。研究人員[1,4-9]通過(guò)全基因組關(guān)聯(lián)研究(genome-wide association study,GWAS)技術(shù),鑒定了影響雞蛋品質(zhì)性狀的SNP位點(diǎn)和候選基因,雞蛋品質(zhì)性狀的分子遺傳機(jī)制逐漸被揭示。目前,鴨蛋品質(zhì)的候選基因和分子遺傳機(jī)制尚不完全清楚。通過(guò)GWAS技術(shù)鑒定影響鴨蛋品質(zhì)性狀的候選基因和分子標(biāo)記,可為蛋鴨蛋品質(zhì)分子選育提供理論基礎(chǔ)。【前人研究進(jìn)展】王珍珍[10]采用重測(cè)序法對(duì)166只紹興鴨血液基因組進(jìn)行基因分型,通過(guò)GWAS技術(shù)檢測(cè)到10個(gè)與產(chǎn)蛋性狀顯著關(guān)聯(lián)的SNP,未檢測(cè)到與蛋品質(zhì)性狀顯著關(guān)聯(lián)的SNP位點(diǎn)。LIU等[3]以352只北京鴨和麻鴨構(gòu)建的F2雜交群體為研究對(duì)象,遺傳參數(shù)估計(jì)結(jié)果表明蛋品質(zhì)性狀的遺傳力在0.16—0.71之間。GWAS技術(shù)鑒定到影響AH和HU的候選區(qū)域在5號(hào)染色體5.8 Mb(14.7—20.5 Mb),該區(qū)域內(nèi)111候選基因中的黏蛋白6和低密度脂蛋白受體A類結(jié)構(gòu)域包含3為影響鴨蛋清組成成分的重要候選基因?!颈狙芯壳腥朦c(diǎn)】山麻鴨為我國(guó)主要蛋鴨地方品種之一,原產(chǎn)地為福建龍巖市新羅區(qū)龍門鎮(zhèn),2017年中華人民共和國(guó)農(nóng)業(yè)農(nóng)村部正式批準(zhǔn)對(duì)“龍巖山麻鴨”實(shí)施農(nóng)產(chǎn)品地理標(biāo)志登記保護(hù)[11]。龍巖山麻鴨具有體型小、性早熟、產(chǎn)蛋量高等特點(diǎn),其蛋品質(zhì)性狀候選基因和分子遺傳機(jī)制鮮見(jiàn)報(bào)道。龍巖山麻鴨高產(chǎn)系在進(jìn)行選育的過(guò)程中,于72周產(chǎn)蛋結(jié)束后收集種蛋進(jìn)行下一世代孵化。【擬解決的關(guān)鍵問(wèn)題】以龍巖山麻鴨高產(chǎn)系第4世代為研究對(duì)象,采用簡(jiǎn)化基因組測(cè)序(genotyping- by-sequencing,GBS)技術(shù)[12]對(duì)龍巖山麻鴨母鴨血液基因組DNA(genome DNA,gDNA)進(jìn)行SNP分型,進(jìn)行產(chǎn)蛋末期蛋品質(zhì)性狀與SNPs間的GWAS,為揭示龍巖山麻鴨蛋品質(zhì)性狀的候選基因和分子選育提供理論基礎(chǔ)。
龍巖山麻鴨高產(chǎn)系第4世代群體于2018年2月初孵化,2018—2019年飼養(yǎng)于福建省龍巖市新羅區(qū)農(nóng)業(yè)局山麻鴨原種場(chǎng)。該群體在同一時(shí)間孵化,在相同的營(yíng)養(yǎng)與環(huán)境條件下進(jìn)行單籠飼養(yǎng),常規(guī)免疫。
1.2.1 蛋品質(zhì)測(cè)定 龍巖山麻鴨產(chǎn)蛋末期71—72周齡時(shí)開(kāi)始收集鴨蛋,剔除破蛋、軟殼蛋和雙黃蛋,稱重,記為EW。蛋品質(zhì)測(cè)定于龍巖學(xué)院生命科學(xué)學(xué)院實(shí)驗(yàn)室進(jìn)行。使用游標(biāo)卡尺(日本Mitutoyo 公司)測(cè)定鴨蛋的長(zhǎng)短徑,計(jì)算ESI。使用蛋殼厚度計(jì)(TQ-1A,南京銘奧儀器設(shè)備有限公司)測(cè)定蛋殼鈍端、銳端和中部位置的蛋殼厚度,平均值作為EST。使用蛋殼強(qiáng)度測(cè)定儀(KQ-1A,北京天翔飛域科技有限公司)測(cè)定ESS。采用WSC-S色差計(jì)(上海申光有限公司)以CIELAB體系測(cè)定蛋殼顏色。CIELAB體系測(cè)定結(jié)果記錄為蛋殼顏色的亮度值(L*,ESCL)、紅色值(a*,ESCA)和黃色值(b*,ESCB)。使用蛋黃分離器分離出蛋黃,稱重記EYW,并計(jì)算EYP。使用羅氏蛋黃比色扇(日本Robotmation公司)測(cè)定蛋黃顏色。使用蛋白高度測(cè)定計(jì)(日本Mitutoyo 公司)測(cè)定蛋白兩個(gè)位置的AU,計(jì)算平均值。根據(jù)下列公式計(jì)算HU:
=100×10(-1.7×0.37+7.57)
其中,HU為哈氏單位,AU為蛋白高度(mm),EW為蛋重(g)。
1.2.2 測(cè)序分型 72周末期進(jìn)行龍巖山麻鴨翅靜脈采血,檸檬酸鈉(ACD)抗凝,液氮冷凍后-80℃冰箱保存?zhèn)溆?。酚氯仿法提取血液gDNA。采用內(nèi)切酶對(duì)gDNA 進(jìn)行酶切,構(gòu)建文庫(kù)后進(jìn)行測(cè)序。GBS文庫(kù)構(gòu)建的方法為:用I限制性內(nèi)切酶對(duì)gDNA進(jìn)行酶切。酶切后的片段兩端加Solexa P1、P2接頭(adapter)。加接頭后,使用III和III限制性內(nèi)切酶組合再次進(jìn)行酶切。使用PCR擴(kuò)增兩端分別含有P1和P2接頭的序列,形成DNA片段池(pooling),電泳回收所需區(qū)間的DNA片段。AMPure XP beads試劑盒(美國(guó)Beckman公司)純化上述 PCR 產(chǎn)物,獲得GBS文庫(kù)。文庫(kù)質(zhì)檢合格后使用Illumina公司NovaseqTM測(cè)序平臺(tái)進(jìn)行雙末端(Paired-End)150測(cè)序。測(cè)序得到的原始數(shù)據(jù)(raw data)經(jīng)過(guò)過(guò)濾得到高質(zhì)量的clean data。Clean data通過(guò)BWA軟件[13]對(duì)比到鴨基因組(IASCAAS_PekingDuck_PBH1.5,GCF_003850225.1)[14]上,比對(duì)結(jié)果經(jīng)SAMTOOLS軟件[15]去除重復(fù)。采用SAMTOOLS軟件(參數(shù)為-q 1 -C 50 -t AD,DP -m 2 -F 0.002)的進(jìn)行多個(gè)樣本SNP的檢測(cè),得到每個(gè)樣本的SNP分型數(shù)據(jù)。
1.2.3 測(cè)序數(shù)據(jù)的質(zhì)控 使用Plink V1.9軟件[16]進(jìn)行測(cè)序后基因型數(shù)據(jù)的質(zhì)量控制。選擇標(biāo)準(zhǔn)設(shè)置為:個(gè)體基因型的缺失率小于20%;SNP位點(diǎn)缺失率小于10%;最小等位基因頻率大于5%;哈迪溫伯格平衡的P值大于1×10-6。剔除不符合上述條件的樣本和SNP位點(diǎn)。
1.3.1 表型值的描述性統(tǒng)計(jì) 使用Minitab V17.0軟件(美國(guó)Minitab Inc)對(duì)表型數(shù)據(jù)進(jìn)行描述性統(tǒng)計(jì)分析,剔除異常值,計(jì)算蛋品質(zhì)性狀的平均數(shù)(mean)、最小值(Min)、最大值(Max)、標(biāo)準(zhǔn)差(standard deviation,SD)和變異系數(shù)(coefficient of variation,CV)。
1.3.2 遺傳參數(shù)估計(jì) 使用VSN國(guó)際有限公司的 ASReml-R 4.1軟件的多性狀動(dòng)物模型對(duì)蛋品質(zhì)性狀的遺傳參數(shù)(遺傳力和遺傳相關(guān))相關(guān)進(jìn)行估計(jì),并計(jì)算表型相關(guān)。模型如下:
=++
式中,為蛋品質(zhì)性狀的表型值向量,為固定效應(yīng)的向量(包括總體均值),為加性遺傳效應(yīng)的向量,為隨機(jī)誤差的向量,、分別為固定效應(yīng)、加性遺傳效應(yīng)的指定矩陣。
結(jié)果以“平均數(shù)±標(biāo)準(zhǔn)誤”的形式表示,采用似然比檢驗(yàn)(likelihood-ratio test,LRT)法對(duì)遺傳相關(guān)和表型相關(guān)進(jìn)行顯著性檢驗(yàn),<0.05表明性狀具有相關(guān)性。
1.3.3 群體結(jié)構(gòu)分析 使用 Plink V1.9軟件[16]中IBS距離聚類法檢測(cè)試驗(yàn)群體是否存在分層現(xiàn)象。該過(guò)程以25個(gè)SNPs為一個(gè)窗口,5個(gè)SNPs為步移,利用indep-pairwise命令計(jì)算窗口內(nèi)標(biāo)記成對(duì)的r2值,閾值設(shè)為 0.2,篩選所有常染色體上獨(dú)立的SNPs 標(biāo)記[17]。利用這些獨(dú)立標(biāo)記使用Plink V1.9軟件主成分(principal component,PC)分析程序計(jì)算每個(gè)樣本的PC,并計(jì)算每個(gè)PC解釋群體結(jié)構(gòu)變異的百分比。使用R V4.0.4軟件[18]以主成分1(PC1)和2(PC2)繪制群體結(jié)構(gòu)圖。
1.3.4 關(guān)聯(lián)研究 使用Plink 1.9軟件中的線性回歸模型進(jìn)行蛋品質(zhì)性狀的GWAS。為了消除群體結(jié)構(gòu)對(duì)關(guān)聯(lián)分析結(jié)果的影響,以前10個(gè)PC為協(xié)變量。使用模型為:
=+++
式中,為表型性狀值,為總體均值,為主成分效應(yīng),為SNP效應(yīng),為隨機(jī)殘差。
為了減少多重檢驗(yàn)帶來(lái)的假陽(yáng)性,以連鎖不平衡(linkage disequilibrium,LD)修正的Bonferroni方法[19]對(duì)GWAS結(jié)果的值進(jìn)行校正。獨(dú)立檢驗(yàn)數(shù)為群體結(jié)構(gòu)分析中獲得的獨(dú)立SNP數(shù)量[17],全基因組顯著和潛在關(guān)聯(lián)閾值的計(jì)算公式為:
式中,為Bonferroni校正的全基因組顯著或潛在關(guān)聯(lián)的值,為群體結(jié)構(gòu)分析中獲得的獨(dú)立SNPs數(shù)量。
蛋品質(zhì)性狀表型值的描述性統(tǒng)計(jì)見(jiàn)表1。龍巖山麻鴨蛋品質(zhì)性狀中EST、ESS、ESCA、ESCB、HU、EYC、EYW、EYP的CV范圍在10%—50%之間,表型性狀分離明顯,有助于基因定位。其中ESCA為負(fù)值,說(shuō)明本研究使用群體中龍巖山麻鴨蛋殼顏色均偏綠色。
表1 蛋品質(zhì)性狀表型值的描述性統(tǒng)計(jì)
蛋品質(zhì)性狀的遺傳參數(shù)估計(jì)結(jié)果見(jiàn)表2。EW、ESI、EST、ESL、ESA和AU遺傳力在0.21—0.70之間,具有中高等遺傳力;ESS、ESB、H U、EYC、EYW和EYP遺傳力在0.01—0.16之間,具有較低的遺傳力;其中ESA遺傳力最高(2= 0.70±0.20),EYW為遺傳力最低(2= 0.01±0.12)。EW與AU存在較強(qiáng)的正遺傳相關(guān)(g= 0.91±0.37)。EW與AH、HU、EYC、EYW和EYP存在表型正相關(guān)或負(fù)相關(guān),其中與EYW(p= 0.24±0.06)和EYP(p= -0.26±0.06)相關(guān)性最大。ESI與EYC存在較強(qiáng)的遺傳負(fù)相關(guān)(g= -0.98±1.03)和較弱的表型正相關(guān)(p= 0.07±0.06)。EST與ESS具有表型正相關(guān)(p= 0.41±0.06),與ESA具有遺傳和表型負(fù)相關(guān)(g= -0.86±0.25,p= -0.15±0.07),與ESB具有遺傳和表型正相關(guān)(g= 0.96±0.37,p= 0.18±0.07)。ESA與ESB具有遺傳和表型負(fù)相關(guān)(g= -0.64±0.28,p= -0.31±0.06)。EYW和EYP具有較強(qiáng)的表型正相關(guān)(p= 0.87±0.02)。
上三角為遺傳相關(guān),下三角為表型相關(guān);“-”表明性狀間沒(méi)有相關(guān)性; *<0.05;**<0.01;***<0.001
Genetic correlations are given above the diagonal and phenotypic correlation below the diagonal; “-” indicates that there was no correlation among traits
基因型數(shù)據(jù)經(jīng)過(guò)質(zhì)量控制后,303個(gè)個(gè)體和62 706 SNP用于后續(xù)的分析。SNPs在各染色體上的分布數(shù)量情況見(jiàn)表3。
常染色體上的SNP經(jīng)篩選后,共得到10 428個(gè)獨(dú)立SNP標(biāo)記(表3)。由群體結(jié)構(gòu)主成分分析圖(圖1)可知,303個(gè)龍巖山麻鴨群體明顯分成幾個(gè)簇,存在分層現(xiàn)象,容易造成GWAS結(jié)果中出現(xiàn)假陽(yáng)性和假陰性。主成分分析結(jié)果中前10個(gè)PC解釋了92.54%群體結(jié)構(gòu)變異。因此,本研究以前10個(gè)PC為協(xié)變量,以消除群體分層對(duì)關(guān)聯(lián)分析結(jié)果的影響[20]。
表3 質(zhì)控后和獨(dú)立的SNPs標(biāo)記在各條染色體上的分布
圖1 群體結(jié)構(gòu)主成分分析圖
由于基因組中獨(dú)立SNP標(biāo)記數(shù)量為10 547(表3),Bonferroni校正的5%基因組顯著水平值閾值為4.74×10-6(0.05/10 547),基因組潛在關(guān)聯(lián)水平的閾值為9.48×10-5(1/10 547)。本研究發(fā)現(xiàn)7個(gè)SNP位點(diǎn)與ESI、EST和YC達(dá)到5%基因組顯著關(guān)聯(lián)(<4.74×10-6)(表4和圖2—4),81個(gè)SNP位點(diǎn)與蛋品質(zhì)性狀達(dá)到基因組水平潛在關(guān)聯(lián)(<9.48×10-5)(表5)。
2.5.1 蛋形指數(shù) 1個(gè)SNP(chr20:11135563:G:C與)ESI達(dá)到5%Bonferroni校正的基因組顯著關(guān)聯(lián)(= 14.83×10-6)(表4和圖2)。該SNP位點(diǎn)位于20號(hào)染色體含有75A富含亮氨酸重復(fù)序列(leucine rich repeat containing 75A,)基因內(nèi)。此外,10個(gè)SNP位點(diǎn)與ESI達(dá)到基因組潛在關(guān)聯(lián)(<9.48× 10-5)(表5和圖2)。其中3個(gè)SNPs(chr3:81386471: A:G、chr5:7009743:G:A和chr25:6315960:T:C)分別位于3號(hào)、5號(hào)和25號(hào)染色體上,2個(gè)SNP(chr16: 2579629:A:T和chr16:3098786:G:A)位于16號(hào)染色體上,位于5'-核苷酸酶ecto(5'-nucleotidase ecto,)、細(xì)胞周期素依賴激酶樣1(cyclin dependent kinase like 1,)、和內(nèi)或下游;5個(gè)SNPs(chr15:11227397:T:C,chr15: 11227409: G:A,chr15:13294556:C:T,chr15:13395347: A:G和chr15:14536844:G:A)位于15號(hào)染色體3.31 Mb(11.23—14.54 Mb)區(qū)域內(nèi)。
2.5.2 蛋殼厚度 2個(gè)SNP(chr13:5766560:A:G和chrZ:968819:C:T)與EST達(dá)到Bonferroni校正5%基因組水平顯著關(guān)聯(lián)(= 1.36×10-6,1.96×10-6)(表4和圖3)。SNP chr13:5766560:A:G位于13號(hào)下游6.86 kb處。SNP chrZ:968819:C:T位于Z染色體轉(zhuǎn)錄因子4(transcription factor 4,)基因內(nèi)。此外,9個(gè)SNP與EST達(dá)到Bonferroni校正的基因組潛在關(guān)聯(lián)(<9.48×10-5),包括2號(hào)染色體上鋅指蛋白804B(zinc finger protein 804B,)基因內(nèi)的3個(gè)SNP(chr2:22513511: C:A、chr2:22582514:A:G和chr2:22582670:G:A)、6號(hào)染色體上鉀雙孔結(jié)構(gòu)域通道亞家族K成員18(potassium two pore domain channel subfamily K member 18,)基因下游18.98 kb處和SH3 and PX結(jié)構(gòu)域2A(SH3 and PX domains 2A,)基因內(nèi)的2個(gè)SNP(chr6:7192663:G:A和chr6:12756206:T: A)、12號(hào)染色體凝血酶反應(yīng)蛋白1型結(jié)構(gòu)域包含4(thrombospondin type 1 domain containing 4,)基因內(nèi)的2個(gè)SNP(chr12:140915:T:A和chr12:198263:G:A)、13號(hào)染色體基因內(nèi)的1個(gè)SNP(chr13:5721234:C:T)以及19號(hào)染色體基因內(nèi)的1個(gè)SNP(chr19: 4873329:A:G)。
表4 Bonferroni校正5%基因組顯著的SNP位點(diǎn)
A1,次要的等位基因;BETA,回歸系數(shù),正值表示次要等位基因提高性狀值;D代表SNP位于基因的下游;within代表SNP位于基因內(nèi)。下同
A1, minor allele; BETA, regression coefficient, a positive regression coefficient means that the minor allele increases traits mean; D means SNP downstream of the nearest gene; within represent SNP located within genes.The same as below
橫坐標(biāo)為SNPs標(biāo)記在基因組中的物理位置,縱坐標(biāo)為關(guān)聯(lián)研究中P值的-log10轉(zhuǎn)化結(jié)果。每一個(gè)點(diǎn)代表一個(gè)SNP標(biāo)記。紅色實(shí)線為達(dá)到5%全基因組顯著的閾值線(-log10 (4.74×10-6)),黑色虛線為達(dá)到全基因組潛在關(guān)聯(lián)的閾值線(-log10 (9.48×10-5))。下同
表5 基因組水平潛在關(guān)聯(lián)的SNP位點(diǎn)
續(xù)表5 Continued table 5
圖3 蛋殼厚度全基因組關(guān)聯(lián)研究曼哈頓圖
2.5.3 蛋黃顏色 4個(gè)SNP(chr2:38155965:G:A,chr9:22490158:A:T,chr9:22623155:T:C和chr9: 22623156:G:A)與EYC達(dá)到Bonferroni校正5%基因組水平顯著關(guān)聯(lián)(<4.74×10-6)(表4和圖4)。其中SNP chr2:38155965:G:A位于2號(hào)染色體鉀電壓門控通道亞家族H成員8(potassium voltage-gated channel subfamily H member 8,)基因內(nèi)。3個(gè)SNP位于9號(hào)染色體上,2個(gè)(chr9:22623156:G:A和chr9:22623155:T:C)位于胰島素受體底物1(insulin receptor substrate 1,)內(nèi)、1個(gè)(chr9: 22490158:A:T)位于內(nèi)。此外,20個(gè)SNP與EYC達(dá)到基因組水平潛在關(guān)聯(lián)(<9.48×10-5)(表5),其中有10個(gè)位于9號(hào)染色體上。9號(hào)染色體上一共有13個(gè)與EYC關(guān)聯(lián)的SNP集中在0.84 Mb(22.16—23.00 Mb)區(qū)域內(nèi)。這一區(qū)域除和外,還包括神經(jīng)元酪氨酸磷酸化磷酸肌醇 3-激酶接頭2(neuronal tyrosine- phosphorylated phosphoinositide-3-kinase adaptor 2,)、Ⅳ型膠原α3鏈(collagen type IV alpha 3 chain,)、動(dòng)力蛋白組裝因子含WD重復(fù)1(dynein assembly factor with WD repeats 1,)。同時(shí)發(fā)現(xiàn)與EW、ESCL、ESCA、ESCB、AH、HU、EYW和EYP性狀達(dá)到基因組潛在關(guān)聯(lián)(<9.48× 10-5)的SNP位點(diǎn)總結(jié)于表5。
圖4 蛋黃顏色全基因組關(guān)聯(lián)研究曼哈頓圖
全基因組關(guān)聯(lián)研究,又稱全基因組關(guān)聯(lián)分析,使用高通量的基因分型技術(shù)在基因組范圍內(nèi)尋找SNPs與畜禽重要經(jīng)濟(jì)性狀的關(guān)聯(lián),為鑒定畜禽重要經(jīng)濟(jì)性狀分子標(biāo)記和候選基因的一種有效方法[21]。鴨的重要經(jīng)濟(jì)性狀GWAS研究主要集中在生長(zhǎng)和飼養(yǎng)[22]、體重和胴體[23]、脂肪沉積和肉品質(zhì)[24]、骨質(zhì)量和飼喂效率[25]、血液成分[26]、攝食行為[27]以及肌纖維直徑[28]等性狀上,蛋品質(zhì)性狀的GWAS報(bào)道較少[3]。本研究對(duì)龍巖山麻鴨產(chǎn)蛋末期產(chǎn)蛋性狀的遺傳參數(shù)進(jìn)行了估計(jì),鑒定了影響產(chǎn)蛋性狀的候選基因和候選區(qū)域,為揭示龍巖山麻鴨產(chǎn)蛋性狀分子遺傳機(jī)制和分子選育奠定了理論基礎(chǔ)。
ESI是描述蛋殼形狀的經(jīng)典幾何參數(shù)[29],主要受家禽的產(chǎn)蛋率、產(chǎn)蛋間隔時(shí)間和蛋殼形成時(shí)物質(zhì)需要量的影響[30]。本研究中龍巖山麻鴨高產(chǎn)系第4世代ESI遺傳力為0.29±0.17,與其早期選育的ESI遺傳力(2=0.34)[31]相近。ESI與蛋重、蛋白指數(shù)、哈氏單位等蛋品質(zhì)性狀呈表型正相關(guān)[32]。本研究中發(fā)現(xiàn)ESI與蛋殼顏色(ESCA)呈表型負(fù)相關(guān),與蛋黃顏色呈遺傳負(fù)相關(guān)和表型正相關(guān),可能是由于蛋的形狀與蛋殼顏色、蛋黃顏色受相近的遺傳因素影響[33]。與ESI顯著關(guān)聯(lián)的1個(gè)SNP(chr20:11135563:G: C)位于20號(hào)染色體內(nèi)。該基因編碼的蛋白質(zhì)可作為細(xì)胞膜上的受體[34]。研究表明,反義長(zhǎng)鏈非編碼RNA(lncRNA)在細(xì)胞增殖、遷移和浸潤(rùn)中具有重要作用[35-36]。10個(gè)與ESI達(dá)到潛在關(guān)聯(lián)的位點(diǎn)中,5個(gè)SNP位于兩個(gè)蛋白質(zhì)編碼基因(和)和非編碼RNA(和)基因內(nèi)部或下游。編碼的蛋白質(zhì)是一種質(zhì)膜蛋白,催化細(xì)胞外核苷酸到膜透核苷的轉(zhuǎn)化,該編碼蛋白被用作淋巴細(xì)胞分化的決定因素[37]。編碼細(xì)胞周期素依賴激酶樣1蛋白,是細(xì)胞周期素依賴激酶超家族中的一員。研究發(fā)現(xiàn)該基因在胃癌細(xì)胞增殖和存活中起著重要的調(diào)節(jié)作用[38]。此外,研究還發(fā)現(xiàn)5個(gè)SNP集中在15號(hào)染色體3.31 Mb(11.23—14.54 Mb)區(qū)域內(nèi)。前人的研究發(fā)現(xiàn)該區(qū)域內(nèi)37 345 836 bp處的SNP與鴨飼料轉(zhuǎn)化效率顯著相關(guān)[39]。該區(qū)域內(nèi)有119個(gè)基因,需要進(jìn)一步精細(xì)定位研究該區(qū)域與ESI的關(guān)系。
蛋殼對(duì)家禽產(chǎn)業(yè)具有重要的生物學(xué)和經(jīng)濟(jì)意義,EST影響商品蛋的破損率和種蛋的孵化率[40]。鴨蛋大多被加工成皮蛋或咸蛋,蛋殼在這一過(guò)程中起著至關(guān)重要的作用[41]。蛋殼礦化作用與EST密切相關(guān),其中蛋殼特異性矩陣蛋白o(hù)vocleidins(OC-17和OC-116)、ovocalyxins(OCX-32和OCX-36)以及鈣離子結(jié)合蛋白R(shí)EG4發(fā)揮關(guān)鍵作用[42]。本研究中龍巖山麻鴨EST為中等遺傳力為(2= 0.41±0.17),比早期選育遺傳力(2=0.28)高[31]。本研究鑒定2個(gè)SNP(chr13:5766560:A:G和chrZ:968819:C:T)與EST顯著關(guān)聯(lián)。其中SNP chrZ:968819:C:T位于Z染色體內(nèi)部,編碼轉(zhuǎn)錄因子4蛋白,能夠調(diào)節(jié)幾種不同細(xì)胞類型的分化,在神經(jīng)系統(tǒng)發(fā)育[41]、卵泡發(fā)育中起重要作用[43]。此外,與EST達(dá)到基因組潛在關(guān)聯(lián)的位點(diǎn)位于蛋白質(zhì)編碼基因、、和內(nèi)部或附近。編碼鋅指蛋白804B,是一種含鋅指蛋白結(jié)構(gòu)域的轉(zhuǎn)錄因子,該基因的突變與神經(jīng)系統(tǒng)疾病有關(guān)[44]。編碼鉀通道蛋白超家族的一個(gè)成員,包含兩個(gè)形成孔的P結(jié)構(gòu)域,作為一個(gè)外向整流鉀通道,與細(xì)胞電興奮性的控制有關(guān)[45]。編碼蛋白為Tks5,是一種支架蛋白和Src底物,通過(guò)其在侵襲體形成和功能中的重要作用參與細(xì)胞遷移和基質(zhì)降解[46]。編碼血栓反應(yīng)蛋白1型結(jié)構(gòu)域包含4,是一種微纖維相關(guān)蛋白,可直接與原纖蛋白-1結(jié)合并促進(jìn)原纖蛋白-1基質(zhì)組裝[47]。上述基因在先前禽蛋蛋殼形成的多組學(xué)研究中并未提及[42]。這些基因中特別是,可能是影響鴨蛋殼厚度的新基因,需要進(jìn)一步研究。
由于消費(fèi)者將蛋黃顏色與蛋所含的營(yíng)養(yǎng)聯(lián)系在一起,蛋黃顏色作為蛋品質(zhì)性狀中重要經(jīng)濟(jì)性狀之一[2]。蛋黃顏色受遺傳因素、養(yǎng)殖方式、飼料中脂質(zhì)和抗氧化物質(zhì)的含量等方面的影響[48]。本研究中龍巖山麻鴨蛋黃顏色遺傳力低遺傳力(2= 0.07±0.14),常規(guī)育種方法蛋黃顏色的遺傳改良進(jìn)展緩慢。因此,通過(guò)分子標(biāo)記輔助育種,有助于加速龍巖山麻鴨蛋黃顏色的育種進(jìn)程,提高育種效率。本研究發(fā)現(xiàn)9號(hào)染色體0.84 Mb(22.16—23.00 Mb)區(qū)域內(nèi)13個(gè)SNP與EYC關(guān)聯(lián)。該區(qū)域內(nèi)有4個(gè)蛋白質(zhì)編碼基因包括、、和。編碼胰島素受體底物1,為胰島素受體酪氨酸激酶的關(guān)鍵靶蛋白,是激素調(diào)控代謝所必需的蛋白質(zhì)[49]。研究表明直接參與卵泡生長(zhǎng)的卵巢衰老和活化[50],其突變與女性多囊卵巢綜合征有關(guān)[51]。編碼神經(jīng)元酪氨酸磷酸化磷酸肌醇3-激酶接頭2,參與神經(jīng)元發(fā)育,并與 WAVE1 蛋白相互作用,參與細(xì)胞骨架建模有關(guān)[52]。編碼Ⅳ型膠原α3鏈蛋白,參與卵黃周隙內(nèi)外亞層的組成,與蛋的受精、早期胚胎發(fā)育和抗菌素防御與胚胎發(fā)生有關(guān)[53]。編碼動(dòng)力蛋白組裝因子含WD重復(fù)1蛋白,作為外部動(dòng)力蛋白臂組件,是地中海真渦蟲(chóng)()纖毛運(yùn)動(dòng)功能所必需的[54]。1個(gè)與EYC顯著關(guān)聯(lián)的SNP位點(diǎn)位于2號(hào)染色體內(nèi)。該基因編碼鉀電壓門控通道子家族H成員8,為人類Elk K+通道基因家族成員。它們的多種已知功能包括調(diào)節(jié)神經(jīng)遞質(zhì)釋放、心率、胰島素分泌、神經(jīng)元興奮性、上皮電解質(zhì)運(yùn)輸和平滑肌收縮[55]。上述基因和區(qū)域與EYC關(guān)系,需要進(jìn)行進(jìn)一步研究證實(shí)。
本研究未發(fā)現(xiàn)與蛋重、蛋殼顏色、蛋白高度與哈氏單位、蛋黃重與蛋白比例全基因組顯著的位點(diǎn),需要增加群體數(shù)量和SNP標(biāo)記密度提供統(tǒng)計(jì)功效(statistical power),以提高對(duì)這些性狀顯著位點(diǎn)的檢出[56-57]。
本研究采用GBS基因分型技術(shù),通過(guò)全基因組關(guān)聯(lián)研究鑒定影響龍巖山麻鴨產(chǎn)蛋后期蛋品質(zhì)性狀的SNP位點(diǎn)88個(gè),其中與蛋形指數(shù)、蛋殼厚和蛋黃顏色關(guān)聯(lián)的7個(gè)位點(diǎn)(chr20:11135563:G:C、chr13:5766560:A:G、chrZ:968819:C:T、chr2:38155965:G:A、chr9:22490158: A:T、chr9:22623155:T:C和chr9:22623156:G:A)達(dá)到Bonferroni校正5%基因組顯著水平,找到了、、、等候選基因。發(fā)現(xiàn)9號(hào)染色體上0.84 Mb(22.16—23.00 Mb)區(qū)域可能是影響龍巖山麻鴨蛋黃顏色的候選區(qū)域。本研究為揭示龍巖山麻鴨蛋品質(zhì)性狀的分子遺傳機(jī)制,為進(jìn)一步分子標(biāo)記輔助選擇提供了理論基礎(chǔ)。
[1] LIU Z, SUN C J, YAN Y Y, LI G Q, SHI F Y, WU G Q, LIU A Q, YANG N. Genetic variations for egg quality of chickens at late laying period revealed by genome-wide association study. Scientific Reports, 2018, 8: 10832. doi:10.1038/s41598-018-29162-7.
[2] GAO G, GAO D, ZHAO X, XU S, ZHANG K, WU R, YIN C, LI J, XIE Y, HU S, WANG Q. Genome-wide association study-based identification of SNPs and haplotypes associated with goose reproductive performance and egg quality. Front Genet, 2021, 12: 602583. doi:10.3389/fgene.2021.602583.
[3] LIU H, ZHOU Z, HU J, GUO Z, XU Y, LI Y, WANG L, FAN W, LIANG S, LIU D, ZHANG Y, XIE M, TANG J, HUANG W, ZHANG Q, HOU S. Genetic variations for egg internal quality of ducks revealed by genome-wide association study. Animal Genetics, 2021, 52(4): 536-541. doi:10.1111/age.13063.
[4] LIU W, LI D, LIU J, CHEN S, QU L, ZHENG J, XU G, YANG N. A genome-wide SNP scan reveals novel loci for egg production and quality traits in white leghorn and brown-egg dwarf layers. PLoS ONE, 2011, 6(12): e28600. doi:10.1371/journal.pone.0028600.
[5] WOLC A, ARANGO J, JANKOWSKI T, DUNN I, SETTAR P, FULTON J E, O'SULLIVAN N P, PREISINGER R, FERNANDO R L, GARRICK D J, DEKKERS J C. Genome-wide association study for egg production and quality in layer chickens. Journal of Animal Breeding and Genetics, 2014, 131(3): 173-182. doi:10.1111/jbg. 12086.
[6] ZHANG G X, FAN Q C, WANG J Y, ZHANG T, XUE Q, SHI H Q. Genome-wide association study on reproductive traits in Jinghai Yellow Chicken. Animal Reproduction Science, 2015, 163: 30-34. doi:10.1016/j.anireprosci.2015.09.011.
[7] SUN C, QU L, YI G, YUAN J, DUAN Z, SHEN M, QU L, XU G, WANG K, YANG N. Genome-wide association study revealed a promising region and candidate genes for eggshell quality in an F2resource population. BMC Genomics, 2015, 16: 565. doi:10.1186/ s12864-015-1795-7.
[8] LIAO R, ZHANG X, CHEN Q, WANG Z, WANG Q, YANG C, PAN Y. Genome-wide association study reveals novel variants for growth and egg traits in Dongxiang blue-shelled and White Leghorn chickens. Anim Genet, 2016, 47(5): 588-596. doi:10.1111/age.12456.
[9] QU L, SHEN M, GUO J, WANG X, DOU T, HU Y, LI Y, MA M, WANG K, LIU H. Identification of potential genomic regions and candidate genes for egg albumen quality by a genome-wide association study. Archives Animal Breeding, 2019, 62(1): 113-123. doi:10.5194/aab-62-113-2019.
[10] 王珍珍. 不同蛋鴨品種產(chǎn)蛋性能的比較分析及紹興鴨產(chǎn)蛋性能的全基因組關(guān)聯(lián)分析[D]. 金華: 浙江師范大學(xué), 2020.
WANG Z Z. Analysis on egg quality traits of four laying duck breeds and genome-wide association study of laying performance in Shaoxing duck[D]. Jinhua: Zhejiang Normal University, 2020. (in Chinese)
[11] 孫艷發(fā), 李焰, 林如龍, 陳紅萍, 吳瓊, 李建磊, 陳羽, 林澤. 龍巖山麻鴨產(chǎn)蛋量和蛋重性狀的遺傳參數(shù)估計(jì). 中國(guó)畜牧雜志, 2020, 56(10): 51-55. doi:10.19556/j.0258-7033.20191022-03.
SUN Y F, LI Y, LIN R L, CHEN H P, WU Q, LI J L, CHEN Y, LIN Z. Estimation of genetic parameters for egg production and weight traits in Longyan Shan-ma duck. Chinese Journal of Animal Science, 2020, 56(10): 51-55. doi:10.19556/j.0258-7033.20191022-03. (in Chinese)
[12] ROWAN B A, SEYMOUR D K, CHAE E, LUNDBERG D S, WEIGEL D. Methods for genotyping-by-sequencing. Methods in Molecular Biology (Clifton, N J), 2017, 1492: 221-242. doi:10.1007/ 978-1-4939-6442-0_16.
[13] LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760. doi:10.1093/bioinformatics/btp324.
[14] HUANG Y H, LI Y R, BURT D W, CHEN H L, ZHANG Y, QIAN W B, KIM H, GAN S Q, ZHAO Y Q, LI J W, YI K, FENG H P, ZHU P Y, LI B, LIU Q Y, FAIRLEY S, MAGOR K E, DU Z L, HU X X, GOODMAN L, TAFER H, VIGNAL A, LEE T, KIM K W, SHENG Z Y, AN Y, SEARLE S, HERRERO J, GROENEN M A M, CROOIJMANS R P M A, FARAUT T, CAI Q L, WEBSTER R G, ALDRIDGE J R, WARREN W C, BARTSCHAT S, KEHR S, MARZ M, STADLER P F, SMITH J, KRAUS R H S, ZHAO Y F, REN L M, FEI J, MORISSON M, KAISER P, GRIFFIN D K, RAO M, PITEL F, WANG J, LI N. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nature Genetics, 2013, 45(7): 776-783. doi:10.1038/ng.2657.
[15] LI H, HANDSAKER B, WYSOKER A, FENNELL T, RUAN J, HOMER N, MARTH G, ABECASIS G, DURBIN R. 1000 GENOME PROJECT DATA PROCESSING SUBGROUP. The sequence alignment/map format and SAMtools. Microbiology Spectrum, 2009, 25(16): 2078-2079. doi:10.1093/bioinformatics/btp352.
[16] PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A, BENDER D, MALLER J, SKLAR P, DE BAKKER P I, DALY M J, SHAM P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Biological Psychiatry, 2007, 81(3): 559-575. doi:10.1086/519795.
[17] 孫艷發(fā). 基于全基因組關(guān)聯(lián)研究技術(shù)篩選雞產(chǎn)肉和肉品質(zhì)性狀相關(guān)候選基因[D]. 揚(yáng)州: 揚(yáng)州大學(xué), 2013.
SUN Y F. Filtration of candidate gene related to meat production and quality traits based on genome-wide association study technique in chickens[D]. Yangzhou: Yangzhou University, 2013. (in Chinese)
[18] DALGAARD P. R Development Core Team (2010): R: a language and environment for statistical computing. 2010.
[19] NICODEMUS K K, LIU W, CHASE G A, TSAI YY , FALLIN M D. Comparison of type I error for multiple test corrections in large single-nucleotide polymorphism studies using principal components versus haplotype blocking algorithms. BMC Genetics, 2005, 6(Supplement 1):S78. doi: 10.1186/1471-2156-6-S1-S78 .
[20] PRICE A L, PATTERSON N J, PLENGE R M, WEINBLATT M E, SHADICK N A, REICH D. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 2006, 38(8): 904-909. doi:10.1038/ng1847.
[21] SUN Y, ZHAO G, LIU R, ZHENG M, HU Y, WU D, ZHANG L, LI P, WEN J. The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. BMC Genomics, 2013, 14: 458. doi:10.1186/1471-2164-14-458.
[22] ZHU F, CHENG S R, YANG Y Z, HAO J P, YANG F X, HOU Z C. Genome-wide association study of growth and feeding traits in Pekin ducks. Frontiers in Genetics, 2019, 10: 702. doi:10.3389/fgene.2019. 00702.
[23] DENG M T, ZHU F, YANG Y Z, YANG F X, HAO J P, CHEN S R, HOU Z C. Genome-wide association study reveals novel loci associated with body size and carcass yields in Pekin ducks. BMC Genomics, 2019, 20(1): 1. doi:10.1186/s12864-018-5379-1.
[24] DENG M T, ZHANG F, ZHU F, YANG Y Z, YANG F X, HAO J P, HOU Z C. Genome-wide association study reveals novel loci associated with fat-deposition and meat-quality traits in Pekin ducks. Animal Genetics, 2020, 51(6): 953-957. doi:10.1111/age.12995.
[25] LI G S, LIU W W, ZHANG F, ZHU F, YANG F X, HAO J P, HOU Z C. Genome-wide association study of bone quality and feed efficiency-related traits in Pekin ducks. Genomics, 2020, 112(6): 5021-5028. doi:10.1016/j.ygeno.2020.09.023.
[26] ZHU F, CUI Q Q, YANG Y Z, HAO J P, YANG F X, HOU Z C. Genome-wide association study of the level of blood components in Pekin ducks. Genomics, 2020, 112(1): 379-387. doi:10.1016/j.ygeno. 2019.02.017.
[27] LI G S, ZHU F, ZHANG F, YANG F X, HAO J P, HOU Z C. Genome-wide association study reveals novel loci associated with feeding behavior in Pekin ducks. BMC Genomics, 2021, 22(1): 334. doi:10.1186/s12864-021-07668-1.
[28] LIU D P, FAN W L, XU Y X, YU S M, LIU W J, GUO Z B, HUANG W, ZHOU Z K, HOU S S. Genome-wide association studies demonstrate that TASP1 contributes to increased muscle fiber diameter. Heredity, 2021, 126(6): 991-999. doi:10.1038/s41437-021- 00425-w.
[29] WANG L C, RUAN Z T, WU Z W, YU Q L, CHEN F, ZHANG X F, ZHANG F M, LINHARDT R J, LIU Z G. Geometrical characteristics of eggs from 3 poultry species. Poultry Science, 2021, 100(3): 100965. doi:10.1016/j.psj.2020.12.062.
[30] STODDARD M C, YONG E H, AKKAYNAK D, SHEARD C, TOBIAS J A, MAHADEVAN L. Avian egg shape: Form, function, and evolution. Science, 2017, 356(6344): 1249-1254. doi:10.1126/ science.aaj1945.
[31] LIN R L, CHEN H P, ROUVIER R, MARIE-ETANCELIN C. Genetic parameters of body weight, egg production, and shell quality traits in the Shan Ma laying duck (). Poultry Science, 2016, 95(11): 2514-2519. doi:10.3382/ps/pew222.
[32] DUMAN M, ?EKERO?LU A, Y?LD?R?M A, ELERO?LU H, CAMC?. Relation Between Egg Shape Index and Egg Quality Characteristics. Stuttgart: Verlag Eugen Ulmer, 2016. doi:10.1399/ eps.2016.117.
[33] RIZZI C. Yield performance, laying behaviour traits and egg quality of purebred and hybrid hens reared under outdoor conditions. Animals, 2020, 10(4): E584. doi:10.3390/ani10040584.
[34] WANG X, WANG H, ZHANG R, LI D, GAO M Q. LRRC75A antisense lncRNA1 knockout attenuates inflammatory responses of bovine mammary epithelial cells. International Journal of Biological Sciences, 2020, 16(2): 251-263. doi:10.7150/ijbs.38214.
[35] CHEN J, LAN J, YE Z, DUAN S, HU Y, ZOU Y, ZHOU J. Long noncoding RNA LRRC75A-AS1 inhibits cell proliferation and migration in colorectal carcinoma. Experimental Biology and Medicine (Maywood, N J), 2019, 244(14): 1137-1143. doi:10.1177/ 1535370219874339.
[36] LI S J, WU D, JIA H Y, ZHANG Z R. Long non-coding RNA LRRC75A-AS1 facilitates triple negative breast cancer cell proliferation and invasion via functioning as a ceRNA to modulate BAALC. Cell Death & Disease, 2020, 11: 643. doi:10.1038/s41419- 020-02821-2.
[37] BERTONI A P S, BRACCO P A, DE CAMPOS R P, LUTZ B S, ASSIS-BRASIL B M, DE SOUZA MEYER E L, SAFFI J, BRAGANHOL E, FURLANETTO T W, WINK M R. Activity of ecto-5'-nucleotidase (NT5E/CD73) is increased in papillary thyroid carcinoma and its expression is associated with metastatic lymph nodes. Molecular and Cellular Endocrinology, 2019, 479: 54-60. doi:10.1016/j.mce.2018.08.013.
[38] SUN W, YAO L, JIANG B, SHAO H, ZHAO Y, WANG Q. A role for Cdkl1 in the development of gastric cancer. Acta Oncologica (Stockholm, Sweden), 2012, 51(6): 790-796. doi:10.3109/0284186x. 2012.665611.
[39] LIU H, WANG L, GUO Z, XU Q, FAN W, XU Y, HU J, ZHANG Y, TANG J, XIE M, ZHOU Z, HOU S. Genome-wide association and selective sweep analyses reveal genetic loci for FCR of egg production traits in ducks. Genetics, Selection, Evolution, 2021, 53(1): 98. doi:10.1186/s12711-021-00684-5.
[40] 蔣晶晶. 三種家禽蛋殼厚度整齊性及蛋殼形狀指標(biāo)的研究[D]. 杭州: 浙江農(nóng)林大學(xué), 2020.
JIANG J J. The uniformity of eggshell thickness and eggshell shape indicators of three poultry[D]. Hangzhou: Zhejiang A & F University, 2020. (in Chinese)
[41] ZHANG Y N, DENG Y Z, JIN Y Y, WANG S, HUANG X B, LI K C, XIA W G, RUAN D, WANG S L, CHEN W, ZHENG C T. Age-related changes in eggshell physical properties, ultrastructure, calcium metabolism-related serum indices, and gene expression in eggshell gland during eggshell formation in commercial laying ducks. Poultry Science, 2022, 101(2): 101573. doi:10.1016/j.psj.2021.101573.
[42] ZHANG F, YIN Z T, ZHANG J F, ZHU F, HINCKE M, YANG N, HOU Z C. Integrating transcriptome, proteome and QTL data to discover functionally important genes for duck eggshell and albumen formation. Genomics, 2020, 112(5): 3687-3695. doi:10.1016/j.ygeno. 2020.04.015.
[43] FORREST M P, HILL M J, QUANTOCK A J, MARTIN-RENDON E, BLAKE D J. The emerging roles of TCF4in disease and development. Trends in Molecular Medicine, 2014, 20(6): 322-331. doi:10.1016/ j.molmed.2014.01.010.
[44] ISMAIL A B, NAJI M ' S, NEBIH ?, TUNCEL G, OZBAKIR B, TEMEL S G, TULAY P, MOCAN G, ERGOREN M C. The expression profile of WNT/β-catanin signalling genes in human oocytes obtained from polycystic ovarian syndrome (PCOS) patients. Zygote (Cambridge, England), 2022, 30(4): 536-542. doi:10.1017/ s0967199422000028.
[45] CHUNG J, WANG X L, MARUYAMA T, MA Y Y, ZHANG X L, MEZ J, SHERVA R, TAKEYAMA H, LUNETTA K L, FARRER L A, JUN G R. Genome-wide association study of Alzheimer's disease endophenotypes at prediagnosis stages. Alzheimer's & Dementia, 2018, 14(5): 623-633. doi:10.1016/j.jalz.2017.11.006.
[46] IMBRICI P, NEMATIAN-ARDESTANI E, HASAN S, PESSIA M, TUCKER S J, D’ADAMO M C. Altered functional properties of a missense variant in the TRESK K^+ channel (KCNK18) associated with migraine and intellectual disability. Pflügers Archiv - European Journal of Physiology, 2020, 472(7): 923-930. doi:10.1007/s00424- 020-02382-5.
[47] CEJUDO-MARTIN P, YUEN A, VLAHOVICH N, LOCK P, COURTNEIDGE S A, DíAZ B. Genetic disruption of the sh3pxd2a gene reveals an essential role in mouse development and the existence of a novel isoform of tks5. PLoS ONE, 2014, 9(9): e107674. doi:10. 1371/journal.pone.0107674.
[48] ELBITAR S, RENARD M, ARNAUD P, HANNA N, JACOB M P, GUO D C, TSUTSUI K, GROSS M S, KESSLER K, TOSOLINI L, DATTILO V, DUPONT S, JONQUET J, LANGEOIS M, BENARROCH L, AUBART M, GHALEB Y, ABOU KHALIL Y, VARRET M, EL KHOURY P, HO-TIN-NOé B, ALEMBIK Y, GAERTNER S, ISIDOR B, GOUYA L, MILLERON O, SEKIGUCHI K, MILEWICZ D, DE BACKER J, LE GOFF C, MICHEL J B, JONDEAU G, SAKAI L Y, BOILEAU C, ABIFADEL M. Pathogenic variants in THSD4, encoding the ADAMTS-like 6 protein, predispose to inherited thoracic aortic aneurysm. Genetics in Medicine, 2021, 23(1): 111-122. doi:10. 1038/s41436-020-00947-4.
[49] KARUNAJEEWA H, HUGHES R J, MCDONALD M W,SHENSTONE F S. A review of factors influencing pigmentation of egg yolks. World's Poultry Science Journal, 1984, 40(1): 52-65. doi:10.1079/WPS19840006.
[50] COPPS K D, WHITE M F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 2012, 55(10): 2565-2582. doi:10.1007/ s00125-012-2644-8.
[51] SCHNEIDER A, ZHI X, MOREIRA F, LUCIA T, MONDADORI R G, MASTERNAK M M. Primordial follicle activation in the ovary of Ames dwarf mice. Journal of Ovarian Research, 2014, 7: 120. doi:10.1186/s13048-014-0120-4.
[52] THANGAVELU M, GODLA U R, PAUL S F D, MADDALY R. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G and CAPN10 genes in the pathogenesis of polycystic ovary syndrome. Journal of Genetics, 2017, 96(1): 87-96. doi:10.1007/s12041-017- 0749-z.
[53] KUTTAPITIYA A, ASSI L, LAING K, HING C, MITCHELL P, WHITLEY G, HARRISON A, HOWE F A, EJINDU V, HERON C, SOFAT N. Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation. Annals of the Rheumatic Diseases, 2017, 76(10): 1764-1773. doi:10.1136/annrheumdis- 2017-211396.
[54] BRéGEON M, TOMAS D, BERNAY B, ZATYLNY-GAUDIN C, GEORGEAULT S, LABAS V, RéHAULT-GODBERT S, GUYOT N. Multifaceted roles of the egg perivitelline layer in avian reproduction: Functional insights from the proteomes of chicken egg inner and outer sublayers. Journal of Proteomics, 2022, 258: 104489. doi:10.1016/j. jprot.2022.104489.
[55] LESKO S L, ROUHANA L. Dynein assembly factor with WD repeat domains 1 (DAW1) is required for the function of motile cilia in the planarian. Development, Growth & Differentiation, 2020, 62(6): 423-437. doi:10.1111/dgd.12669.
[56] ELLINGHAUS E, ELLINGHAUS D, KRUSCHE P, GREINER A, SCHREIBER C, NIKOLAUS S, GIEGER C, STRAUCH K, LIEB W, ROSENSTIEL P, FRINGS N, FIEBIG A, SCHREIBER S, FRANKE A. Genome-wide association analysis for chronic venous disease identifies EFEMP1 and KCNH8 as susceptibility loci. Scientific Reports, 2017, 7: 45652. doi:10.1038/srep45652.
[57] SPENCER C C, SU Z, DONNELLY P, MARCHINI J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genetics, 2009, 5(5): e1000477. doi:10.1371/journal.pgen.1000477.
Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck
1College of Life Sciences, Longyan University, Longyan 364012, Fujian;2Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology/Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology/Longyan University, Longyan 364012, Fujian;3Longyan Shan-Ma Duck Original Breeding Farm, Agricultural Bureau of Xinluo District, Longyan 364031, Fujian;4Fujian Provincial Animal Husbandry Headquarters, Fuzhou 350003;5College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002
【Objective】Single nucleotide polymorphisms (SNPs) and candidate genes for egg quality traits in duck were identified through genome-wide association study (GWAS) technology, so as to provide reference for molecular breeding to improve egg quality traits of Longyan Shan-Ma Duck.【Method】Egg quality traits of 235 female Longyan Shan-Ma Duck were measured, including egg weight (EW), egg shaped index (ESI), eggshell thickness (EST), eggshell strength (ESS), eggshell colour L* (ESCL), a* (ESCA), b* (ESCB), albumin height (AH), Haugh unit (HU), egg yolk colour (EYC), egg yolk weight (EYW), and egg yolk percentage relative to egg weight (EYP). Genetic parameters of these traits were estimated using multi-trait animal model by ASReml-R 4.1 software. Blood genomic DNAs of these ducks were genotyped using genotyping-by-sequencing (GBS) technology. The GWAS between egg quality traits of the late laying period and SNPs were performed. 【Result】 The heritability of EW, ESI, EST, ESL, ESA and AU was higher among the egg quality traits of Longyan Shan-Ma Duck, and ranged from 0.21 to 0.70. There was a strong positive genetic correlation (g= 0.91±0.37) between EW and AU, a strong negative genetic correlation (g= -0.98±1.03) between ESI and EYC. EST had a positive phenotypic correlation (p= 0.41±0.06) with ESS, negative genetic and phenotypic correlations with ESA (g= -0.86±0.25 andp= -0.15±0.07), and positive genetic and phenotypic correlations with ESB (g= 0.96±0.37 and 0.18±0.07). There were negative genetic and phenotypic correlations between ESA and ESB (g= -0.64±0.28 andp= -0.31±0.06). Results from the GWAS showed that seven SNPs were significantly associated with ESI, EST and yolk color (YC) at 5% Bonferroni-corrected genome-wide significance level (<4.74×10-6), involving six candidate genes. One SNP, chr20:11135563: G:C, was associated with ESI, which was in leucine rich repeat containing 75A gene, located on chromosome 20. Two SNPs, chr13:5766560:A:G and chrZ:968819:C:T, were associated with EST, which were located on chromosome 13, downstream 6.86 Kb ofand in transcription factor 4 gene, respectively. Four SNPs were associated with EYC, one SNP chr2: 38155965:G:A in potassium voltage-gated channel subfamily H member 8 gene located on chromosome 2; three SNPs located on chromosome 9, two SNPs, chr9:22623156:G:A and chr9:22623155:T:C, in insulin receptor substrate 1 gene, and one SNP, chr9:22490158:A:T, ingene. Eighty-one SNPs associated with egg quality traits reached at suggestive genome-wide significance level (<9.48×10-5) were also found. Thirteen SNPs associated with YC were distributed in the 0.84 Mb (22.16-23.00 Mb) region of chromosome 9.【Conclusion】In this study, genetic parameters of egg quality traits of Longyan Shan-Ma Duck were estimated. Seven significant SNPs, six candidate genes, and one candidate region affecting ESI, EST and EYC traits were identified through GWAS. The findings from the present study provided a reference for the molecular breeding of egg quality traits in Longyan Shan-Ma Duck.
Longyan Shan-Ma Duck; egg quality traits; genetic parameter; SNPs; GWAS
10.3864/j.issn.0578-1752.2023.03.014
2021-10-20;
2022-11-16
福建省種業(yè)創(chuàng)新與產(chǎn)業(yè)化工程(2021-2025)農(nóng)業(yè)良種重大科研育種攻關(guān)與產(chǎn)業(yè)化工程項(xiàng)目(zycxny20211014)、福建省科技廳對(duì)外合作項(xiàng)目(2021I0045)、福建省科技廳引導(dǎo)性科技項(xiàng)目(2020N0034)、龍巖學(xué)院科研博士啟動(dòng)基金(LB2019001)
孫艷發(fā),Tel:18250071633;E-mail:boysun2010@163.com。通信作者江宵兵,Tel:13960752743;E-mail:fzjxb@163.com。通信作者李焰,Tel:13860217279;E-mail:529783204@qq.com
(責(zé)任編輯 林鑒非)