冒姝羽,趙昌睿,劉暢,2
綜 述
核受體REV-ERBα整合生物鐘與能量代謝
冒姝羽1,趙昌睿1,劉暢1,2
1. 中國藥科大學生命科學與技術學院,南京 211198 2. 重慶中國藥科大學創(chuàng)新研究院,重慶 401135
哺乳動物的各項生理活動以24 h為周期呈現(xiàn)節(jié)律性變化。穩(wěn)定的晝夜節(jié)律由生物鐘系統(tǒng)所精細調控,而晝夜節(jié)律的紊亂會導致代謝性疾病的發(fā)生。核受體超家族成員REV-ERBα是哺乳動物生物鐘的重要組成部分,參與代謝、炎癥、免疫和晝夜節(jié)律等多種生理過程的調節(jié),是代謝性疾病、炎癥性疾病和癌癥的潛在治療靶點。近年來發(fā)現(xiàn)了一系列新的REV-ERBα配體,其中大部分在疾病治療方面具有潛在的應用價值。本文主要介紹核受體REV-ERBα在能量代謝以及炎癥反應中的調節(jié)作用,以期為代謝綜合征及相關疾病的治療提供新的策略和參考。
REV-ERBα;代謝;炎癥;REV-ERBα配體
REV-ERBα,即核受體亞家族1D組成員1 (nuclear receptor subfamily 1 group D member 1, NR1D1),屬于核受體超家族。REV-ERBα主要由N末端配體非依賴性轉錄激活域1(activation function, AF1)、DNA結合結構域(DNA binding domain, DBD)、鉸鏈區(qū)和配體結合結構域(ligand binding domain, LBD)組成,但是與其他核受體不同的是,REV-ERBs的配體結合域缺乏羧基末端激活結構域2(activation function 2, AF2)[1],因此,REV-ERBα不能激活轉錄,主要作為轉錄抑制因子發(fā)揮作用。REV-ERBα的編碼基因位于編碼甲狀腺激素受體α的原癌基因的反義鏈[2]。REV-ERBα與NR1D家族的另一成員REV-ERBβ具有高度的同源性以及相似的功能,二者均是哺乳動物分子生物鐘系統(tǒng)的核心組成成員。?/?小鼠()表現(xiàn)出以周期縮短為特征的晝夜節(jié)律紊亂,然而,?/?小鼠的晝夜節(jié)律活動變化則可以忽略不計[3]。因此,與REV-ERBβ相比,REV-ERBα可能在調節(jié)晝夜節(jié)律方面發(fā)揮著更重要的作用[3]。
REV-ERBα普遍存在于多種生物中,在肝臟、心臟、胰腺、腦等多個器官,以及內皮細胞、血管平滑肌細胞、巨噬細胞等多種細胞類型中均有表達。REV-ERBα具有晝夜節(jié)律表達模式[3~5],參與調節(jié)代謝、免疫、炎癥等多個生理過程,其表達節(jié)律紊亂會導致炎癥性疾病、代謝綜合征等多種疾病的發(fā)生發(fā)展(表1)。REV-ERBα激動劑同時具備抗炎、降糖和改善血脂異常等多種作用,是緩解肥胖、2型糖尿病、脂肪肝、動脈粥樣硬化等伴有慢性低度炎癥的代謝性疾病的有效方法。
表1 REV-ERBα在機體各組織中的功能
續(xù)表
CDKN1a/p21:細胞周期蛋白依賴性激酶抑制劑1a;G-CSF:粒細胞集落刺激因子;NASH:非酒精性脂肪性肝炎。
地球自轉產(chǎn)生光照、溫度、濕度等環(huán)境因素以24 h為周期的晝夜交替變化,而生物鐘是地球上的生物體為適應外界環(huán)境周期變化而演化的內在自主計時機制[39]。生物鐘使得生物體能預見環(huán)境的改變,從而調整它們的行為和生理機能(比如攝食和捕食行為)來適應每天的環(huán)境變化,使能量利用達到最優(yōu)狀態(tài)[40,41]。
哺乳動物體內的生物鐘系統(tǒng)包括位于下丘腦的視交叉上核(suprachiasmatic nuclei, SCN)神經(jīng)元中的中央時鐘,以及位于整個人體組織中的一系列外周時鐘[42]。SCN接受光線刺激并產(chǎn)生主要的時鐘信號,通過體液和神經(jīng)內分泌通路傳遞到外周組織中,來協(xié)調外周性生物鐘[43],兩大類生物鐘運作同步,維持機體的代謝穩(wěn)態(tài)。
在分子水平上,哺乳動物生物鐘系統(tǒng)由轉錄激活因子晝夜運動輸出周期kaput(circadian locomotor output cycles kaput, CLOCK)、神經(jīng)元PAS結構域蛋白2(neuronal PAS domain protein 2, NPAS2)、芳香烴受體核轉運體樣蛋白1(brain and muscle ARNT-like 1, BMAL1),轉錄抑制因子周期節(jié)律蛋白家族(period, PER)、隱色素蛋白家族(cryptochrome, CRY),鐘控基因蛋白REV-ERBs、維甲酸相關孤兒受體(retinoic acid-related orphan receptors, RORs)以及D-box結合蛋白(D-box binding protein, DBP)等構成。哺乳動物分子生物鐘由三條轉錄–翻譯負反饋環(huán)路(transcription-translational feedback loop, TTFL)組成[44]。BMAL1和CLOCK/NPAS2以異二聚體形式結合到自身抑制因子基因啟動子區(qū)域的E-box元件(CACGTG)上,驅動等基因的轉錄。當細胞內PER和CRY積累到臨界濃度時,PER和CRY蛋白異構化,轉位至細胞核,與BAML1:CLOCK/NPAS2異二聚體相互作用,抑制其轉錄活性,從而抑制其自身轉錄,由此形成分子生物鐘第一條負反饋環(huán)路。當?shù)鞍踪|降解導致PER和CRY蛋白水平降低時,PER和CRY從BMAL1:CLOCK/NPAS2復合體中解離出來,開始一個新的轉錄周期。在第二條負反饋環(huán)路中,BMAL1:CLOCK/NPAS2異二聚體驅動REV-ERBs和RORs產(chǎn)生,隨后,REV-ERBs和RORs結合作用于等基因啟動子中的維甲酸相關孤兒受體反應元件(retinoic acid-related orphan receptor response element, RORE)來抑制和激活靶基因的節(jié)律性表達,形成另一條反饋環(huán)路。第三條負反饋環(huán)路為BMAL1:CLOCK/NPAS2異二聚體驅動產(chǎn)生的DBP與轉錄因子白細胞介素-3啟動子轉錄激活子(nuclear factor interleukin-3-regulated protein, NFIL3),又名E4啟動子結合蛋白4(E4 promoter-binding protein 4, E4BP4),形成異二聚體,通過結合等基因啟動子中的D-box元件來激活等的節(jié)律性表達[44]。
REV-ERBα是哺乳動物生物鐘系統(tǒng)的核心組成部分。REV-ERBα是配體門控轉錄因子,通過DBD內的兩個鋅指結構結合靶基因中特定DNA基序發(fā)揮直接調控作用。然而,由于其LBD缺乏羧基末端AF2,REV-ERBα主要發(fā)揮配體依賴的轉錄抑制因子作用,在其天然配體亞鐵血紅素存在的情況下,通過招募輔助抑制因子核受體共抑制因子1(nuclear receptor co-repressor 1, NCOR1)和組蛋白脫乙?;?(histone deacetylase 3,HDAC3)來抑制基因轉錄[45,46]。REV-ERBα通??蓡为毥Y合靶基因啟動子上的RORE元件發(fā)揮作用(圖1A),以同型二聚體形式結合RevDR2(即間隔2 nt的A/GGGTCA二拷貝重復結構域)或兩個相鄰的RORE抑制基因轉錄(圖1,B和C)。除了直接結合靶基因外,REV-ERBα還通過與肝細胞核因子6(hepatocyte nuclear factor 6, HNF6)等轉錄因子相互作用間接調節(jié)基因轉錄(圖1D)[47]。REV-ERBα的表達受CLOCK、BMAL1的調控,除此之外,過氧化物酶體增殖激活受體α(peroxisome proliferator activated receptor, PPARα)也能通過直接結合REV-ERBα基因上的PPAR反應元件(PPAR response element, PPRE),招募組蛋白標記和輔助因子,驅動REV-ERBα表達[48]。
研究表明,大部分鐘控基因及部分糖脂代謝相關節(jié)律性表達基因均受到REV-ERBα的直接調控。因此,REV-ERBα在代謝綜合征、炎癥疾病、心力衰竭和癌癥等病理條件中發(fā)揮重要作用(表1),可作為治療相關疾病的藥物靶標。近年來發(fā)現(xiàn)了一系列以REV-ERBα為靶點的調節(jié)劑(如GSK4112、SR9009、SR9011、SR8278),其中大多數(shù)在體內具有藥理活性,為疾病的治療提供了新可能。
在靈長類動物基因組中,約81.7%的基因呈現(xiàn)出晝夜節(jié)律性表達,其中很多基因編碼在代謝過程中起關鍵作用的酶[49],晝夜節(jié)律失調會導致代謝性疾病的發(fā)生。眾多研究表明,REV-ERBα在機體能量代謝調節(jié)方面發(fā)揮著重要作用(圖2)。
晝夜節(jié)律影響機體葡萄糖穩(wěn)態(tài),機體內的葡萄糖水平通常會隨著晝夜節(jié)律變化而周期性振蕩。作為分子生物鐘TTFL抑制臂的成員之一,REV-ERBα在維持機體葡萄糖穩(wěn)態(tài)方面發(fā)揮重要作用。研究表明,與對照組小鼠相比,小鼠具有較高的血糖水平[3,50]。激活REV-ERBα能夠下調糖異生限速酶磷酸烯醇丙酮酸羧基激酶1 (phosphoeno-lpyruvate carboxykinase 1, PCK1)和葡萄糖-6-磷酸酶(glucose-6-phosphatase, G6Pase) mRNA的表達,在體內和體外降低葡萄糖水平[12,51,52]。與此同時,REV-ERBα可維持葡萄糖水平的節(jié)律性振蕩[53]。膳食鐵的攝入通過促進血紅素合成來調控REV-ERBα活性,從而改變肝臟糖異生的晝夜節(jié)律[54]。
圖1 REV-ERBα調控靶基因表達的作用模式
A:REV-ERBα通常作為單體結合在目標基因啟動子上的RORE元件發(fā)揮調控作用。B:兩分子的REV-ERBα形成同源二聚體與RevDR2元件結合,招募共抑制因子(即NCOR1和HDAC3)來調節(jié)基因的轉錄。C:某些情況下,兩分子的REV-ERBα可以分別結合兩個相鄰的RORE元件招募共抑制因子(即NCOR1和HDAC3)來調節(jié)基因的轉錄。D:REV-ERBα通過與某些轉錄因子相互作用間接調節(jié)基因轉錄。使用Servier Medical Art的素材進行修改繪制,Servier Medical Art使用CC BY-SA 3.0協(xié)議(https://creativecommons.org/ licenses/by/3.0/)。
圖2 REV-ERBα在機體能量代謝中發(fā)揮重要作用
REV-ERBα參與維持機體能量代謝穩(wěn)態(tài)。在糖代謝方面,REV-ERBα直接抑制糖異生,調節(jié)胰島素、胰高血糖素水平,維持機體葡萄糖水平的節(jié)律性振蕩。在脂代謝方面,REV-ERBα調節(jié)肝臟脂質合成、脂質運輸、膽汁酸代謝,脂肪細胞分化和脂肪組織的擴張,以及骨骼肌和心臟脂肪酸氧化能力。此外,REV-ERBα在氨基酸代謝和骨代謝方面也發(fā)揮著不可或缺的作用。使用Servier Medical Art的素材進行修改繪制,Servier Medical Art使用CC BY-SA 3.0協(xié)議(https://creativecommons.org/ licenses/by/3.0/)。
機體葡萄糖水平還受到胰島素、胰高血糖素等激素的調節(jié)。研究表明,REV-ERBα可以調節(jié)β細胞中葡萄糖誘導的胰島素分泌[23,24]。在胰島α細胞中,REV-ERBα的表達受葡萄糖濃度的調節(jié),并通過AMPK/Nampt/Sirt1途徑促進胰高血糖素分泌[24,25]。胰高血糖素水平升高可激活肝臟蛋白激酶A (protein kinase A, PKA)信號,降低肝臟中REV-ERBα的穩(wěn)定性,進而控制肝臟葡萄糖的生成[52]。敲除REV-ERBα或使用拮抗劑可通過上調自噬提高糖尿病病理情況下β細胞的存活率和活性[22]。
中樞神經(jīng)系統(tǒng)對外周葡萄糖代謝的時空調控具有重要的意義。REV-ERBα在下丘腦SCN區(qū)GABA神經(jīng)元中高表達,影響肝臟糖異生的晝夜節(jié)律[55]。下丘腦SCN區(qū)GABA神經(jīng)元特異性REV-ERBα敲除小鼠表現(xiàn)出覺醒時胰島素敏感性降低、肝臟葡萄糖生成提高、糖耐量受損的糖代謝表型[56],并且外源性激活SCN區(qū)GABA神經(jīng)元REV-ERBα的同相位表達可改善敲除小鼠覺醒時糖耐量受損。REV- ERBα通過抑制SCN區(qū)GABA神經(jīng)元的過度激活,增強胰島素介導的肝臟糖異生抑制作用來提高胰島素敏感性來改善糖代謝表型[56]。
綜上所述,REV-ERBα在機體葡萄糖代謝調節(jié)中發(fā)揮著不可或缺的作用,但機制還需要進一步研究。
在脂代謝方面,Rev-erbα小鼠表現(xiàn)出脂質代謝基因表達紊亂,血脂異常,并伴有血清甘油三酯水平(triglyceride, TG)、血清極低密度脂蛋白、載脂蛋白(apolipoprotein, apo) C3水平升高[3,13,14]。藥理激活REV-ERBα可降低小鼠的TG和游離脂肪酸[16,51,57]。而肝臟特異性REV-ERBα敲除小鼠僅在代謝擾動情況下(例如紊亂的進食行為)呈現(xiàn)顯著的代謝異常表型,因此,肝臟REVERBα是肝臟能量代謝的狀態(tài)依賴性調節(jié)因子,其真正作用是緩沖代謝擾動的異常反應[58]。心臟特異性REV-ERBα敲除小鼠脂肪酸氧化代謝功能障礙,糖代謝代償性增強,導致心臟進行性收縮功能障礙,最終引發(fā)擴張型心肌病和致死性心衰[8]。此外,REV-ERBα在脂肪組織中的特異性調節(jié)作用尚不明確,先前有研究表明,REV-ERBα可促進3T3-L1脂肪細胞分化[59],但這在體內實驗中無法得到驗證。最新研究表明[60],脂肪組織特異性REV-ERBα敲除僅在肥胖條件下促進白色脂肪組織(white adipose tissue, WAT)的擴張。因此,脂肪組織REV-ERBα主要作用是響應代謝狀態(tài)的改變,調節(jié)WAT的代謝活性和限制組織擴張,這對肥胖相關WAT病理和胰島素抵抗的發(fā)展至關重要。
REV-ERBα可直接下調APOC3水平或通過結合cAMP反應元件結合蛋白H (cAMP-responsive element-binding protein H, CREBH)啟動子抑制其轉錄,從而阻礙CREBH介導的APOA4的合成以及較大脂蛋白的組裝[61],預防高脂血癥和動脈粥樣硬化。
研究表明,超長鏈脂肪酸延伸酶3 (elongase of very long chain fatty acids, Elovl3)也是REV-ERBα的靶基因之一,REV-ERBα通過下調表達發(fā)揮降脂作用[15]。SREBP1是參與脂肪酸合成和膽固醇合成的主要轉錄因子,REV-ERBα還通過調節(jié)內質網(wǎng)中SREBP隔離蛋白胰島素誘導基因2(insulin induced gene 2, Insig2)的表達間接調節(jié)SREBP1的剪切活化,參與膽固醇和脂質代謝[18]。氧-乙酰氨基葡萄糖(O-linked beta-N-acetylglucosamine, O-GlcNAc)修飾是一種特殊的翻譯后修飾,可隨細胞內葡萄糖、脂肪酸的濃度變化而變化,O-GlcNAc轉移酶(O-GlcNAc transferase, OGT)活性可反映細胞的代謝狀態(tài)[62]。研究表明,REV-ERBα可以與OGT結合,進而調節(jié)OGT活性。機體胰島素水平較低時,胞質REV-ERBα/OGT復合物阻止蛋白激酶B (protein kinase B, AKT)的磷酸化,此時,細胞核中的REV- ERBα同樣結合并激活OGT,增強10-11易位酶(ten-of-eleven translocation, TET)的活性,通過表觀遺傳機制增強了SREBP1c的基礎表達,參與肝臟脂肪生成調節(jié)[63]。
維持膽固醇穩(wěn)態(tài)對機體健康至關重要,研究表明,REV-ERBα通過直接結合膽固醇合成相關基因調控膽固醇合成代謝[16]。此外,REV-ERBα還參與調控膽汁酸代謝,Rev-erbα小鼠具有膽汁酸合成速率降低,并且膽汁酸分泌功能受損的表型[17,18]。膽固醇7α-羥化酶(cholesterol 7α-hydroxylase, CYP7A1)是催化膽固醇轉化為膽汁酸的限速酶。研究表明,REV-ERBα通過E4BP4、小異二聚體伴侶(small heterodimer partner, SHP)或Insig2/Srebp調節(jié)Cyp7a1的表達[17,18]。此外,Zhang等[19]的研究表明,REV-ERBα通過抑制Cyp7a1的轉錄激活因子肝受體同源物1 (liver receptor homolog 1, LRH-1)來下調Cyp7a1表達水平。REV-ERBα拮抗劑可提高野生型和高膽固醇癥小鼠肝臟Cyp7a1水平,降低血漿膽固醇水平[19]。因此,靶向REV-ERBα/LRH-1軸可能是治療膽固醇相關疾病的一種新方法。
氨基酸在肝臟中通過轉氨基和脫氨基反應等多種途徑代謝,以提供能量并合成葡萄糖、脂肪、非必需氨基酸和其他生物活性分子。機體同型半胱氨酸血水平保持在較低水平對身體健康至關重要。研究結果表明[20],與野生型小鼠相比,?/?小鼠氨基酸代謝相關基因顯著變化,血清和肝臟同型半胱氨酸水平降低。REV-ERBα通過直接抑制同型半胱氨酸關鍵代謝酶基因甜菜堿同型半胱氨酸甲基轉移酶(betaine homocysteine methyltransferase, Bhmt)、胱硫醚-β-合成酶(cystathionine β-synthase, Cbs)、胱硫醚γ-裂解酶(cystathionine γ-Lyase, Cth)調節(jié)同型半胱氨酸分解代謝,以及抑制CCAAT增強子結合蛋白α(CCAAT/enhancer binding protein α, C/EBPα)的反式激活間接抑制尿素循環(huán)基因精氨酸酶1(arginase 1, Arg1)、鳥胺酸氨甲?;D移酶(ornithine transcarbamylase, Otc)、氨基甲酰磷酸合酶1(carbamoyl phosphate synthase 1, Cps1)轉錄調節(jié)尿素的產(chǎn)生和氨的清除[20]。
晝夜節(jié)律的紊亂與骨質疏松癥和骨代謝異常有關。激活REV-ERBα表達可抑制核因子κB受體激活因子配體誘導的偽足小體帶的形成,并抑制破骨細胞骨吸收,從而改善卵巢切除所致的骨丟失[38]。REV-ERBα通過上調脂肪酸結合蛋白4 (fatty acid-binding protein 4, FABP4)來調節(jié)破骨細胞的形成[29]。此外,過表達REV-ERBα可抑制骨間充質干細胞增殖和成骨,而激活Wnt/β-catenin信號傳導可部分逆轉REV-ERBα的抑制作用[30]。因此,REV-ERBα通過調節(jié)破骨細胞和成骨細胞的生成,在維持骨的代謝動態(tài)平衡中起著關鍵作用。
慢性低度炎癥是肥胖癥、2型糖尿病、脂肪肝、心血管疾病等代謝性疾病的主要特征之一[64]。能量過剩引起的代謝性炎癥加劇代謝性疾病的發(fā)生發(fā)展,因此,靶向代謝性炎癥可以成為緩解代謝性疾病的新方案。REV-ERBα是公認的炎癥調節(jié)因子,參與調節(jié)NF-κB信號轉導、NOD樣受體熱蛋白結構域相關蛋白3 (NOD-like receptor thermal protein domain associated protein 3, NLRP3)炎癥小體復合物的激活、炎癥相關基因的轉錄、巨噬細胞極化以及免疫細胞發(fā)育等。
NLRP3炎癥小體的活化包括啟動和激活兩個步驟。NLRP3炎癥小體由病原相關分子模式或損傷相關分子模式等多種因素激活?;罨腘LRP3炎癥小體可促進caspase-1前體的裂解,產(chǎn)生活化的caspase-1效應蛋白,以及隨后促炎癥細胞因子IL-1β和IL-18的成熟。NLRP3的表達及其復合體的激活具有晝夜節(jié)律性,敲除REV-ERBα會改變巨噬細胞NLRP3的表達模式以及IL-1β和IL-18的產(chǎn)生模式[21]。分子層面上,REV-ERBα是NLRP3基因表達的直接調節(jié)因子,通過與啟動子特異性結合直接抑制轉錄,主要在啟動階段滅活NLRP3炎癥體。此外,REV-ERBα還抑制了(NF-κB的一個亞單位)的轉錄,并通過NF-κB途徑間接抑制了的轉錄[26]。類似的,REV-ERBα可通過抑制NF-κB信號轉導下調炎癥相關基因的表達,如、、、和[65]。除了通過NF-κB信號的間接調節(jié)機制外,REV-ERBα還直接下調、[66]、[67]、[68]、和[69]等炎癥基因的表達(圖3A)。此外,REV-ERBα還能通過NF-κB/NLRP3炎癥小體途徑抑制巨噬細胞焦亡,減輕氧化應激,發(fā)揮血管保護作用[70],或抑制小鼠骨髓源性巨噬細胞和小膠質細胞向促炎表型極化,發(fā)揮抗炎和神經(jīng)保護作用[31,33,71]。
圖3 REV-ERBα調控巨噬細胞和Th17細胞的炎癥基因的表達
A:REV-ERBα抑制巨噬細胞中多種炎癥基因(即、、、、、、和)的表達。B:REV-ERBα在Th17細胞中的調節(jié)作用可能與其表達水平有關。當?shù)退奖磉_時,REV-ERBα通過抑制NFIL3,解除NFIL3對RORγt抑制作用,進而激活RORγt促進Th17細胞的發(fā)育;當高水平表達時,REV-ERBα通過與RORγt競爭結合啟動子上的RORE元件而負向調節(jié)Th17細胞的發(fā)育。使用Servier Medical Art的素材進行修改繪制,Servier Medical Art使用CC BY-SA 3.0協(xié)議(https://creativecommons.org/ licenses/by/3.0/)。
3型先天淋巴樣細胞(type 3 innate lymp-hoid cells, ILC3)包括NKp46+和NKp46?兩個亞群,在Rev-erbα小鼠中,NKp46+ILC3亞群的發(fā)育明顯受損,細胞數(shù)量減少,RORγt表達減少,IL-22分泌減少[72]。而NKp46?的ILC3亞群發(fā)育正常,但IL-17的分泌卻增加,可能是因為RORγt不被REV-ERBα拮抗[72]。因為REV-ERBα在調控RORγt方面發(fā)揮作用,所以時鐘調節(jié)因子REV-ERBα是ILC3的發(fā)育和功能所必須的[72]。
與先天免疫細胞類似,T細胞和B細胞在血液中表現(xiàn)出強烈的晝夜振蕩。輔助性T細胞17(T helper cell 17, Th17)是研究生物鐘免疫調節(jié)的成熟細胞模型。RORγt是Th17細胞分化所必需的關鍵轉錄因子[73]。一項早期研究發(fā)現(xiàn),負調控因子NFIL3通過直接結合和抑制RORγt啟動子來抑制Th17細胞的發(fā)育,而REV-ERBα通過抑制NFIL3轉錄激活RORγt進而間接促進Th17細胞分化和IL-17a的產(chǎn)生[74]。Farez等[75]的研究表明,褪黑素通過調節(jié)REV-ERBα-NFIL3軸抑制Th17細胞中RORγt和RORα的表達,阻斷致病性Th17細胞的分化。Chang等[76]提出,REV-ERBα在Th17細胞分化過程中特異性上調,REV-ERBα在Th17細胞中的調節(jié)作用可能與其表達水平有關。在低水平表達時[74],REV-ERBα通過抑制NFIL3促進RORγt的表達,間接促進Th17細胞分化和IL-17的產(chǎn)生;在高表達水平表達時[76],REV-ERBα通過與RORγt直接競爭結合基因的啟動子,抑制IL-17a的產(chǎn)生及Th17效應功能(圖3B)。綜上所述,REV-ERBα是治療Th17介導的自身免疫性疾病的潛在靶點。
纖維化是指由于炎癥導致器官實質細胞壞死,組織內細胞外基質異常增多和過度沉積的病理過程。REV-ERBα激動劑可減輕CCl4誘導的小鼠纖維化,表現(xiàn)為膠原沉積減少和纖維化基因表達減少[77]。成纖維細胞中的REV-ERBα可以改變整合素β1黏著斑的形成,影響肌成纖維細胞的分化,進而抑制肺纖維化的發(fā)展,并且REV-ERBα激動劑抑制肺纖維化患者組織中的肌成纖維細胞分化和膠原分泌[11]。因此,靶向REV-ERBα可能是一種治療纖維化疾病的有效方法。
由于早期研究中未能找到內源性配體無法界定其作用,REV-ERBs在發(fā)現(xiàn)之初被稱為孤兒受體,直至2007年,血紅素被鑒定為其內源性配體[45]。作為REV-ERBα典型激動劑,血紅素已經(jīng)在體外研究中被證實對REV-ERB靶基因表達具有抑制作用。此外,隨著藥物化學的發(fā)展,近年來發(fā)現(xiàn)了一批新的REV-ERBα配體(圖4),其中大多數(shù)都具有體內藥理活性,為代謝性疾病、炎癥性疾病、心力衰竭和癌癥等多種疾病的治療提供了新方向。
圖4 REV-ERBα的生理性配體及代表性的合成配體
血紅素是REV-ERBα的內源性配體,但高濃度的血紅素具有細胞毒性且對REV-ERBα選擇性較差,應用范圍有限。隨后,研究人員采用FRET技術篩選出第一個合成激動劑GSK4112,通常被用于體外實驗。SR9009和SR9011是基于GSK4112的化學結構設計的REV-ERBs激動劑,表現(xiàn)出更好的藥代動力學特性,已被廣泛應用于體內外研究。SR8278是第一個合成的REV-ERBα拮抗劑,也是迄今為止可用于體內研究的最有效的REV-ERB拮抗劑。使用Servier Medical Art的素材進行修改繪制,Servier Medical Art使用CC BY-SA 3.0協(xié)議(https://creati-vecommons.org/licenses/by/3.0/)。
4.1.1 GSK4112
GSK4112是第一個合成的非卟啉小分子REV- ERBα激動劑,是通過熒光共振能量轉移(fluore-scence resonance energy transfer, FRET)技術篩選得到的[78]。體外實驗表明[78],GSK4112可抑制以及糖異生基因的表達,減少小鼠原代肝細胞的葡萄糖產(chǎn)生。
遺憾的是,GSK4112藥效不強,藥代動力學性能不佳,因此通常被用于體外研究。GSK4112具有抗炎作用,是緩解神經(jīng)炎癥以及慢性炎癥性肺炎的新策略[79, 80]。此外,GSK4112通過降低糖酵解通量和戊糖磷酸途徑來抑制人胃癌細胞的增殖,發(fā)揮抗癌作用[81]。
4.1.2 SR9009和SR9011
SR9009和SR9011是基于GSK4112的化學結構設計的REV-ERBs激動劑[51],二者的藥效是GSK4112的三倍,并且表現(xiàn)出更好的藥代動力學特性。SR9009可減輕野生型小鼠實驗性結腸炎,但在REV-ERBα-/-小鼠中無此作用[26],表明SR9009的藥理作用是REV-ERBα依賴的。因此,SR9009和SR9011已被廣泛用于檢測REV-ERBs在體內外對晝夜節(jié)律行為和疾病的影響。
REV-ERBα可通過調節(jié)骨骼肌線粒體生物發(fā)生和線粒體自噬,提高骨骼肌氧化能力[37,38],維持骨骼肌肌漿網(wǎng)鈣穩(wěn)態(tài)[36],改善機體運動功能,因此SR9009和SR9011可用于緩解杜氏肌營養(yǎng)不良癥等肌病[36]。在干預代謝性疾病方面,SR9009和SR9011可通過增加能量消耗來減少脂肪質量、改善血脂異常和高血糖來緩解小鼠肥胖[51]。另一方面,SR9009激活腸道REV-ERBα可增強小鼠腸道屏障功能,減少膳食脂肪吸收,減輕非酒精性脂肪性肝炎、肥胖等代謝性疾病[27,28]。此外,SR9009和SR9011同樣具有心臟保護作用[9]、抗炎作用以及神經(jīng)保護作用[82,83]。
REV-ERBα參與多種癌癥的發(fā)生發(fā)展。SR9009和SR9011對癌細胞和癌基因誘導的衰老(oncogene- induced senescent, OIS)細胞具有特異性的致死作用,而對正常細胞或組織的活力沒有影響[84,85]。因此,REV-ERBα激動劑是高選擇性、低毒性、具有廣泛治療窗口的新型廣譜抗癌藥物,通過抑制癌細胞的增殖與遷移[86]、脂質從頭合成[84]、細胞自噬[87]、線粒體代謝[88]以及誘導癌細胞的凋亡[84]來調控癌癥的發(fā)展。
4.1.3 SR12418
Amir等[73]通過改變SR9009的化學結構合成了一種REV-ERB特異性的合成配體SR12418。SR12418在抑制IL-17等REV-ERBα靶基因方面比SR9009更有效,并且具有更好的藥動學特性,可用于治療實驗性自身免疫性腦脊髓炎和結腸炎[73]。
4.2.1 SR8278
SR8278是第一個合成的REV-ERBα拮抗劑[89]。然而,它的藥代動力學性質很差,消除半衰期很短,約為0.17 h[90]。SR8278已被廣泛用于體內外研究REV-ERBα的功能。SR8278拮抗REV-ERBα可減少糖酵解,增加SGC-7901和BGC-823細胞內乳酸水平。體內研究中,SR8278可增強同型半胱氨酸分解代謝以及尿素的產(chǎn)生,降低小鼠血清和肝臟同型半胱氨酸水平,緩解高同型半胱氨酸血癥[20]。SR8278也具有緩解帕金森癥情緒障礙[91],減少阿茲海默癥淀粉樣斑塊沉積[34]以及緩解癲癇發(fā)作[92]等作用。REV-ERBα是常見血栓性疾病中血小板活化和血栓形成的共同驅動因子,SR8278可減少人和小鼠血小板的聚集和激活,減少血栓形成,改善急性心肌梗死模型中微血栓阻塞和心肌梗死伸展[93]。
盡管近年來越來越多的新拮抗劑被發(fā)現(xiàn),但遺憾的是這些化合物的藥物代謝動力學特性都很差,SR8278仍然是迄今為止可用于體內研究的最有效的REV-ERB拮抗劑。
4.2.2 GSK1362
Pariollad等[10]開發(fā)了一種新型的基于惡唑的REV-ERBs選擇性拮抗劑,命名為GSK1362?;贔RET和熒光素酶報告基因(luciferase reporter gene, luc)分析顯示,GSK1362可促進Bmal1轉錄,并且呈現(xiàn)劑量依賴性。值得注意的是,GSK1362對LXR受體沒有激動作用。然而,有研究表明,在骨髓源性巨噬細胞中,GSK1362以REV-ERBα依賴的方式抑制脂多糖誘導的炎性細胞因子IL-6的表達,此現(xiàn)象與REV-ERBα激動劑作用相似,表明GSK1362可能作用于未知的其他靶點。
4.2.3 膽紅素
膽紅素是血紅素在體內分解代謝的有毒終產(chǎn)物,主要在肝臟解毒。Wang等[94]基于Gal4共轉染和-luc分析證實膽紅素是REV-ERBα的拮抗劑,可誘導已知的REV-ERBα靶基因、、和的表達。膽紅素發(fā)揮REV-ERBα拮抗作用,保護機體免受高膽紅素血癥的影響。REV-ERBα拮抗劑為膽紅素相關疾病的治療提供了一種潛在方案。盡管結構上相似,膽紅素和血紅素對REV-ERBα的作用是相反的,其他結構相似化合物,如SR8278和GSK4112,也有類似的現(xiàn)象。結構相似化合物的不同作用可能是由于REV-ERBα活性對配體結合受體復合物構象變化的高度敏感性,氧化還原條件和少量氣體對配體結合的REV-ERBα的輕微修飾會導致配體切換和功能效應的改變[95]。
4.3.1 GSK2945
GSK2945也是在GSK4112的基礎上設計的小分子藥物,半衰期為2.0 h[96]。該化合物劑量依賴地抑制U2OS細胞中熒光素酶報告活性,表明對REV-ERBS具有激動性作用[96]。然而,在另一篇報道中GSK2945劑量依賴地拮抗REV-ERBα的活性,GSK2945處理小鼠和人的原代肝細胞可以上調Cyp7a1/CYP7A1的表達水平。體內實驗表明,GSK2945可提高野生型和高膽固醇癥小鼠肝臟Cyp7a1水平,降低血漿膽固醇水平[19]。因此,靶向REV-ERBα/LRH-1軸可能是治療膽固醇相關疾病的一種新方法。目前為止,GSK2945是激動劑還是拮抗劑還沒有定論,其作用可能具有細胞/組織特異性。
4.3.2 黃連素和葛根素
研究表明,中藥單體化合物黃連素是REV- ERBα的激動劑,可抑制和熒光素酶報告基因活性,并以劑量依賴性降低和的表達[97]。黃連素處理可降低骨髓源性巨噬細胞和結腸炎小鼠的炎癥反應[97]。葛根素是從葛根中分離出來的,可被用于治療多種疾病。Chen等[98]基于熒光素酶報告基因、Gal4共轉染和靶基因表達分析發(fā)現(xiàn)葛根素是REV-ERBα的拮抗劑。葛根素上調肝臟同型半胱氨酸分解代謝基因、和的表達,劑量依賴性緩解蛋氨酸誘導的小鼠高同型半胱氨酸血癥,其表現(xiàn)為總同型半胱氨酸和TG水平的降低。黃連素和葛根素在化學結構上與其他合成配體有很大的不同,為REV-ERBα配體提供了新的化學骨架。然而,黃連素和葛根素對REV-ERBα的選擇性尚未得到驗證。
哺乳動物生理和行為的大部分方面受生物鐘調控。生物鐘與能量代謝關系密切,時鐘基因直接或間接參與糖脂代謝調控。生物鐘功能的紊亂會導致代謝綜合征表型。核受體REV-ERBα作為重要的時鐘調節(jié)基因在維持機體能量代謝穩(wěn)態(tài)中起著至關重要的作用,是肝臟和WAT等主要代謝器官的代謝狀態(tài)依賴性調節(jié)因子[58,60]。越來越多的證據(jù)支持了REV-ERBα在糖脂代謝穩(wěn)態(tài)中的作用,并且REV- ERBα激動劑可增加全身能量消耗,改善血脂異常和高血糖,為代謝性疾病的治療提供了一種方法。
機體代謝物和代謝過程控制免疫細胞的功能和分化[99]。在肥胖等病理條件下,長期能量過剩導致代謝產(chǎn)物(如游離脂肪酸)激活免疫細胞,導致慢性低度炎癥。REV-ERBα是炎癥調節(jié)因子[21],涉及NLRP3炎癥體的激活調控、炎癥相關基因的表達、巨噬細胞極化以及免疫細胞的發(fā)育等多個過程。越來越多的證據(jù)支持REV-ERBα激動劑具有抗炎作用,在治療代謝性疾病和炎癥性疾病方面具有廣闊前景。
代謝重編程是癌癥的特征之一,使癌細胞能夠在營養(yǎng)匱乏、氧氣缺乏的腫瘤微環(huán)境中快速生長和失控性增殖。REV-ERBα激動劑可通過調控糖脂代謝限速酶基因,減少糖酵解通量和磷酸戊糖途徑以及脂質從頭合成,抑制癌細胞細胞增殖并誘導癌細胞死亡,從而限制腫瘤的發(fā)生發(fā)展。由此可見,靶向REV-ERBα是一種很有前途的癌癥治療策略。
雖然REV-ERBα配體已被證明可以在動物臨床前研究水平上改善炎癥性疾病、代謝紊亂、心臟衰竭、自身免疫性疾病、癌癥等病理條件,但是目前在轉化為臨床試驗方面沒有取得任何進展。這意味著REV-ERBα配體的藥物開發(fā)面臨著某些挑戰(zhàn)。這些挑戰(zhàn)包括藥物安全問題、較差的生物利用度和藥代動力學特性以及人類和嚙齒動物之間晝夜節(jié)律機制差異。
另一個值得注意的問題是,一些REV-ERB配體具有REV-ERB非依賴的生物效應。肝X受體(liver X receptor, LXR)與REV-ERBs具有相似的生物學功能,參與脂質代謝、糖代謝和炎癥的調節(jié),GSK4112類似物SR9009和SR9011共有的叔胺化學結構可激活LXR[96]。為了成功地進行藥物開發(fā),使用先進技術在局部分布REV-ERBα藥物靶向治療疾病或許是一種可行的解決方法。
盡管合成配體僅在過去幾年才可用于疾病的動物模型,但很明顯,改進和優(yōu)化的配體為睡眠障礙、癌癥、免疫性疾病和代謝綜合征的治療提供了新策略,一些改進后的化合物或其類似物在不遠的將來很有可能進入臨床試驗。
[1] Dumas B, Harding HP, Choi HS, Lehmann KA, Chung M, Lazar MA, Moore DD. A new orphan member of the nuclear hormone receptor superfamily closely related to Rev-Erb., 1994, 8(8): 996–1005.
[2] Miyajima N, Horiuchi R, Shibuya Y, Fukushige S, Matsubara K, Toyoshima K, Yamamoto T. Two erbA homologs encoding proteins with different T3 binding capacities are transcribed from opposite DNA strands of the same genetic locus., 1989, 57(1): 31–39.
[3] Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Chong LW, DiTacchio L, Atkins AR, Glass CK, Liddle C, Auwerx J, Downes M, Panda S, Evans RM. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β., 2012, 485(7396): 123–127.
[4] Zhao X, Hirota T, Han XM, Cho H, Chong LW, Lamia K, Liu SH, Atkins AR, Banayo E, Liddle C, Yu RT, Yates JR, 3rd, Kay SA, Downes M, Evans RM. Circadian amplitude regulation via FBXW7-targeted REV-ERBα degra-dation., 2016, 165(7): 1644–1657.
[5] Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, Liu XS, Lazar MA. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism., 2011, 331(6022): 1315–1319.
[6] Montaigne D, Marechal X, Modine T, Coisne A, Mouton S, Fayad G, Ninni S, Klein C, Ortmans S, Seunes C, Potelle C, Berthier A, Gheeraert C, Piveteau C, Deprez R, Eeckhoute J, Duez H, Lacroix D, Deprez B, Jegou B, Koussa M, Edme JL, Lefebvre P, Staels B. Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbα antagonism: a single-centre propensity-matched cohort study and a randomised study., 2018, 391(10115): 59–69.
[7] Reitz CJ, Alibhai FJ, Khatua TN, Rasouli M, Bridle BW, Burris TP, Martino TA. SR9009 administered for one day after myocardial ischemia-reperfusion prevents heart failure in mice by targeting the cardiac inflammasome., 2019, 2: 353.
[8] Song SY, Tien CL, Cui H, Basil P, Zhu NX, Gong YY, Li WB, Li H, Fan QY, Min Choi J, Luo WJ, Xue YF, Cao R, Zhou WJ, Ortiz AR, Stork B, Mundra V, Putluri N, York B, Chu MP, Chang J, Yun Jung S, Xie L, Song JP, Zhang LL, Sun Z. Myocardial Rev-erb-mediated diurnal metabolic rhythm and obesity paradox., 2022, 145(6): 448–464.
[9] Huang Q, Tian LQ, Zhao XS, Lei SQ, Zhao B, Qiu Z, Xia ZY. Rev-erbs agonist SR9009 alleviates ischemia- reperfusion injury by heightening endogenous cardio-protection at onset of type-2 diabetes in rats: down- regulating ferritinophagy/ferroptosis signaling., 2022, 154: 113595.
[10] Pariollaud M, Gibbs JE, Hopwood TW, Brown S, Begley N, Vonslow R, Poolman T, Guo BQ, Saer B, Jones DH, Tellam JP, Bresciani S, Tomkinson NC, Wojno-Picon J, Cooper AW, Daniels DA, Trump RP, Grant D, Zuercher W, Willson TM, MacDonald AS, Bolognese B, Podolin PL, Sanchez Y, Loudon AS, Ray DW. Circadian clock component REV-ERBα controls homeostatic regu-lation of pulmonary inflammation., 2018, 128(6): 2281–2296.
[11] Cunningham PS, Meijer P, Nazgiewicz A, Anderson SG, Borthwick LA, Bagnall J, Kitchen GB, Lodyga M, Begley N, Venkateswaran RV, Shah R, Mercer PF, Durrington HJ, Henderson NC, Piper-Hanley K, Fisher AJ, Chambers RC, Bechtold DA, Gibbs JE, Loudon AS, Rutter MK, Hinz B, Ray DW, Blaikley JF. The circadian clock protein REVERBα inhibits pulmonary fibrosis development., 2020, 117(2): 1139–1147.
[12] Yuan X, Dong D, Li ZJ, Wu BJ. Rev-erbalpha activation down-regulates hepatic Pck1 enzyme to lower plasma glucose in mice., 2019, 141: 310–318.
[13] RaspéE, Duez H, Mansén A, Fontaine C, Fiévet C, Fruchart JC, Vennstr?m B, Staels B. Identification of Rev-erbα as a physiological repressor of apoC-III gene transcription., 2002, 43(12): 2172–2179.
[14] Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, Wang FF, Jager J, Lazar MA. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function., 2012, 26(7): 657–667.
[15] Anzulovich A, Mir A, Brewer M, Ferreyra G, Vinson C, Baler R. Elovl3: a model gene to dissect homeostatic links between the circadian clock and nutritional status., 2006, 47(12): 2690–2700.
[16] Sitaula S, Zhang JS, Ruiz F, Burris TP. Rev-erb regulation of cholesterologenesis., 2017, 131: 68–77.
[17] Duez H, van der Veen JN, Duhem C, Pourcet B, Touvier T, Fontaine C, Derudas B, Bauge E, Havinga R, Bloks VW, Wolters H, van der Sluijs FH, Vennstr?m B, Kuipers F, Staels B. Regulation of bile acid synthesis by the nuclear receptor Rev-erbα., 2008, 135(2): 689–698.
[18] Le Martelot G, Claudel T, Gatfield D, Schaad O, Kornmann B, Lo Sasso G, Moschetta A, Schibler U. REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis., 2009, 7(9): e1000181.
[19] Zhang TP, Zhao MJ, Lu DY, Wang S, Yu FJ, Guo LX, Wen SJ, Wu BJ. REV-ERBα regulates CYP7A1 through repression of liver receptor homolog-1., 2018, 46(3): 248–258.
[20] Zhang TP, Chen M, Guo LX, Yu FJ, Zhou C, Xu HM, Wu BJ. Reverse erythroblastosis virus alpha antagonism promotes homocysteine catabolism and ammonia clearance., 2019, 70(5): 1770–1784.
[21] Pourcet B, Zecchin M, Ferri L, Beauchamp J, Sitaula S, Billon C, Delhaye S, Vanhoutte J, Mayeuf-Louchart A, Thorel Q, Haas JT, Eeckhoute J, Dombrowicz D, Duhem C, Boulinguiez A, Lancel S, Sebti Y, Burris TP, Staels B, Duez HM. Nuclear receptor subfamily 1 group D member 1 regulates circadian activity of NLRP3 inflammasome to reduce the severity of fulminant hepatitis in mice., 2018, 154(5): 1449–1464.e20.
[22] Brown MR, Laouteouet D, Delobel M, Villard O, Broca C, Bertrand G, Wojtusciszyn A, Dalle S, Ravier MA, Matveyenko AV, Costes S. The nuclear receptor REV-ERBα is implicated in the alteration of β-cell autophagy and survival under diabetogenic conditions., 2022, 13(4): 353.
[23] Vieira E, Marroqui L, Batista TM, Caballero-Garrido E, Carneiro EM, Boschero AC, Nadal A, Quesada I. The clock gene Rev-erbα regulates pancreatic β-cell function: modulation by leptin and high-fat diet., 2012, 153(2): 592–601.
[24] Vieira E, Merino B, Quesada I. Role of the clock gene Rev-erbα in metabolism and in the endocrine pancreas., 2015, 17(Suppl 1): 106–114.
[25] Vieira E, Marroqui L, Figueroa ALC, Merino B, Fernandez-Ruiz R, Nadal A, Burris TP, Gomis R, Quesada I. Involvement of the clock gene Rev-erbα in the regulation of glucagon secretion in pancreatic α-cells., 2013, 8(7): e69939.
[26] Wang S, Lin YK, Yuan X, Li F, Guo LX, Wu BJ. REV-ERBα integrates colon clock with experimental colitis through regulation of NF-kappaB/NLRP3 axis., 2018, 9(1): 4246.
[27] Ni YH, Zhao YF, Ma LY, Wang Z, Ni LY, Hu LT, Fu ZW. Pharmacological activation of REV-ERBα improves nonalcoholic steatohepatitis by regulating intestinal permeability., 2021, 114: 154409.
[28] Yu FJ, Wang ZG, Zhang TP, Chen X, Xu HM, Wang F, Guo LX, Chen M, Liu KS, Wu BJ. Deficiency of intestinal Bmal1 prevents obesity induced by high-fat feeding., 2021, 12(1): 5323.
[29] Song C, Tan P, Zhang Z, Wu W, Dong YH, Zhao LM, Liu HY, Guan HF, Li F. REV-ERB agonism suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss partially via FABP4 upregulation., 2018, 32(6): 3215–3228.
[30] He Y, Lin FW, Chen YQ, Tan Z, Bai D, Zhao Q. Overexpression of the circadian clock gene Rev-erbα affects murine bone mesenchymal stem cell proliferation and osteogenesis., 2015, 24(10): 1194– 1204.
[31] Liu H, Zhu YL, Gao YT, Qi DH, Zhao LM, Zhao LB, Liu CY, Tao TH, Zhou CK, Sun XY, Guo FJ, Xiao J. NR1D1 modulates synovial inflammation and bone destruction in rheumatoid arthritis., 2020, 11(2): 129.
[32] Yue J, He JJ, Wei YJ, Shen KF, Wu KF, Yang XL, Liu SY, Zhang CQ, Yang H. Decreased expression of Rev-Erbα in the epileptic foci of temporal lobe epilepsy and activation of Rev-Erbα have anti-inflammatory and neuroprotective effects in the pilocarpine model., 2020, 17(1): 43.
[33] Kou L, Chi XS, Sun YD, Han C, Wan F, Hu JJ, Yin SJ, Wu JW, Li YN, Zhou QL, Zou WK, Xiong N, Huang JS, Xia Y, Wang T. The circadian clock protein Rev-erbα provides neuroprotection and attenuates neuroinflammation against Parkinson's disease via the microglial NLRP3 inflammasome., 2022, 19(1): 133.
[34] Lee J, Kim DE, Griffin P, Sheehan PW, Kim DH, Musiek ES, Yoon SY. Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer's disease., 2020, 19(2): e13078.
[35] Roby DA, Ruiz F, Kermath BA, Voorhees JR, Niehoff M, Zhang JS, Morley JE, Musiek ES, Farr SA, Burris TP. Pharmacological activation of the nuclear receptor REV-ERB reverses cognitive deficits and reduces amyloid-β burden in a mouse model of Alzheimer's disease., 2019, 14(4): e0215004.
[36] Boulinguiez A, Duhem C, Mayeuf-Louchart A, Pourcet B, Sebti Y, Kondratska K, Montel V, Delhaye S, Thorel Q, Beauchamp J, Hebras A, Gimenez M, Couvelaere M, Zecchin M, Ferri L, Prevarskaya N, Forand A, Gentil C, Ohana J, Piétri-Rouxel F, Bastide B, Staels B, Duez H, Lancel S. NR1D1 controls skeletal muscle calcium homeostasis through myoregulin repression., 2022, 7(17): e153584.
[37] Woldt E, Sebti Y, Solt LA, Duhem C, Lancel S, Eeckhoute J, Hesselink MKC, Paquet C, Delhaye S, Shin Y, Kamenecka TM, Schaart G, Lefebvre P, Nevière R, Burris TP, Schrauwen P, Staels B, Duez H. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy., 2013, 19(8): 1039–1046.
[38] Rovina RL, da Rocha AL, Marafon BB, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, da Silva ASR. One bout of aerobic exercise can enhance the expression of in oxidative skeletal muscle samples., 2021, 12: 626096.
[39] Bass J, Lazar MA. Circadian time signatures of fitness and disease., 2016, 354(6315): 994–999.
[40] Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms., 2020, 21(2): 67–84.
[41] Zeng YZ, Zhang T, Xu Y. Rapid assessment of circadian behavior in mice., 2022, 44(4): 346–357.
曾義準, 張?zhí)? 徐瓔. 分析小鼠晝夜節(jié)律變化的行為學方法. 遺傳, 2022, 44(4): 346–357.
[42] Stenvers DJ, Scheer FAJL, Schrauwen P, la Fleur SE, Kalsbeek A. Circadian clocks and insulin resistance., 2019, 15(2): 75–89.
[43] Crnko S, Schutte H, Doevendans PA, Sluijter JPG, van Laake LW. Minimally invasive ways of determining circadian rhythms in humans., 2021, 36(1): 7–20.
[44] Koronowski KB, Sassone-Corsi P. Communicating clocks shape circadian homeostasis., 2021, 371(6530): eabd0951.
[45] Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, Reid RA, Waitt GM, Parks DJ, Pearce KH, Wisely GB, Lazar MA. Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways., 2007, 318(5857): 1786–1789.
[46] Yin L, Lazar MA. The orphan nuclear receptor Rev-erbα recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene., 2005, 19(6): 1452–1459.
[47] Zhang YX, Fang B, Emmett MJ, Damle M, Sun Z, Feng D, Armour SM, Remsberg JR, Jager J, Soccio RE, Steger DJ, Lazar MA. GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock., 2015, 348(6242): 1488–1492.
[48] Griffin P, Sheehan PW, Dimitry JM, Guo C, Kanan MF, Lee J, Zhang JS, Musiek ES. REV-ERBα mediates complement expression and diurnal regulation of microglial synaptic phagocytosis., 2020, 9: e58765.
[49] Millius A, Ueda H. Rhythms: the dark side meets the light., 2018, 359(6381): 1210–1211.
[50] Delezie J, Dumont S, Dardente H, Oudart H, Gréchez- Cassiau A, Klosen P, Teboul M, Delaunay F, Pévet P, Challet E. The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism., 2012, 26(8): 3321–3335.
[51] Solt LA, Wang YJ, Banerjee S, Hughes T, Kojetin DJ, Lundasen T, Shin Y, Liu J, Cameron MD, Noel R, Yoo SH, Takahashi JS, Butler AA, Kamenecka TM, Burris TP. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists., 2012, 485(7396): 62–68.
[52] Verlande A, Chun SK, Goodson MO, Fortin BM, Bae H, Jang C, Masri S. Glucagon regulates the stability of REV-ERBα to modulate hepatic glucose production in a model of lung cancer-associated cachexia., 2021, 7(26): eabf3885.
[53] Burchett JB, Knudsen-Clark AM, Altman BJ. MYC ran up the clock: the complex interplay between MYC and the molecular circadian clock in cancer., 2021, 22(14): 7761.
[54] Simcox JA, Mitchell TC, Gao Y, Just SF, Cooksey R, Cox J, Ajioka R, Jones D, Lee SH, King D, Huang JY, McClain DA. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis., 2015, 64(4): 1108–1119.
[55] Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus., 2018, 19(8): 453–469.
[56] Ding GL, Li X, Hou XG, Zhou WJ, Gong YY, Liu FQ, He YL, Song J, Wang J, Basil P, Li WB, Qian SC, Saha P, Wang JB, Cui C, Yang TT, Zou KX, Han YH, Amos CI, Xu Y, Chen L, Sun Z. REV-ERB in GABAergic neurons controls diurnal hepatic insulin sensitivity., 2021, 592(7856): 763–767.
[57] Xu YT, Guo JB, Zhang L, Miao GL, Lai PP, Zhang WX, Liu LL, Hou XL, Wang YH, Huang W, Liu G, Gao MM, Xian XD. Targeting apoC3 paradoxically aggravates atherosclerosis in hamsters with severe refractory hypercholesterolemia., 2022, 9: 840358.
[58] Hunter AL, Pelekanou CE, Adamson A, Downton P, Barron NJ, Cornfield T, Poolman TM, Humphreys N, Cunningham PS, Hodson L, Loudon ASI, Iqbal M, Bechtold DA, Ray DW. Nuclear receptor REVERBα is a state-dependent regulator of liver energy metabolism., 2020, 117(41): 25869–25879.
[59] Laitinen S, Fontaine C, Fruchart JC, Staels B. The role of the orphan nuclear receptor Rev-Erbα in adipocyte differentiation and function., 2005, 87(1): 21–25.
[60] Hunter AL, Pelekanou CE, Barron NJ, Northeast RC, Grudzien M, Adamson AD, Downton P, Cornfield T, Cunningham PS, Billaud JN, Hodson L, Loudon AS, Unwin RD, Iqbal M, Ray DW, Bechtold DA. Adipocyte NR1D1 dictates adipose tissue expansion during obesity., 2021, 10: e63324.
[61] Pan XY, Hussain MM. Bmal1 regulates production of larger lipoproteins by modulating cAMP-responsive element-binding protein H and apolipoprotein AIV., 2022, 76(1): 78–93.
[62] Bond MR, Hanover JA. O-GlcNAc cycling: a link between metabolism and chronic disease., 2013, 33: 205–229.
[63] Berthier A, Vinod M, Porez G, Steenackers A, Alexandre J, Yamakawa N, Gheeraert C, Ploton M, Maréchal X, Dubois-Chevalier J, Hovasse A, Schaeffer-Reiss C, Cianférani S, Rolando C, Bray F, Duez H, Eeckhoute J, Lefebvre T, Staels B, Lefebvre P. Combinatorial regulation of hepatic cytoplasmic signaling and nuclear trans-criptional events by the OGT/REV-ERBα complex., 2018, 115(47): E11033–E11042.
[64] Samad F, Ruf W. Inflammation, obesity, and thrombosis., 2013, 122(20): 3415–3422.
[65] Griffin P, Dimitry JM, Sheehan PW, Lananna BV, Guo C, Robinette ML, Hayes ME, Cedeno MR, Nadarajah CJ, Ezerskiy LA, Colonna M, Zhang JS, Bauer AQ, Burris TP, Musiek ES. Circadian clock protein Rev-erbα regulates neuroinflammation., 2019, 116(11): 5102–5107.
[66] Zhao WJ, Cui LY, Huang XX, Wang SC, Li DJ, Li LP, Sun Y, Du MR. Activation of Rev-erbα attenuates lipopolysaccharide-induced inflammatory reactions in human endometrial stroma cells via suppressing TLR4-regulated NF-kappaB activation., 2019, 51(9): 908–914.
[67] Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, Boyce SH, Farrow SN, Else KJ, Singh D, Ray DW, Loudon ASI. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines., 2012, 109(2): 582–587.
[68] Sato S, Sakurai T, Ogasawara J, Takahashi M, Izawa T, Imaizumi K, Taniguchi N, Ohno H, Kizaki T. A circadian clock gene, Rev-erbα, modulates the inflammatory function of macrophages through the negative regulation of Ccl2 expression., 2014, 192(1): 407–417.
[69] Lam MTY, Cho H, Lesch HP, Gosselin D, Heinz S, Tanaka-Oishi Y, Benner C, Kaikkonen MU, Kim AS, Kosaka M, Lee CY, Watt A, Grossman TR, Rosenfeld MG, Evans RM, Glass CK. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription., 2013, 498(7455): 511–515.
[70] Wu ZN, Liao F, Luo GQ, Qian YX, He XJ, Xu WY, Ding S, Pu J. NR1D1 deletion induces rupture-prone vulnerable plaques by regulating macrophage pyroptosis via the NF-kappaB/NLRP3 inflammasome pathway., 2021: 5217572.
[71] Sitaula S, Billon C, Kamenecka TM, Solt LA, Burris TP. Suppression of atherosclerosis by synthetic REV-ERB agonist., 2015, 460(3): 566–571.
[72] Wang QL, Robinette ML, Billon C, Collins PL, Bando JK, Fachi JL, Sécca C, Porter SI, Saini A, Gilfillan S, Solt LA, Musiek ES, Oltz EM, Burris TP, Colonna M. Circadian rhythm-dependent and circadian rhythm-independent impacts of the molecular clock on type 3 innate lymphoid cells., 2019, 4(40): eaay7501.
[73] Amir M, Chaudhari S, Wang R, Campbell S, Mosure SA, Chopp LB, Lu Q, Shang JS, Pelletier OB, He YJ, Doebelin C, Cameron MD, Kojetin DJ, Kamenecka TM, Solt LA. REV-ERBα regulates TH17 cell development and autoimmunity., 2018, 25(13): 3733–3749.e8.
[74] Yu XF, Rollins D, Ruhn KA, Stubblefield JJ, Green CB, Kashiwada M, Rothman PB, Takahashi JS, Hooper LV. TH17 cell differentiation is regulated by the circadian clock., 2013, 342(6159): 727–730.
[75] Farez MF, Mascanfroni ID, Méndez-Huergo SP, Yeste A, Murugaiyan G, Garo LP, Balbuena Aguirre ME, Patel B, Ysrraelit MC, Zhu C, Kuchroo VK, Rabinovich GA, Quintana FJ, Correale J. Melatonin contributes to the seasonality of multiple sclerosis relapses., 2015, 162(6): 1338–1352.
[76] Chang C, Loo CS, Zhao X, Solt LA, Liang YQ, Bapat SP, Cho H, Kamenecka TM, Leblanc M, Atkins AR, Yu RT, Downes M, Burris TP, Evans RM, Zheng Y. The nuclear receptor REV-ERBα modulates Th17 cell-mediated autoimmune disease., 2019, 116(37): 18528–18536.
[77] Li T, Eheim AL, Klein S, Uschner FE, Smith AC, Brandon-Warner E, Ghosh S, Bonkovsky HL, Trebicka J, Schrum LW. Novel role of nuclear receptor Rev-erbα in hepatic stellate cell activation: potential therapeutic target for liver injury., 2014, 59(6): 2383–2396.
[78] Grant D, Yin L, Collins JL, Parks DJ, Orband-Miller LA, Wisely GB, Joshi S, Lazar MA, Willson TM, Zuercher WJ. GSK4112, a small molecule chemical probe for the cell biology of the nuclear heme receptor Rev-erbalpha., 2010, 5(10): 925–932.
[79] Morioka N, Kodama K, Tomori M, Yoshikawa K, Saeki M, Nakamura Y, Zhang FF, Hisaoka-Nakashima K, Nakata Y. Stimulation of nuclear receptor REV-ERBs suppresses production of pronociceptive molecules in cultured spinal astrocytes and ameliorates mechanical hypersensitivity of inflammatory and neuropathic pain of mice., 2019, 78: 116–130.
[80] Wang QX, Sundar IK, Lucas JH, Muthumalage T, Rahman I. Molecular clock REV-ERBα regulates cigarette smoke-induced pulmonary inflammation and epithelial- mesenchymal transition., 2021, 6(12): e145200.
[81] Tao LL, Yu HY, Liang R, Jia R, Wang JJ, Jiang K, Wang ZG. Rev-erbα inhibits proliferation by reducing glycolytic flux and pentose phosphate pathway in human gastric cancer cells., 2019, 8(10): 57.
[82] Wolff SEC, Wang XL, Jiao H, Sun J, Kalsbeek A, Yi CX, Gao YQ. The effect of Rev-erbα agonist SR9011 on the immune response and cell metabolism of microglia., 2020, 11: 550145.
[83] Tiwari D, Ahuja N, Kumar S, Kalra R, Nanduri R, Gupta S, Khare AK, Bhagyaraj E, Arora R, Gupta P. Nuclear receptor Nr1d1 alleviates asthma by abating GATA3 gene expression and Th2 cell differentiation., 2022, 79(6): 308.
[84] Sulli G, Rommel A, Wang XJ, Kolar MJ, Puca F, Saghatelian A, Plikus MV, Verma IM, Panda S. Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence., 2018, 553(7688): 351–355.
[85] Gao L-B, Wang Y-H, Liu Z-H, Sun Y, Cai P, Jing Q. Identification of a small molecule SR9009 that activates NRF2 to counteract cellular senescence., 2021, 20(10): e13483.
[86] Fekry B, Ribas-Latre A, Drunen RV, Santos RB, Shivshankar S, Dai YL, Zhao ZM, Yoo S-H, Chen Z, Sun K, Sladek FM, Younes M, Eckel-Mahan K. Hepatic circadian and differentiation factors control liver susce-ptibility for fatty liver disease and tumorigenesis., 2022, 36(9): e22482.
[87] Shen WT, Zhang W, Ye WL, Wang HH, Zhang QX, Shen J, Hong QS, Li X, Wen G, Wei T, Zhang J. SR9009 induces a REV-ERB dependent anti-small-cell lung cancer effect through inhibition of autophagy., 2020, 10(10): 4466–4480.
[88] Sun LY, Lyu YY, Zhang HY, Shen Z, Lin GQ, Geng N, Wang YL, Huang L, Feng ZH, Guo X, Lin N, Ding S, Yuan AC, Zhang L, Qian K, Pu J. Nuclear receptor NR1D1 regulates abdominal aortic aneurysm develop-ment by targeting the mitochondrial tricarboxylic acid cycle enzyme aconitase-2., 2022: 101161CIRCULATIONAHA121057623.
[89] Kojetin D, Wang YJ, Kamenecka TM, Burris TP. Identification of SR8278, a synthetic antagonist of the nuclear heme receptor REV-ERB., 2011, 6(2): 131–134.
[90] Dong D, Sun H, Wu ZF, Wu BJ, Xue YX, Li ZJ. A validated ultra-performance liquid chromatography- tandem mass spectrometry method to identify the pharmacokinetics of SR8278 in normal and streptozotocin-induced diabetic rats., 2016, 1020: 142–147.
[91] Kim J, Park I, Jang S, Choi M, Kim D, Sun W, Choe Y, Choi JW, Moon C, Park SH, Choe HK, Kim K. Pharmacological rescue with SR8278, a circadian nuclear receptor REV-ERBα antagonist as a therapy for mood disorders in Parkinson's disease., 2022, 19(2): 592–607.
[92] Zhang TP, Yu FJ, Xu HM, Chen M, Chen X, Guo LX, Zhou C, Xu YT, Wang F, Yu JD, Wu BJ. Dysregulation of REV-ERBα impairs GABAergic function and promotes epileptic seizures in preclinical models., 2021, 12(1): 1216.
[93] Shi JF, Tong RY, Zhou M, Gao Y, Zhao YC, Chen YF, Liu WH, Li GX, Lu D, Meng GF, Hu LH, Yuan AC, Lu XY, Pu J. Circadian nuclear receptor Rev-erbα is expressed by platelets and potentiates platelet activation and thrombus formation., 2022, 43(24): 2317–2334.
[94] Wang S, Lin YK, Zhou ZY, Gao L, Yang ZM, Li F, Wu BJ. Circadian clock gene Bmal1 regulates bilirubin detoxification: a potential mechanism of feedback control of hyperbilirubinemia., 2019, 9(18): 5122– 5133.
[95] Kojetin DJ, Burris TP. REV-ERB and ROR nuclear receptors as drug targets., 2014, 13(3): 197–216.
[96] Trump RP, Bresciani S, Cooper AWJ, Tellam JP, Wojno J, Blaikley J, Orband-Miller LA, Kashatus JA, Boudjelal M, Dawson HC, Loudon A, Ray D, Grant D, Farrow SN, Willson TM, Tomkinson NCO. Optimized chemical probes for REV-ERBα., 2013, 56(11): 4729–4737.
[97] Zhou ZY, Lin YK, Gao L, Yang ZM, Wang S, Wu BJ. Circadian pharmacological effects of berberine on chronic colitis in mice: Role of the clock component Rev-erbα., 2020, 172: 113773.
[98] Chen M, Zhou C, Xu HM, Zhang TP, Wu BJ. Chronopharmacological targeting of Rev-erbα by puerarin alleviates hyperhomocysteinemia in mice., 2020, 125: 109936.
[99] Artyomov MN, Van den Bossche J. Immunometabolism in the single-cell era., 2020, 32(5): 710–725.
The nuclear receptor REV-ERBα integrates circadian clock and energy metabolism
Shuyu Mao1, Changrui Zhao1, Chang Liu1,2
The physiological processes of mammals show rhythmic changes in a 24-h cycle. Circadian rhythms are under the subtle control of the autonomous circadian clock, and dysregulation of the circadian system can lead to health problems such as metabolic disorders. REV-ERBα, a member of the nuclear receptor superfamily, is an important component of the mammalian circadian clock. REV-ERBα regulates various physiological processes, including the regulation of metabolism, inflammation and immunity as well as the circadian rhythm, making it a potential therapeutic target for metabolic syndrome, inflammatory diseases and cancers. In recent years, an array of new REV-ERBα ligands have been discovered, most of which have potential applications in the treatment of diseases. In this review, we focus on the regulatory role of nuclear receptor REV-ERBα in energy metabolism and inflammation, in order to provide new strategies for the therapy of metabolic syndrome and its related diseases.
REV-ERBα; metabolism; inflammation; REV-ERBα ligands
2022-09-26;
2022-11-09;
2022-11-23
國家自然科學基金(編號:92057112)和國家重點研發(fā)計劃(編號:2021YFF0702000)資助[Supported by the National Natural Science Foundation of China (No. 92057112) and the National Key Research and Development Program of China (No. 2021YFF0702000)]
冒姝羽,在讀碩士研究生,專業(yè)方向:細胞生物學。E-mail: 3220030438@stu.cpu.edu.cn
劉暢,博士,教授,研究方向:生物鐘與能量代謝。E-mail: changliu@cpu.edu.cn
10.16288/j.yczz.22-310
(責任編委: 孟卓賢)