• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reliability measure approach considering mixture uncertainties under insufficient input data

    2023-03-02 02:34:38ZhenyuLIUYufengLYUGuodongSAJianrongTAN

    Zhenyu LIU, Yufeng LYU, Guodong SA, Jianrong TAN

    Research Article

    Reliability measure approach considering mixture uncertainties under insufficient input data

    1State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou 310058, China2Ningbo Research Institute, Zhejiang University, Ningbo 315100, China3Laboratory of Healthy & Intelligent Kitchen System Integration of Zhejiang Province, Ningbo 315336, China4School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China

    Reliability analysis and reliability-based optimization design require accurate measurement of failure probability under input uncertainties. A unified probabilistic reliability measure approach is proposed to calculate the probability of failure and sensitivity indices considering a mixture of uncertainties under insufficient input data. The input uncertainty variables are classified into statistical variables, sparse variables, and interval variables. The conservativeness level of the failure probability is calculated through uncertainty propagation analysis of distribution parameters of sparse variables and auxiliary parameters of interval variables. The design sensitivity of the conservativeness level of the failure probability at design points is derived using a semi-analysis and sampling-based method. The proposed unified reliability measure method is extended to consider-box variables, multi-domain variables, and evidence theory variables. Numerical and engineering examples demonstrate the effectiveness of the proposed method, which can obtain an accurate confidence level of reliability index and sensitivity indices with lower function evaluation number.

    Insufficient data; Reliability index; Sensitivity analysis; Sparse variable; Uncertainty propagation

    1 Introduction

    Uncertainties are ubiquitous in engineering pro ducts due to manufacturing error (Liu et al., 2022), lack of information, intrinsic random properties, etc. These uncertainties are quantified and propagated to uncertainties of product performance, which may lead to unexpected failure or performance fluctuation. Reliability analysis and reliability-based design optimization (RBDO) methodologies have been developed to obtain a reliable optimum design considering input uncertainties and have been applied in many engineering fields (Tostado-Véliz et al., 2021, 2022; Solazzi, 2022; Wakjira et al., 2022).

    In traditional RBDO methodologies, the uncertainty variables are assumed to be determinate probabilistic variables (Sankararaman and Mahadevan, 2015). However, in many actual engineering applications, it is difficult to acquire the complete uncertainty information for calculating the accurate probability density functions of uncertainty variables under insufficient input data (Wang et al., 2016). According to the available amount of input sampling data, the uncertainty variables can be classified into statistical variables with sufficient input data (Type I), sparse variables with insufficient input data (Type II), and interval variables with little input data (Type III) (Oberkampf et al., 2004). With an increase of input sampling data, the interval variables can be converted to sparse variables or even to statistical variables; the sparse variables can be also converted to statistical variables when there are enough input sampling data.

    The statistical variables (Type I) can be represented using determinate distribution type and accurate distribution parameters, such as normal distribution, gamma distribution,distribution, and Weibull distribution (Chen et al., 2003). A series of probabilistic uncertainty representation, propagation, and optimization design methodologies have been proposed to deal with statistical variables (Gan et al., 2018; El Haj and Soubra, 2021). The interval variables (Type III) can be represented using non-probabilistic methodologies, such as the convex model, evidence theory, fuzzy number, and-box (Ni et al., 2018). Many hybrid uncertainty analysis methodologies have also been proposed to deal with statistical variables and interval variables simultaneously (Hong et al., 2021).

    The distribution parameters of sparse variables (Type II) cannot be fitted accurately due to the insufficiency of input sampling data, and the probabilistic uncertainty analysis methodologies for statistical variables cannot be used directly for the representation of sparse variables. If the sparse variable is represented using non-probabilistic methodologies for interval variables, much uncertainty information in the insufficient input data is missing. Therefore, how to represent the uncertainties of sparse variables accurately is one issue in reliability-based design optimization.

    Initially, the sparse variables (Type II) are quantified using possibility-based approaches (Lee et al., 2013). For further parameterization of the sparse variables, likelihood-based approaches and Bayesian approaches are proposed to quantify their distribution types and distribution parameters. Uncertainty of distribution types can be estimated using many methodologies, such as the model identification method, Johnson distribution, and Kernel density estimation (Peng et al., 2017). Although the reliability index under sparse variables can be calculated, the algorithms are too computationally demanding due to the nesting estimation of uncertainty distribution types, distribution parameters, and uncertainty variables.

    The second issue is how to accurately quantify the reliability index considering the three types of uncertainty variables simultaneously. The uncertainty propagation methodologies for statistical variables (Type I) have been widely studied, such as probability density evaluation (McFarland and DeCarlo, 2020), surrogation model (Yun et al., 2020), and importance sampling method (Liu and Elishakoff, 2020). Many uncertainty quantification methodologies of reliability index considering interval variables (Type III) have also been proposed, such as interval arithmetic techniques, global optimization approach, and perturbation methods, and are summarized by Faes and Moens (2020). The uncertainty propagation analysis for sparse variables (Type II) is a multiple-loop process, the distribution types and distribution parameters are estimated in the outer loops, and the reliability index is estimated in the inner loops using similar methods to those for statistical variables (Type I). To reduce computational complexity and increase the accuracy of the reliability index, many non-probabilistic reliability analysis methodologies for hybrid uncertainties have been proposed (Zhao et al., 2018; Wei et al., 2019). Although there are many reliability measure approa ches for mixture uncertainties, there are multiple loops for the uncertainty quantification and propagation analysis of sparse variables, and the non-probabilistic reliability index is difficult to integrate with many probabilistic RBDO algorithms. Therefore, a probabilistic reliability measure approach is proposed and the reliability index and sensitivity indices are calculated considering the three types of uncertainties simultaneously.

    The rest of this paper is organized as follows. The reliability measure and sensitivity analysis problem considering mixture uncertainties is described in Section 2. In Section 3, a unified calculation algorithm of reliability index is proposed with less sampling loops and less sampling points. The sensitivity indices are calculated through a semi-analytical method based on auxiliary variables in Section 4. The proposed algorithm is extended for considering-box variables, multi-domain distribution variables, and evidence theory variables in Section 5. Three numerical and two engineering examples are demonstrated to verify the effectiveness of proposed methodology in Section 6. Conclusions are summarized in Section 7.

    2 Failure probability under insufficient input data

    Fig. 1 Multiple uncertainty types due to insufficient input data. BPA represents basic probability assignment

    3 Unified calculation of probability of failure probability

    3.1 Reliability measure based on auxiliary variable method

    3.2 Calculation procedure of probability of failure probability

    The step-to-step procedure is listed as follows, and the calculation flowchart is shown in Fig. 2.

    Fig. 2 Calculation flow chart for failure probability. AIC is the Akaike information criterion

    4 Sensitivity analysis of reliability index

    5 Extension of the proposed method to more uncertainty presentation types

    The proposed methodology can be extended to the reliability measure of multiple types of epistemic uncertainties, such as-box variables, multi-modal variables, and evidence theory variables.

    5.1 p-box uncertainty variables

    5.2 Multi-modal distribution variables

    5.3 Evidence theory variables

    6 Application examples

    6.1 Numerical example 1

    To demonstrate the effectiveness of the proposed reliability measure approach under insufficient input data, the 2D mathematical performance functions in Eqs. (32)–(34) (Cho et al., 2016a) are introduced.

    Fig. 3 Conservativeness level of failure probability considering sparse variables: (a) 10 input data; (b) 100 input data

    6.2 Numerical example 2

    To demonstrate the effectiveness of the proposed reliability measure approach under hybrid uncertainties, the 2D mathematical functions in Section 6.1 are extended to 3D functions in Eqs. (35) and (36).

    Fig. 4 Sensitivity results under different failure probabilities: (a) ; (b) ; (c) ; (d)

    Fig. 5 PDFs of distribution parameters for sparse variable : (a) ; (b) ; (c) ; (d) ; (e) ; (f)

    Fig. 6 Conservativeness level of failure probability of proposed method and MCS method

    Table 1 Design sensitivity of conservativeness level in example 2

    *

    6.3 Numerical example 3

    To demonstrate the effectiveness of the proposed method in the reliability measure for multiple types of epistemic uncertainties, the numerical example 2 is extended to analysis reliability indices and sensitivity indices considering-box variables, multi-modal variables, and evidence theory variables.

    6.3.1Reliability measure considering-box variable

    Fig. 7 Reliability result considering p-box variable

    6.3.2Reliability measures considering multi-modal variables

    Table 2 Design sensitivity of conservativeness level considering the p-box variable

    Compared with sparse variable , the weight ratios and distribution types of multi-modal variable are determinate. The failure probability can be calculated using a two-level sampling method for uncertain distribution parameters and design variables, as shown in Fig. 8, which demonstrates that the proposed method can be effectively extended to calculate reliability index considering multi-modal variables.

    Table 3 Design sensitivity of conservativeness level considering the multi-modal variable

    6.3.3Reliability measure considering evidence theory variable

    Fig. 9 Reliability measure result considering the evidence theory variable

    6.4 Engineering example: forging hydraulic press

    The forging hydraulic press is a large piece of equipment, which uses liquid as its working medium, and transfers energy to the forging process, as shown in Fig. 10.

    Fig. 11 FEA of the forging hydraulic press: (a) mesh; (b) deformation of the tie rods

    Table 4 Design sensitivity of conservativeness level considering the evidence theory variable

    The conservativeness level of failure probability considering hybrid uncertainties is calculated using the proposed method and the MCS method, as shown in Fig. 13. The sensitivity results computed using the proposed method and the FDM are listed in Table 5. These results indicate the proposed method can obtain accurate reliability index and sensitivity results.

    7 Conclusions

    In this study, a reliability measure approach considering mixture uncertainties under insufficient input data is proposed. First, the sparse variable is represented using weight summation of multiple distribution types based on AIC method under insufficient input data. Second, the failure probability under mixture uncertainties is calculated using the proposed two-level sampling method. Then, a semi-analytical method is proposed to calculate the sensitivity indices of mixture uncertainty variables. Finally, the proposed reliability measure method is extended to deal with-box variables, multi-modal variables, and evidence theory variables.

    Fig. 12 PDFs of distribution parameters for sparse variable : (a) ; (b) ; (c) ; (d)

    From the results of three numerical examples and two engineering examples, the proposed method can obtain accuracy reliability measure results with higher computational efficiency compared with the MCS and FDM methods. Some conclusions are obtained: (i) The proposed method can obtain accuracy reliability measure results with less computational times. The traditional three-level sampling loop for sparse variables is decreased to a two-level sampling loop, which decreases the computation complexity for the reliability measure. (ii) The semi-analytical sensitivity calculation method based on an auxiliary variable method decreases the computational burden, and can be integrated into the uncertainty optimization method with little extra calculation. (iii) The proposed method has been extended to analyze-box variables, multi-modal variables, and evidence theory variables, which can be extended to measure reliability index and sensitivity indices considering more uncertainty types, which is useful for mixture uncertainty optimization design.

    Fig. 13 Reliability result of forging hydraulic press

    Table 5 Design sensitivity of conservativeness level for forging hydraulic press

    This work is supported by the Key Research and Development Program of Zhejiang Province (No. 2021C01008), the National Natural Science Foundation of China (No. 52105279), and the Ningbo Natural Science Foundation of China (No. 2021J163). The authors appreciate the help from Xiang PENG (Zhejiang University of Technology, China) in programming and numerical calculation of distribution types and parameter estimation for sparse variables.

    Zhenyu LIU designed the research. Yufeng LYU and Guodong SA derived the mathematical formulas and analyzed the experimental and simulation cases. Yufeng LYU wrote the first draft of the manuscript. Guodong SA was in charge of the whole project. Jianrong TAN gave the theoretical guidance on the whole work.

    Zhenyu LIU, Yufeng LYU, Guodong SA, and Jianrong TAN declare that they have no conflict of interest.

    Chen JB, Yang JS, Jensen H, 2020. Structural optimization considering dynamic reliability constraints via probability density evolution method and change of probability measure., 62(5):2499-2516. https://doi.org/10.1007/s00158-020-02621-4

    Chen WH, Cui J, Fan XY, et al., 2003. Reliability analysis of DOOF for Weibull distribution., 4(4):448-453. https://doi.org/10.1631/jzus.2003.0448

    Cho H, Choi KK, Gaul NJ, et al., 2016a. Conservative reliability-based design optimization method with insufficient input data., 54(6):1609-1630. https://doi.org/10.1007/s00158-016-1492-4

    Cho H, Choi KK, Lee I, et al., 2016b. Design sensitivity method for sampling-based RBDO with varying standard deviation., 138(1):011405. https://doi.org/10.1115/1.4031829

    El Haj AK, Soubra AH, 2021. Improved active learning probabilistic approach for the computation of failure probability., 88:102011. https://doi.org/10.1016/j.strusafe.2020.102011

    Faes M, Moens D, 2020. Recent trends in the modeling and quantification of non-probabilistic uncertainty., 27(3):633-671. https://doi.org/10.1007/s11831-019-09327-x

    Gan CB, Wang YH, Yang SX, 2018. Nonparametric modeling on random uncertainty and reliability analysis of a dual-span rotor., 19(3):189-202. https://doi.org/10.1631/jzus.A1600340

    Hong LX, Li HC, Gao N, et al., 2021. Random and multi-super-ellipsoidal variables hybrid reliability analysis based on a novel active learning Kriging model., 373:113555. https://doi.org/10.1016/j.cma.2020.113555

    Kang YJ, Lim OK, Noh Y, 2016. Sequential statistical modeling method for distribution type identification., 54(6):?1587-1607. https://doi.org/10.1007/s00158-016-1567-2

    Keshtegar B, Hao P, 2018. Enhanced single-loop method for efficient reliability-based design optimization with complex constraints., 57(4):1731-1747. https://doi.org/10.1007/s00158-017-1842-x

    Lee I, Choi KK, Noh Y, et al., 2011. Sampling-based stochastic sensitivity analysis using score functions for RBDO problems with correlated random variables., 133(2):021003. https://doi.org/10.1115/1.4003186

    Lee I, Choi KK, Noh Y, et al., 2013. Comparison study between probabilistic and possibilistic methods for problems under a lack of correlated input statistical information., 47(2):175-189. https://doi.org/10.1007/s00158-012-0833-1

    Liu XX, Elishakoff I, 2020. A combined importance sampling and active learning Kriging reliability method for small failure probability with random and correlated interval variables., 82:101875. https://doi.org/10.1016/j.strusafe.2019.101875

    Liu Y, Jeong HK, Collette M, 2016. Efficient optimization of reliability-constrained structural design problems including interval uncertainty., 177:1-11. https://doi.org/10.1016/j.compstruc.2016.08.004

    Liu ZY, Xu HC, Sa GD, et al., 2022. A comparison of sensitivity indices for tolerance design of a transmission mechanism., 23(7):527-542. https://doi.org/10.1631/jzus.A2100461

    McFarland J, DeCarlo E, 2020. A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty., 197:106807. https://doi.org/10.1016/j.ress.2020.106807

    Ni BY, Jiang C, Huang ZL, 2018. Discussions on non-probabilistic convex modelling for uncertain problems., 59:54-85. https://doi.org/10.1016/j.apm.2018.01.026

    Oberkampf WL, Helton JC, Joslyn CA, et al., 2004. Challenge problems: uncertainty in system response given uncertain parameters., 85(1-3): 11-19. https://doi.org/10.1016/j.ress.2004.03.002

    Peng X, Li JQ, Jiang SF, 2017. Unified uncertainty representation and quantification based on insufficient input data., 56(6):???1305-1317. https://doi.org/10.1007/s00158-017-1722-4

    Sankararaman S, Mahadevan S, 2013. Distribution type uncertainty due to sparse and imprecise data., 37(1-2):182-198. https://doi.org/10.1016/j.ymssp.2012.07.008

    Sankararaman S, Mahadevan S, 2015. Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems., 138:194-209. https://doi.org/10.1016/j.ress.2015.01.023

    Solazzi L, 2022. Reliability evaluation of critical local buckling load on the thin walled cylindrical shell made of composite material., 284:115163. https://doi.org/10.1016/j.compstruct.2021.115163

    Tostado-Véliz M, Icaza-Alvarez D, Jurado F, 2021. A novel methodology for optimal sizing photovoltaic-battery systems in smart homes considering grid outages and demand response., 170:884-896. https://doi.org/10.1016/j.renene.2021.02.006

    Tostado-Véliz M, Kamel S, Aymen F, et al., 2022. A stochastic-IGDT model for energy management in isolated micro grids considering failures and demand response., 317:119162. https://doi.org/10.1016/j.apenergy.2022.119162

    Wakjira TG, Ibrahim M, Ebead U, et al., 2022. Explainable machine learning model and reliability analysis for flexural capacity prediction of RC beams strengthened in flexure with FRCM., 255:113903. https://doi.org/10.1016/j.engstruct.2022.113903

    Wang C, Li QW, Pang L, et al., 2016. Estimating the time-dependent reliability of aging structures in the presence of incomplete deterioration information., 17(9):677-688. https://doi.org/10.1631/jzus.A1500342

    Wei PF, Song JW, Bi SF, et al., 2019. Non-intrusive stochastic analysis with parameterized imprecise probability models: II. Reliability and rare events analysis., 126:227-247. https://doi.org/10.1016/j.ymssp.2019.02.015

    Yun WY, Lu ZZ, Jiang X, et al., 2020. AK-ARBIS: an improved AK-MCS based on the adaptive radial-based importance sampling for small failure probability., 82:101891. https://doi.org/10.1016/j.strusafe.2019.101891

    Zhang Z, Wang J, Jiang C, et al., 2019. A new uncertainty propagation method considering multimodal probability density functions., 60(5):1983-1999. https://doi.org/10.1007/s00158-019-02301-y

    Zhao YG, Zhang XY, Lu ZH, 2018. Complete monotonic expression of the fourth-moment normal transformation for structural reliability., 196:186-199.https://doi.org/10.1016/j.compstruc.2017.11.006

    Sections S1?–S4

    June 6, 2022;

    Revision accepted Sept. 20, 2022;

    Crosschecked Jan. 1, 2023

    ? Zhejiang University Press 2023

    免费一级毛片在线播放高清视频 | 老司机午夜福利在线观看视频| 亚洲国产中文字幕在线视频| 一本综合久久免费| 成人特级黄色片久久久久久久| 亚洲成人精品中文字幕电影| av在线天堂中文字幕| 波多野结衣一区麻豆| 免费久久久久久久精品成人欧美视频| 岛国在线观看网站| 亚洲国产看品久久| 精品免费久久久久久久清纯| 无人区码免费观看不卡| 日日夜夜操网爽| 一级a爱视频在线免费观看| 男女午夜视频在线观看| 午夜福利免费观看在线| 人人妻人人澡人人看| 黑人欧美特级aaaaaa片| 久久国产精品影院| 看黄色毛片网站| 国产成人免费无遮挡视频| 热re99久久国产66热| 一级a爱视频在线免费观看| 无遮挡黄片免费观看| 19禁男女啪啪无遮挡网站| 国产精品久久视频播放| 丰满人妻熟妇乱又伦精品不卡| 国产成+人综合+亚洲专区| 国产成人欧美| 男女床上黄色一级片免费看| 亚洲五月婷婷丁香| 高清在线国产一区| 久久国产精品影院| 国产91精品成人一区二区三区| 免费观看人在逋| 精品熟女少妇八av免费久了| 国产精品免费一区二区三区在线| 国产成人影院久久av| 欧美中文日本在线观看视频| 成人永久免费在线观看视频| 日韩成人在线观看一区二区三区| 欧美激情高清一区二区三区| 首页视频小说图片口味搜索| 日韩国内少妇激情av| 欧美+亚洲+日韩+国产| 天堂动漫精品| 免费在线观看黄色视频的| 亚洲色图综合在线观看| 黄色 视频免费看| 岛国视频午夜一区免费看| 18禁裸乳无遮挡免费网站照片 | 婷婷丁香在线五月| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产精品久久男人天堂| 国语自产精品视频在线第100页| 国产xxxxx性猛交| 精品免费久久久久久久清纯| 在线播放国产精品三级| 黄色 视频免费看| 男女床上黄色一级片免费看| 无人区码免费观看不卡| 久久精品亚洲熟妇少妇任你| 男女做爰动态图高潮gif福利片 | 欧美 亚洲 国产 日韩一| 午夜影院日韩av| 国产精品av久久久久免费| aaaaa片日本免费| 亚洲av片天天在线观看| 国产在线观看jvid| 免费看十八禁软件| 黄色a级毛片大全视频| 亚洲精品中文字幕在线视频| 亚洲av日韩精品久久久久久密| 国产成人av教育| 男男h啪啪无遮挡| 久久人人97超碰香蕉20202| 国产三级黄色录像| 国产97色在线日韩免费| 欧美精品啪啪一区二区三区| 日韩欧美一区二区三区在线观看| 一级,二级,三级黄色视频| 伦理电影免费视频| 成人特级黄色片久久久久久久| 美女高潮喷水抽搐中文字幕| 国产国语露脸激情在线看| 一级毛片高清免费大全| 亚洲国产精品sss在线观看| 免费女性裸体啪啪无遮挡网站| 国产成人欧美在线观看| 变态另类成人亚洲欧美熟女 | 两个人看的免费小视频| 妹子高潮喷水视频| av有码第一页| 精品日产1卡2卡| 天天一区二区日本电影三级 | 丰满人妻熟妇乱又伦精品不卡| 777久久人妻少妇嫩草av网站| 日韩欧美一区视频在线观看| 欧美色视频一区免费| 看免费av毛片| 天天躁狠狠躁夜夜躁狠狠躁| 两个人视频免费观看高清| 国产亚洲欧美98| 不卡av一区二区三区| avwww免费| 欧美在线一区亚洲| 黄色丝袜av网址大全| 国产亚洲av高清不卡| 国产私拍福利视频在线观看| 人人妻人人澡人人看| 好看av亚洲va欧美ⅴa在| 成人三级黄色视频| 亚洲五月婷婷丁香| 韩国av一区二区三区四区| 欧美av亚洲av综合av国产av| 99riav亚洲国产免费| 人妻丰满熟妇av一区二区三区| 免费在线观看影片大全网站| 午夜亚洲福利在线播放| 欧美国产日韩亚洲一区| 欧美一区二区精品小视频在线| 露出奶头的视频| 久久久久久亚洲精品国产蜜桃av| 久热爱精品视频在线9| 99热只有精品国产| 性欧美人与动物交配| 亚洲午夜精品一区,二区,三区| av视频免费观看在线观看| 在线观看免费日韩欧美大片| 制服丝袜大香蕉在线| 一区二区三区精品91| 两个人看的免费小视频| 亚洲全国av大片| 香蕉丝袜av| 欧美中文综合在线视频| 午夜精品国产一区二区电影| 国产高清有码在线观看视频 | 欧美日韩乱码在线| 国产av一区在线观看免费| 久久久久久免费高清国产稀缺| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲中文日韩欧美视频| 国产主播在线观看一区二区| 精品欧美国产一区二区三| 日日爽夜夜爽网站| 美女免费视频网站| 一本久久中文字幕| 午夜福利影视在线免费观看| 黄片小视频在线播放| 免费在线观看黄色视频的| 中文字幕精品免费在线观看视频| 日韩欧美一区二区三区在线观看| 老司机午夜十八禁免费视频| 麻豆成人av在线观看| 亚洲av成人av| 久久久国产成人精品二区| 777久久人妻少妇嫩草av网站| 99国产精品免费福利视频| 非洲黑人性xxxx精品又粗又长| 国产免费男女视频| 精品乱码久久久久久99久播| 午夜老司机福利片| 久久国产精品影院| 欧美日韩亚洲综合一区二区三区_| 午夜成年电影在线免费观看| 午夜福利高清视频| 久久天躁狠狠躁夜夜2o2o| 精品国内亚洲2022精品成人| 一区福利在线观看| 精品第一国产精品| 97人妻精品一区二区三区麻豆 | 亚洲人成电影免费在线| 成年版毛片免费区| 国产黄a三级三级三级人| 女人被狂操c到高潮| 黑人巨大精品欧美一区二区mp4| 变态另类丝袜制服| 国产精品久久电影中文字幕| 人人妻,人人澡人人爽秒播| av网站免费在线观看视频| 一级毛片女人18水好多| 女人高潮潮喷娇喘18禁视频| 国产精华一区二区三区| 日韩国内少妇激情av| 免费在线观看完整版高清| 国内精品久久久久久久电影| 夜夜看夜夜爽夜夜摸| 亚洲人成77777在线视频| 亚洲国产中文字幕在线视频| 一区二区三区高清视频在线| 电影成人av| 丁香六月欧美| 久久精品aⅴ一区二区三区四区| 一级作爱视频免费观看| 欧美精品啪啪一区二区三区| 黄片小视频在线播放| 人人妻人人澡人人看| 成年版毛片免费区| 在线天堂中文资源库| 亚洲色图 男人天堂 中文字幕| av天堂久久9| 精品一区二区三区视频在线观看免费| 黄片小视频在线播放| 亚洲av第一区精品v没综合| 国产国语露脸激情在线看| 天堂影院成人在线观看| 成年版毛片免费区| 美女午夜性视频免费| 国产亚洲精品久久久久5区| 在线观看免费午夜福利视频| 中文字幕久久专区| 国产午夜福利久久久久久| 午夜福利一区二区在线看| cao死你这个sao货| 美女扒开内裤让男人捅视频| 又黄又粗又硬又大视频| 村上凉子中文字幕在线| 一本久久中文字幕| 欧美不卡视频在线免费观看 | 久久国产精品男人的天堂亚洲| 午夜精品在线福利| 欧美国产精品va在线观看不卡| 亚洲av美国av| 日韩欧美在线二视频| 日本免费一区二区三区高清不卡 | 999久久久国产精品视频| 夜夜爽天天搞| 黑人操中国人逼视频| 国产xxxxx性猛交| 99香蕉大伊视频| 又黄又爽又免费观看的视频| 亚洲狠狠婷婷综合久久图片| 99精品在免费线老司机午夜| 日韩欧美一区二区三区在线观看| 欧美成人免费av一区二区三区| 亚洲成人久久性| 高清黄色对白视频在线免费看| 亚洲精品av麻豆狂野| 久久精品aⅴ一区二区三区四区| 午夜老司机福利片| 成人特级黄色片久久久久久久| 国产亚洲精品久久久久5区| 高潮久久久久久久久久久不卡| 97人妻精品一区二区三区麻豆 | 色综合欧美亚洲国产小说| 免费在线观看影片大全网站| 一区二区三区精品91| 欧美精品啪啪一区二区三区| 99国产综合亚洲精品| 50天的宝宝边吃奶边哭怎么回事| 亚洲视频免费观看视频| 法律面前人人平等表现在哪些方面| 久久久久亚洲av毛片大全| 大香蕉久久成人网| 老司机在亚洲福利影院| 国产高清有码在线观看视频 | 极品人妻少妇av视频| 动漫黄色视频在线观看| 在线观看午夜福利视频| 国语自产精品视频在线第100页| 黑丝袜美女国产一区| 两个人看的免费小视频| 久久精品国产清高在天天线| 欧洲精品卡2卡3卡4卡5卡区| 色在线成人网| 无人区码免费观看不卡| 亚洲 欧美 日韩 在线 免费| 又大又爽又粗| 曰老女人黄片| 一夜夜www| 丁香六月欧美| 国产黄a三级三级三级人| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品第一综合不卡| 热99re8久久精品国产| 欧美成人午夜精品| 一夜夜www| 国产人伦9x9x在线观看| 亚洲成人免费电影在线观看| 1024香蕉在线观看| 色综合欧美亚洲国产小说| 神马国产精品三级电影在线观看 | 大型av网站在线播放| 亚洲国产欧美网| 亚洲av成人av| 亚洲在线自拍视频| 两个人免费观看高清视频| 国产高清videossex| av免费在线观看网站| 性色av乱码一区二区三区2| 欧美最黄视频在线播放免费| 深夜精品福利| 91大片在线观看| 亚洲片人在线观看| 亚洲精品国产一区二区精华液| 国产亚洲精品第一综合不卡| av片东京热男人的天堂| www.自偷自拍.com| 99久久国产精品久久久| 自线自在国产av| 亚洲色图 男人天堂 中文字幕| 变态另类成人亚洲欧美熟女 | 变态另类成人亚洲欧美熟女 | 亚洲成人久久性| 午夜免费激情av| 亚洲一区中文字幕在线| 亚洲七黄色美女视频| 黑人操中国人逼视频| 女生性感内裤真人,穿戴方法视频| 久久午夜综合久久蜜桃| 亚洲成人国产一区在线观看| 久久午夜综合久久蜜桃| 国产精品,欧美在线| 亚洲avbb在线观看| 精品国产一区二区三区四区第35| 中出人妻视频一区二区| 亚洲欧美日韩无卡精品| 狂野欧美激情性xxxx| av中文乱码字幕在线| bbb黄色大片| 亚洲人成网站在线播放欧美日韩| 18美女黄网站色大片免费观看| 日韩精品中文字幕看吧| 国产精品自产拍在线观看55亚洲| 欧美最黄视频在线播放免费| 国产精品二区激情视频| 最近最新中文字幕大全电影3 | 亚洲第一青青草原| 国产精品一区二区在线不卡| 午夜免费观看网址| 日韩欧美国产在线观看| 色综合亚洲欧美另类图片| 免费久久久久久久精品成人欧美视频| 国产主播在线观看一区二区| 丰满人妻熟妇乱又伦精品不卡| 男女下面进入的视频免费午夜 | 亚洲在线自拍视频| www.999成人在线观看| 天堂影院成人在线观看| 在线免费观看的www视频| 国产av一区在线观看免费| 久久亚洲精品不卡| 精品午夜福利视频在线观看一区| 美女免费视频网站| 美女扒开内裤让男人捅视频| 婷婷六月久久综合丁香| 国产精品永久免费网站| 午夜免费观看网址| 精品久久久久久久久久免费视频| 国产欧美日韩精品亚洲av| 国产精品一区二区免费欧美| 国产欧美日韩精品亚洲av| 我的亚洲天堂| 久久久水蜜桃国产精品网| www.精华液| 中文字幕人成人乱码亚洲影| 人妻久久中文字幕网| 久久国产精品男人的天堂亚洲| 狂野欧美激情性xxxx| 亚洲成人精品中文字幕电影| 欧美成人免费av一区二区三区| 免费少妇av软件| 成年女人毛片免费观看观看9| 国产亚洲精品第一综合不卡| 精品欧美一区二区三区在线| 久久亚洲精品不卡| 国产人伦9x9x在线观看| 亚洲成av片中文字幕在线观看| 久久久久久久久免费视频了| 88av欧美| 日日摸夜夜添夜夜添小说| 在线天堂中文资源库| 国产激情欧美一区二区| 久久久久久久午夜电影| 99久久99久久久精品蜜桃| 午夜福利免费观看在线| 久久精品亚洲精品国产色婷小说| 18禁美女被吸乳视频| 在线十欧美十亚洲十日本专区| 黄频高清免费视频| 老司机在亚洲福利影院| 亚洲人成电影观看| 12—13女人毛片做爰片一| 精品欧美国产一区二区三| 亚洲国产欧美日韩在线播放| 非洲黑人性xxxx精品又粗又长| 99国产极品粉嫩在线观看| 夜夜夜夜夜久久久久| 久久国产乱子伦精品免费另类| 在线av久久热| 精品一品国产午夜福利视频| 国产精品一区二区在线不卡| 亚洲精品美女久久av网站| 一级毛片精品| 叶爱在线成人免费视频播放| 又黄又爽又免费观看的视频| 中国美女看黄片| 中文亚洲av片在线观看爽| 亚洲五月婷婷丁香| 午夜福利高清视频| 欧美黄色淫秽网站| 国产又色又爽无遮挡免费看| 日韩欧美国产在线观看| 国产欧美日韩精品亚洲av| 中文字幕av电影在线播放| 亚洲无线在线观看| 超碰成人久久| 国产精品 国内视频| 亚洲精品一卡2卡三卡4卡5卡| 丝袜人妻中文字幕| 亚洲成人久久性| 黄色片一级片一级黄色片| 国产av在哪里看| 十分钟在线观看高清视频www| 亚洲欧美日韩无卡精品| 色尼玛亚洲综合影院| 欧美老熟妇乱子伦牲交| 看免费av毛片| 国产精品精品国产色婷婷| 老司机深夜福利视频在线观看| 亚洲七黄色美女视频| 欧美精品亚洲一区二区| 午夜福利视频1000在线观看 | 大码成人一级视频| 精品人妻在线不人妻| 伦理电影免费视频| 在线天堂中文资源库| 亚洲av片天天在线观看| 亚洲av熟女| 侵犯人妻中文字幕一二三四区| 国产成人影院久久av| 国产成人欧美| 女人精品久久久久毛片| 精品人妻在线不人妻| 免费久久久久久久精品成人欧美视频| 精品久久久久久,| 国内精品久久久久久久电影| 精品电影一区二区在线| 久久亚洲真实| 一本大道久久a久久精品| av有码第一页| 91老司机精品| 国产av一区二区精品久久| www国产在线视频色| 亚洲精品在线观看二区| 99精品久久久久人妻精品| 亚洲欧美日韩另类电影网站| 欧美日韩乱码在线| 看黄色毛片网站| 久久精品影院6| 最新美女视频免费是黄的| 国产主播在线观看一区二区| 精品久久蜜臀av无| 亚洲av成人不卡在线观看播放网| 18禁黄网站禁片午夜丰满| 色哟哟哟哟哟哟| 十八禁人妻一区二区| 老熟妇乱子伦视频在线观看| 日韩欧美免费精品| 亚洲av片天天在线观看| 久久香蕉国产精品| 久久 成人 亚洲| 免费观看人在逋| 亚洲国产欧美日韩在线播放| 女同久久另类99精品国产91| 国产精品1区2区在线观看.| 亚洲激情在线av| 人人妻人人澡人人看| 免费无遮挡裸体视频| 国产一区二区三区综合在线观看| 精品无人区乱码1区二区| 9热在线视频观看99| 国产一区二区激情短视频| 中文字幕色久视频| 一边摸一边做爽爽视频免费| 成人亚洲精品一区在线观看| 国产片内射在线| 免费看a级黄色片| 亚洲五月婷婷丁香| 超碰成人久久| 欧美日本亚洲视频在线播放| 亚洲 国产 在线| 国产免费av片在线观看野外av| 一边摸一边抽搐一进一小说| 男男h啪啪无遮挡| 人人妻人人爽人人添夜夜欢视频| 亚洲第一电影网av| 亚洲人成网站在线播放欧美日韩| 久久久久久国产a免费观看| 亚洲avbb在线观看| 亚洲精品在线观看二区| 成人手机av| 成年版毛片免费区| 国产一级毛片七仙女欲春2 | 日本免费一区二区三区高清不卡 | 精品福利观看| 夜夜夜夜夜久久久久| 一区二区三区国产精品乱码| 国产高清激情床上av| 99久久综合精品五月天人人| 一进一出抽搐gif免费好疼| 久久人妻福利社区极品人妻图片| 久久精品国产99精品国产亚洲性色 | 亚洲成av片中文字幕在线观看| 可以免费在线观看a视频的电影网站| 亚洲国产欧美日韩在线播放| 亚洲五月天丁香| 99精品在免费线老司机午夜| 国产精品久久久人人做人人爽| 亚洲在线自拍视频| 99国产综合亚洲精品| 老司机在亚洲福利影院| 欧美色视频一区免费| 最好的美女福利视频网| 多毛熟女@视频| www.999成人在线观看| netflix在线观看网站| 人成视频在线观看免费观看| 99久久久亚洲精品蜜臀av| 欧美丝袜亚洲另类 | 国产人伦9x9x在线观看| 亚洲av电影在线进入| 欧美不卡视频在线免费观看 | 亚洲精品久久国产高清桃花| 久久欧美精品欧美久久欧美| 国内久久婷婷六月综合欲色啪| 99在线人妻在线中文字幕| 日韩国内少妇激情av| 一本久久中文字幕| 亚洲精品在线观看二区| 正在播放国产对白刺激| 亚洲无线在线观看| 国产乱人伦免费视频| 一区在线观看完整版| 久久国产乱子伦精品免费另类| 久久久久精品国产欧美久久久| 欧美激情极品国产一区二区三区| 亚洲最大成人中文| 久久久国产成人免费| 成人三级黄色视频| 久久久久久久久免费视频了| 免费看美女性在线毛片视频| 亚洲熟女毛片儿| 久久久久久亚洲精品国产蜜桃av| 欧美黄色片欧美黄色片| 香蕉久久夜色| 嫁个100分男人电影在线观看| 国产精品久久久久久亚洲av鲁大| 午夜成年电影在线免费观看| 久久久久久大精品| 老司机在亚洲福利影院| 热99re8久久精品国产| 精品一品国产午夜福利视频| 亚洲精品av麻豆狂野| 亚洲一码二码三码区别大吗| 老司机靠b影院| 中出人妻视频一区二区| 变态另类丝袜制服| 国产乱人伦免费视频| 国产成人一区二区三区免费视频网站| 亚洲精品久久成人aⅴ小说| 真人做人爱边吃奶动态| 老鸭窝网址在线观看| 日韩欧美国产一区二区入口| av天堂久久9| 国产精品自产拍在线观看55亚洲| 亚洲熟女毛片儿| 国产单亲对白刺激| 免费高清视频大片| www日本在线高清视频| 真人一进一出gif抽搐免费| 中文字幕人成人乱码亚洲影| 久久 成人 亚洲| 午夜福利在线观看吧| 乱人伦中国视频| 正在播放国产对白刺激| 中文字幕另类日韩欧美亚洲嫩草| 激情视频va一区二区三区| 久久久久久亚洲精品国产蜜桃av| 国产精品一区二区三区四区久久 | 久久精品91蜜桃| 欧美黄色淫秽网站| 美女高潮喷水抽搐中文字幕| 免费在线观看视频国产中文字幕亚洲| 欧美乱妇无乱码| 搡老岳熟女国产| 日韩大尺度精品在线看网址 | 国产精品综合久久久久久久免费 | 女人高潮潮喷娇喘18禁视频| 精品久久久久久久久久免费视频| 一夜夜www| 亚洲专区中文字幕在线| svipshipincom国产片| 亚洲av电影在线进入| 动漫黄色视频在线观看| 大码成人一级视频| 欧美日韩中文字幕国产精品一区二区三区 | 美女午夜性视频免费| 亚洲精品av麻豆狂野| 午夜福利在线观看吧| 久久国产乱子伦精品免费另类| 国产99久久九九免费精品| 色播亚洲综合网| 97碰自拍视频| 9色porny在线观看| 久久人妻熟女aⅴ| 亚洲专区中文字幕在线| 制服人妻中文乱码| 午夜亚洲福利在线播放| 国产欧美日韩一区二区三区在线| 正在播放国产对白刺激| 51午夜福利影视在线观看| 午夜视频精品福利| 天堂影院成人在线观看|