• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy

    2023-02-20 13:16:08ChunjieYan晏春杰LinaChen陳麗娜KaiyuanZhou周愷元LiupengYang楊留鵬QingweiFu付清為WenqiangWang王文強(qiáng)WenChengYue岳文誠LikeLiang梁力克ZuiTao陶醉JunDu杜軍YongLeiWang王永磊andRonghuaLiu劉榮華
    Chinese Physics B 2023年1期
    關(guān)鍵詞:付清力克

    Chunjie Yan(晏春杰), Lina Chen(陳麗娜),2,?, Kaiyuan Zhou(周愷元), Liupeng Yang(楊留鵬), Qingwei Fu(付清為),Wenqiang Wang(王文強(qiáng)), Wen-Cheng Yue(岳文誠), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜軍),Yong-Lei Wang(王永磊), and Ronghua Liu(劉榮華),?

    1National Laboratory of Solid State Microstructures,School of Physics and Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    2School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    3School of Electronics Science and Engineering,Nanjing University,Nanjing 210093,China

    Keywords: perpendicular magnetic anisotropy,magnetic domain,damping,multiayers

    1. Introduction

    Magnetic multilayers with strong perpendicular magnetic anisotropy (PMA) and low magnetic damping have attracted much attention because of their potential applications in highdensity magnetic random access memories(MRAM)[1–5]and spin torque nano-oscillators.[6–9]Compared to the in-plane magnetized ferromagnets, ferromagnetic films with PMA facilitate the realization of nonvolatile MRAM with lower power and higher density storage because the latter has lower critical switching current and higher thermal stability than the former as the continuous downscaling of the cell size of devices.[10]In addition, PMA can be an effective magnetic field to achieve zero external magnetic field working spintorque nano-oscillators with ferromagnets with strong PMA and low damping as its free layer.[11]Therefore, the controllable tailoring PMA of magnetic films is an essential prerequisite for developing high-performance spintronic devices.The magnetic multilayers,e.g.,[Co/Pd],[Co/Pt],and[Co/Ni],provide an opportunity to tune their magnetic properties by changing the thickness ratio controllably and the number of bilayer repeats thanks to the interface-induced PMA due to interfacial spin–orbit coupling and interfacial strain relevant magnetoelastic effects.[12–17]Among these PMA multilayers, the PMA [Co/Ni] multilayer also exhibits low damping constant,[14]which gets much attention, especially for the fields of current-driven auto-oscillation of magnetization and excitation and manipulation of spin-waves.[18,19]Furthermore,the PMA[Co/Ni]multilayer is also useful for spin–orbit torque devices.[20–22]Therefore,[Co/Ni]multilayers are considered one of the most promising PMA ferromagnets in various spintronic devices.Although there are a few studies on the magnetic anisotropy, magnetotransport, and magnetic damping of Pt/[Co/Ni] multilayers,[6,14,23]the systematically studied evolution of magnetostatic properties,including the topography of magnetic domains and magnetic dynamics with the thickness ratio of Co and Ni layers for this multilayer film still needs to make a thorough investigation for facilitating it better used in further spintronics.

    Here, we systematically investigate how to control the magnetic film PMA by tailoring the interfacial effect by varying the thickness of the Ni layer and its impact on magnetic domain structure and dynamical damping in two serial Co/Ni multilayers withtCo=0.2 nm and 0.3 nm. The highest PMA coefficientKU~3×106erg·cm-3and coercivityHC~250 Oe are found at the optimum Ni thicknesstNi=0.6 nm for the studied two serials.The nucleation of the magnetic domain occurs at only a few nucleation sites and gradually expands with magnetic fields for the multilayers with the optimum Ni thicknesses 0.4 nm–0.6 nm. Finally, the intrinsic Gilbert damping constantαis not sensitive to thickness-dependentKUand domain structures even though the linewidth of ferromagnetic resonance is inversely proportional toKUandHC, which is dominated by inhomogeneous magnetic properties.

    2. Experiment

    Two serial multilayers of Pt(5)/[Co(0.2)/Ni(tNi)]5/Pt(1)and Pt(5)/[Co(0.3)/Ni(tNi)]5/Pt(1),named as Pt/[Co(0.2)/Ni(tNi)]and Pt/[Co(0.3)/Ni(tNi)], respectively, were deposited on Si/SiO2substrates at room temperature by dc-magnetron sputtering with Ar pressure 3×10-3torr. The unit in parentheses is the thickness in nm. The base pressure of the sputtering deposition chamber is below 2×10-8torr. The deposition rate was monitored by the quartz crystal monitorin situand calibrated by spectroscopic ellipsometry(SE).The static magnetic properties were characterized by the vibrating sample magnetometer (VSM), the anomalous Hall resistivity (AHR)measurement,and the magneto-optic Kerr effect(MOKE)microscopy respectively. The films’ ferromagnetic resonance(FMR) spectra, obtained by combining coplanar waveguide(CPW) and lock-in techniques, were also adopted to characterize their dynamic magnetic properties. All these magnetic characterizations were performed at room temperature.

    3. Results and discussion

    3.1. Quasi-static magnetic properties

    To directly obtain the thickness dependence of PMA properties in the Co/Ni films, we first performed the magnetic hysteresis loops of samples with different thicknesses using VSM. Figure 1 shows the magnetization hysteresis loops with the out-of-plane and in-plane field geometries for the two serial multilayers of Pt/[Co(0.2)/Ni(tNi)] and Pt/[Co(0.3)/Ni(tNi)] samples. The well-defined squareM–Hloops under out-of-plane field [Figs. 1(a) and 1(c)] indicate that two studied serial Pt/[Co/Ni] multilayers exhibit a perpendicular magnetic anisotropy. Additionally, the saturation magnetizationMSof the multilayers decreases with increasing the thickness of the Ni layertNi, from 673 emu·cm-3to 495 emu·cm-3for Pt/[Co(0.2)/Ni(tNi)]and 723 emu·cm-3to 639 emu·cm-3for Pt/[Co(0.3)/Ni(tNi)], which agrees with the much lowerMS~484 emu·cm-3of the metal nickel compared to that of the cobalt layerMS~1422 emu·cm-3.Based on the out-of-plane and in-plane magnetization hysteresis loops, the perpendicular anisotropy fieldHKwas determined by using the defined formula for the PMA:[12,24]HK=(2/MS)(H⊥dM-H‖dM)+4πMS. The calculatedHK,MSand the coercivityHC, obtained from theM–Hloops,were summarized below in Fig.5.

    Fig.1.(a)–(b)Magnetization loops of the films Pt(5)/[Co(0.2)/Ni(tNi)]5/Pt(1)with out-of-plane(a)and in-plane(b)magnetic field.(c)–(d)Same as(a)–(b),for Pt(5)/[Co(0.3)/Ni(tNi)]5/Pt(1).

    These static magnetic properties of the metal Pt/[Co/Ni]multilayer films also can be determined by the electric transports in magnetic field,e.g.,anomalous Hall resistivity(AHR)and magnetoresistive effect. Compared to the standard magnetometer above,the electric transports in magnetic field measurements provide an alternative approach and, especially,more useful for spintronic nano-devices because they can easily access the magnetic properties of the microscale and nanoscale samples.[25,26]Therefore, we also perform the outof-plane and in-plane AHR loops as a function of the applied magnetic fields for the studied two serial multilayers,as shown in Fig.2. The coercivityHCdetermined from the outof-plane AHR loops are well consistent with the values obtained by theM–Hloops, and are also summarized in Fig.5.Meanwhile, we can calculateHKof the studied films from the in-plane AHR loops by using the following relation:[27]HK=H‖·tanarcsin(ρxy(H)/ρxy(0))+4πMS,whereρxy(0)is the AHR value at zero in-plane field. The evolution ofHKwith the thickness of the Ni layer is overall consistent with the results determined by the VSM measurement. Furthermore,the AHR measurements also provide us the additional information, which can not be easily accessed by VSM,about the studied two serial Pt/[Co/Ni] multilayers. For example, we find that the in-plane AHR near-zero magnetic field is much smaller than the out-of-plane AHR for the samples with certain Ni thickness,indicating that these samples form the multidomain structures at the low in-plane magnetic fields. Therefore,the value of the difference between out-of-plane and inplane AHR at near-zero fields hints that the different Ni thickness films may exhibit distinct magnetic domain structures.[28]

    Fig.2. (a)–(b) Anomalous Hall resistivity as a function of out-of-plane(a) and in-plane magnetic field with 5° tilt angle from the file plane(b) for the samples Pt(5)/[Co(0.2)/Ni(tNi)]5/Pt(1). The inset shows the geometric relationship between magnetic field, magnetization and effective anisotropic field = HK-4πMS. (c)–(d) Same as (a)–(b), for Pt(5)/[Co(0.3)/Ni(tNi)]5/Pt(1). All AHR were measured by using the films patterned into a 0.3×10 mm Hall cross.

    3.2. Magnetic domain structures

    Fig.3.(a)–(h)Magneto-optic Kerr hysteresis loops and magnetic domain images of the films Pt(5)/[Co(0.2)/Ni(tNi)]5/Pt(1) with labeled thickness tNi =0.2 nm(a),0.3 nm(b),0.4 nm(c),0.5 nm(d),0.6 nm(e),0.7 nm(f),0.8 nm(g), 0.9 nm (h), respectively. The corresponding magnetic domain images with the size of 100 μm×150 μm were obtained at the labeled out-of-plane magnetic fields(also marked as the red dots on loops).

    3.3. Magnetization dynamics

    To further investigate the Ni thickness-dependent magnetization dynamics of Co/Ni multilayers,we perform the broadband FMR measurement with the external field perpendicular to the film plane. All FMR measurements were carried out with a home-made differential FMR measurement system combining lock-in technique at room temperature. A continuous-wave Oersted field with a selected radio frequency is generated via connecting coplane waveguide (CPW) with an RF generator, which produces a microwave signal to excite FMR of ferromagnetic film, which with film surface was adhered on the CPW. The RF power used in the experiments is 15 dBm. To improve the signal-to-noise ratio (SNR), a lock-in detection technique is employed through the modulation of signals. The modulation of a direct current(DC)magnetic fieldHis provided by a pair of secondary Helmholtz coils powered by an alternating current (AC) source with 129.9 Hz[see Fig.4(a)].[16,30]The differential absorption signal is measured by sweeping the magnetic field with a fixed microwave frequency. The representative FMR spectrum of Pt(5)/[Co(0.2)/Ni(0.3)]5/Pt(1) obtained at 9 GHz is shown in the inset of Fig. 4(b). The differential FMR spectrum can be well fitted by using a combination of symmetric and antisymmetric Lorentzian function,as follows:

    whereVSandVArepresent the symmetric and antisymmetric factors,His the external magnetic field,Hresis the resonance field,and ΔHis the linewidth of FMR correspondingtimes of the peak-to-dip width in the FMR spectrum. The relationship between the frequencyfand the resonance fieldHresof the two series of Pt/[Co(0.2)/Ni(tNi)]and Pt/[Co(0.3)/Ni(tNi)]samples [Figs. 4(b) and 4(d)] can be well fitted by the Kittel equation[31]

    where(γ/2π)=2.8 MHz·Oe-1is the gyromagnetic ratio,Heffis the effective demagnetization[32]Heff=HK-4πMS.Therefore,the magnetic anisotropy fieldHKalso can be directly determined from the dispersion relation offversusHresby using a parameterMSobtained by VSM.In addition,we can obtain the intrinsic Gilbert dampingαby fitting the experimental data of linewidth ΔHversus resonance frequency [Figs. 4(c) and 4(e)] with the formula ΔH=ΔH0+(4πα f/γ), where ΔH0is an inhomogeneous linewidth independent of the frequency,and the second term is the intrinsic linewidth linearly proportional to the frequency. The inhomogeneous linewidth of samples is derived from roughness, defects and inhomogeneous PMA and magnetization.[33]

    Fig.4.(a)Differential FMR spectra experimental setup.(b)Dependence of the resonance field Hres on the frequency f with the out-of-plane field for the films Pt(5)/[Co(0.2)/Ni(tNi)]5/Pt(1).Solid lines indicate the Kittel fitting curves.The inset is the representative FMR spectrum obtained at 9 GHz,which can be well fitted by Eq. (1) (solid red line). (c) The linewidth versus frequency (symbols) for the samples Pt(5)/[Co(0.2)/Ni(tNi)]5/Pt(1).The solid line is a linear fitting, which can extract the corresponding damping constant α based on Eq.(2). (d)–(e) Same as (b)–(c), for the films Pt(5)/[Co(0.3)/Ni(tNi)]5/Pt(1).

    Fig.5. (a)–(e) Dependence of the saturation magnetization MS (a), the coercivity HC (b), the anisotropy field HK (c), the inhomogeneous linewidth ΔH0 (d)and the magnetic damping constant α (e)on the Ni thickness tNi in the films Pt(5)/[Co(0.2)/Ni(tNi)]5/Pt(1). (f)–(j)Same as(a)–(e)for the samples Pt(5)/[Co(0.3)/Ni(tNi)]5/Pt(1). MS, HC, and HK were determined from the previous magnetization loops, AHR loops, MOKE loops, and the ferromagnet resonance spectra. The linewidth was determined by fitting the experimental FMR spectrum with a Lorentzian function based on Eq.(1). The magnetic damping constant was obtained by a linear fitting of ΔH versus f curves based on Eq.(2).

    Figure 5 summarizes the dependence of the determined material parameters: the saturation magnetizationMS, the coercivityHC, the anisotropy fieldHK, the inhomogeneous linewidth ΔH0and the magnetic damping constantαon Ni thicknesstNifor the studied two series of Pt/[Co(0.2)/Ni(tNi)]and Pt/[Co(0.3)/Ni(tNi)]samples. The determinedHKby three independent methods shows an overall consistent behavior.TheHKbegins to increase with increasingtNi, and reaches the maximum attNi~0.6 nm, whereafter reduces again with continuing to increasetNi. Several reasons account for this phenomenon. First, the magnetic anisotropy of the studied multilayer is mainly contributed from the interfacial magnetic anisotropy of the Co/Ni and Pt/Co interfaces.[34]Second, the Co/Ni multilayers’interface quality depends highly on the Ni layer’s thickness. In other words, too thin nickel layer may not get a good Co/Ni interface due to inevitable elements diffusion during sputtering deposition. However, theHKwill drop due to reducing the ratio of the interfacial anisotropy to the volume anisotropy energy if the Ni layer is too thick.LikeHK, theHCshows a similar trend with varying thickness of the Ni layer. As we well know that the coercivity depends on PMA,as well as defects-induced pinning effects.But, in our case, the results show that the combination of PMA and magnetization-relevant demagnetization field dominate the coercivity,which can be well explained by the Brown formula:[35]HC=(2KU/MS)-NMS,whereKU=(MSHK)/2 andNare the magnetic anisotropy constant and the demagnetization factor of the film,respectively.

    Figures 5(d) and 5(i) show the inhomogeneous linewidth (ΔH0) of FMR spectra as a function oftNifor Pt/[Co(0.2)/Ni(tNi)] and Pt/[Co(0.3)/Ni(tNi)], respectively.For thin thickness Ni samples, island structures are most likely formed. This results in a broadening of the resonance linewidth due to a distribution of effective internal anisotropy and demagnetization fields.[37]One can see that the minimum linewidth of two serial samples corresponds to the maximum PMA fieldHK, suggesting the inhomogeneous magnetic anisotropy-induced linear broadening is the minimum at the optimum PMA condition.[36]Although the intrinsic damping constant is almost independent of the Ni thickness for the studied two serials, but the Pt/[Co(0.2)/Ni(tNi)] films have a lower damping constantα~0.04 thanα~0.07 of Pt/[Co(0.3)/Ni(tNi)]. The obvious difference in damping constant between the two serial multilayer systems indicates that the former has better magnetic dynamic properties.

    4. Conclusion

    The Ni thickness effect on the static magnetic properties and magnetic dynamics of Pt(5 nm)/[Co(0.2 nm and 0.3 nm)/Ni(tNi)]5/Pt(1 nm) multilayers demonstrate that the two studied serial multilayer systems exhibit the optimum PMA coefficientKUwell as the highest coercivityHCat the Ni thicknesstNi=0.6 nm.The MOKE images further confirm that the maximumKUcorresponds to the magnetic domain structure with the shortest length of domain wall through minimizing the total energy,which consists of magnetic anisotropy energy, exchange energy, and demagnetization energy. Furthermore, the frequency-dependent FMR spectra show that the damping constant remains almost constant with the different Ni thicknesses for both serials,but the Pt/[Co(0.2)/Ni(tNi)]multilayer serial has a lower damping constantα~0.04 than 0.07 of the Pt/[Co(0.3)/Ni(tNi)] serial. According to the obtained results, we find that the optimum PMA coefficientKU=3.3×106erg·cm-3,the highest coercivityHC=250 Oe,and as well as the lowest damping constantα=0.04 can be achieved at Pt(5)/[Co(0.2)/Ni(0.6)]5/Pt(1). Our results of optimizing magnetic properties of the Pt/[Co/Ni] multilayer by tuning the ratio of Co/Ni layers is helpful to facilitate its applications in various spintronic devices.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.11774150,12074178,12004171,12074189, and 51971109), the Applied Basic Research Programs of Science and Technology Commission Foundation of Jiangsu Province, China (Grant No. BK20170627), the National Key Research and Development Program of China(Grant No. 2018YFA0209002), the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology, and the Scientific Foundation of Nanjing University of Posts and Telecommunications(NUPTSF)(Grant No.NY220164).

    猜你喜歡
    付清力克
    Enhancement of spin–orbit torque efficiency by tailoring interfacial spin–orbit coupling in Pt-based magnetic multilayers
    離婚時房子判歸女方所有,經(jīng)濟(jì)補(bǔ)償付清前男方能否享有居住權(quán)
    伴侶(2021年5期)2021-06-08 10:56:24
    王力克風(fēng)景油畫作品
    齊魯藝苑(2021年2期)2021-05-10 02:03:36
    我就是要越線
    王力克《2020 年初春》
    齊魯藝苑(2020年2期)2020-05-18 02:18:02
    和布克賽爾蒙古自治縣幾個地名之探討
    找零難題
    淺談數(shù)列在經(jīng)濟(jì)生活中的應(yīng)用
    新課程(下)(2016年3期)2016-08-08 10:02:27
    淺談數(shù)列在經(jīng)濟(jì)生活中的應(yīng)用
    力克推出Modaris?V8解決方案 加快時裝產(chǎn)品開發(fā)速度
    国产一级毛片七仙女欲春2| 母亲3免费完整高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产淫片久久久久久久久 | 草草在线视频免费看| 一a级毛片在线观看| 国产免费av片在线观看野外av| 他把我摸到了高潮在线观看| 91av网一区二区| ponron亚洲| 精品人妻偷拍中文字幕| 欧美区成人在线视频| 日韩中文字幕欧美一区二区| av天堂中文字幕网| 久久亚洲精品不卡| 久久亚洲真实| 一本精品99久久精品77| 亚洲国产高清在线一区二区三| 99久久精品热视频| 国模一区二区三区四区视频| 精品久久久久久成人av| 岛国在线观看网站| 久久亚洲精品不卡| 一区二区三区免费毛片| 在线看三级毛片| 成人性生交大片免费视频hd| av福利片在线观看| 精品一区二区三区视频在线观看免费| 亚洲国产精品合色在线| 欧美日韩瑟瑟在线播放| 天天一区二区日本电影三级| 波野结衣二区三区在线 | 中文字幕人成人乱码亚洲影| 床上黄色一级片| 免费搜索国产男女视频| 偷拍熟女少妇极品色| 一个人看的www免费观看视频| 老司机午夜福利在线观看视频| 99热6这里只有精品| 久久久国产成人精品二区| www.熟女人妻精品国产| 精品国内亚洲2022精品成人| 国产欧美日韩精品一区二区| 窝窝影院91人妻| 看黄色毛片网站| 9191精品国产免费久久| 国产乱人伦免费视频| 亚洲一区二区三区色噜噜| 色噜噜av男人的天堂激情| 久久久国产精品麻豆| 五月伊人婷婷丁香| 久久久国产成人精品二区| 亚洲国产中文字幕在线视频| 欧美最黄视频在线播放免费| 老司机深夜福利视频在线观看| 欧美日韩综合久久久久久 | 午夜亚洲福利在线播放| 日韩欧美精品免费久久 | 亚洲国产精品久久男人天堂| 成人一区二区视频在线观看| 日韩欧美在线二视频| 国产在视频线在精品| 最近最新中文字幕大全电影3| svipshipincom国产片| 观看免费一级毛片| 成人精品一区二区免费| 一区二区三区国产精品乱码| 成年版毛片免费区| 草草在线视频免费看| 色精品久久人妻99蜜桃| 午夜精品一区二区三区免费看| 精品国产超薄肉色丝袜足j| 国产私拍福利视频在线观看| 久9热在线精品视频| 国产探花在线观看一区二区| 欧美激情久久久久久爽电影| 久久久久久九九精品二区国产| 久久久久久九九精品二区国产| 日韩人妻高清精品专区| 久久欧美精品欧美久久欧美| 午夜福利18| 日韩欧美一区二区三区在线观看| 床上黄色一级片| 啪啪无遮挡十八禁网站| 一本一本综合久久| 国产真实乱freesex| aaaaa片日本免费| 特级一级黄色大片| 人妻丰满熟妇av一区二区三区| 国产精品亚洲美女久久久| 精品国产亚洲在线| 日本黄色视频三级网站网址| 国产中年淑女户外野战色| 老司机午夜十八禁免费视频| 亚洲欧美激情综合另类| 熟女少妇亚洲综合色aaa.| 久久国产精品人妻蜜桃| 国产伦精品一区二区三区四那| 欧美日韩黄片免| 88av欧美| 91在线精品国自产拍蜜月 | 97超视频在线观看视频| 18禁国产床啪视频网站| 床上黄色一级片| 欧美成人性av电影在线观看| 毛片女人毛片| 成年免费大片在线观看| 最近最新中文字幕大全电影3| 亚洲中文字幕日韩| 高清日韩中文字幕在线| 成人特级av手机在线观看| 久久6这里有精品| 色视频www国产| 国产免费男女视频| 99久久精品热视频| 国产淫片久久久久久久久 | 亚洲va日本ⅴa欧美va伊人久久| 18禁黄网站禁片免费观看直播| 亚洲黑人精品在线| av专区在线播放| 日韩欧美国产一区二区入口| 国产精品 国内视频| 欧美大码av| 国产免费一级a男人的天堂| 亚洲av日韩精品久久久久久密| 日本黄色片子视频| 婷婷精品国产亚洲av| 久久中文看片网| av女优亚洲男人天堂| 亚洲中文日韩欧美视频| 久久亚洲精品不卡| 国产欧美日韩一区二区精品| 99久久99久久久精品蜜桃| 美女大奶头视频| 亚洲精品影视一区二区三区av| 午夜久久久久精精品| 麻豆久久精品国产亚洲av| 成人特级av手机在线观看| 狂野欧美激情性xxxx| 在线a可以看的网站| 88av欧美| 91麻豆av在线| 1000部很黄的大片| 亚洲av熟女| 国产aⅴ精品一区二区三区波| 人妻夜夜爽99麻豆av| 亚洲性夜色夜夜综合| 欧美中文综合在线视频| 欧美+亚洲+日韩+国产| 男女之事视频高清在线观看| 国内精品久久久久精免费| 好男人电影高清在线观看| 精品免费久久久久久久清纯| www.熟女人妻精品国产| 人人妻人人澡欧美一区二区| 亚洲精品久久国产高清桃花| 韩国av一区二区三区四区| 久久精品国产自在天天线| 十八禁人妻一区二区| 欧美最黄视频在线播放免费| 搡女人真爽免费视频火全软件 | 国产探花极品一区二区| 深夜精品福利| 99久国产av精品| 中文亚洲av片在线观看爽| 亚洲内射少妇av| 成年女人毛片免费观看观看9| 亚洲专区国产一区二区| 偷拍熟女少妇极品色| 亚洲男人的天堂狠狠| 怎么达到女性高潮| 在线十欧美十亚洲十日本专区| 欧美一区二区精品小视频在线| 偷拍熟女少妇极品色| 在线播放国产精品三级| 日本与韩国留学比较| 精品久久久久久久末码| 亚洲成av人片在线播放无| 亚洲美女视频黄频| xxxwww97欧美| 成人特级黄色片久久久久久久| 午夜福利免费观看在线| 中文字幕人妻熟人妻熟丝袜美 | 成熟少妇高潮喷水视频| 日韩精品青青久久久久久| 观看美女的网站| 久久国产精品人妻蜜桃| 久久精品国产自在天天线| 久久久色成人| 免费无遮挡裸体视频| 国产av不卡久久| 亚洲一区高清亚洲精品| 久久香蕉精品热| 天天添夜夜摸| 精品久久久久久久久久免费视频| 五月伊人婷婷丁香| 亚洲国产色片| 国产精品1区2区在线观看.| 床上黄色一级片| 欧美极品一区二区三区四区| 91字幕亚洲| 久久6这里有精品| 免费人成在线观看视频色| 国产真实伦视频高清在线观看 | 岛国在线免费视频观看| 国产伦精品一区二区三区四那| 日韩 欧美 亚洲 中文字幕| 日韩亚洲欧美综合| h日本视频在线播放| 热99在线观看视频| 久久6这里有精品| 99国产精品一区二区蜜桃av| 国产高潮美女av| 18禁国产床啪视频网站| 深爱激情五月婷婷| 黄色日韩在线| 亚洲七黄色美女视频| 国产成人aa在线观看| 啦啦啦观看免费观看视频高清| 国产视频一区二区在线看| 搡女人真爽免费视频火全软件 | 天堂动漫精品| 午夜福利视频1000在线观看| 韩国av一区二区三区四区| 午夜免费观看网址| 色视频www国产| 动漫黄色视频在线观看| 99国产精品一区二区蜜桃av| 国产伦在线观看视频一区| 久久精品国产清高在天天线| 老司机福利观看| 亚洲成人久久性| 女人十人毛片免费观看3o分钟| 丁香六月欧美| 精品乱码久久久久久99久播| 亚洲久久久久久中文字幕| 大型黄色视频在线免费观看| 久久亚洲真实| 日韩国内少妇激情av| www.999成人在线观看| 久久精品国产99精品国产亚洲性色| 亚洲国产高清在线一区二区三| 一个人免费在线观看电影| 最近最新中文字幕大全电影3| 久久国产乱子伦精品免费另类| 青草久久国产| 网址你懂的国产日韩在线| or卡值多少钱| 亚洲天堂国产精品一区在线| 亚洲av二区三区四区| 一区福利在线观看| 男人和女人高潮做爰伦理| 人妻丰满熟妇av一区二区三区| 在线观看免费视频日本深夜| 国产欧美日韩一区二区三| 久久久国产成人免费| 日韩大尺度精品在线看网址| 国内少妇人妻偷人精品xxx网站| 色综合亚洲欧美另类图片| 国产亚洲精品久久久com| 日韩欧美国产在线观看| 九九在线视频观看精品| 草草在线视频免费看| 亚洲五月天丁香| 亚洲国产精品久久男人天堂| 色在线成人网| 麻豆国产av国片精品| 国产精品一区二区三区四区免费观看 | 欧美激情在线99| 国产激情偷乱视频一区二区| 国产蜜桃级精品一区二区三区| 成人鲁丝片一二三区免费| 麻豆久久精品国产亚洲av| 一夜夜www| 欧美丝袜亚洲另类 | 日本 欧美在线| 观看免费一级毛片| 国内精品美女久久久久久| 亚洲av成人av| 午夜激情欧美在线| 看免费av毛片| 美女高潮的动态| 国产乱人伦免费视频| 国产成人福利小说| 欧美色欧美亚洲另类二区| 亚洲av二区三区四区| 男女床上黄色一级片免费看| 黄色片一级片一级黄色片| 99精品在免费线老司机午夜| 无遮挡黄片免费观看| 99国产精品一区二区蜜桃av| 成人亚洲精品av一区二区| 夜夜看夜夜爽夜夜摸| 亚洲内射少妇av| 亚洲精品456在线播放app | 在线免费观看的www视频| 一本久久中文字幕| 国产欧美日韩精品一区二区| 人人妻人人澡欧美一区二区| 日韩av在线大香蕉| 国产aⅴ精品一区二区三区波| 大型黄色视频在线免费观看| 久9热在线精品视频| 女同久久另类99精品国产91| 嫩草影院入口| 好看av亚洲va欧美ⅴa在| 国产一区二区亚洲精品在线观看| 高潮久久久久久久久久久不卡| 一区福利在线观看| 亚洲国产中文字幕在线视频| 精品国产三级普通话版| 99热这里只有精品一区| 精华霜和精华液先用哪个| 一级黄片播放器| 熟妇人妻久久中文字幕3abv| 国产精品一及| 国产美女午夜福利| 女人被狂操c到高潮| 淫妇啪啪啪对白视频| 两个人的视频大全免费| 天天添夜夜摸| 欧美极品一区二区三区四区| 在线天堂最新版资源| 国产av不卡久久| www国产在线视频色| 999久久久精品免费观看国产| 最近最新免费中文字幕在线| 免费无遮挡裸体视频| 狠狠狠狠99中文字幕| 久久精品亚洲精品国产色婷小说| 深爱激情五月婷婷| 搞女人的毛片| 一个人免费在线观看电影| 亚洲国产日韩欧美精品在线观看 | 国产精品亚洲美女久久久| 精品久久久久久久毛片微露脸| 精品国内亚洲2022精品成人| 久久香蕉国产精品| a级一级毛片免费在线观看| 亚洲av免费在线观看| 中文在线观看免费www的网站| 草草在线视频免费看| 精品99又大又爽又粗少妇毛片 | 97超视频在线观看视频| 日韩欧美一区二区三区在线观看| 精品欧美国产一区二区三| 麻豆一二三区av精品| 日韩欧美精品v在线| 18禁在线播放成人免费| 欧美中文日本在线观看视频| 国产极品精品免费视频能看的| 免费人成视频x8x8入口观看| 国产精品1区2区在线观看.| 丝袜美腿在线中文| 国产精品1区2区在线观看.| 欧美在线一区亚洲| 成年版毛片免费区| 欧美成人一区二区免费高清观看| 一级黄色大片毛片| 国产精华一区二区三区| 日本黄大片高清| 午夜精品在线福利| 午夜福利高清视频| 国产真实乱freesex| 成人av一区二区三区在线看| 99精品久久久久人妻精品| 国产99白浆流出| 美女cb高潮喷水在线观看| 九九在线视频观看精品| 午夜福利视频1000在线观看| 亚洲精品在线美女| 成人性生交大片免费视频hd| 亚洲精品亚洲一区二区| 日本黄色片子视频| 3wmmmm亚洲av在线观看| 丰满人妻熟妇乱又伦精品不卡| 热99在线观看视频| 国产又黄又爽又无遮挡在线| 国产欧美日韩精品亚洲av| 99热精品在线国产| a级毛片a级免费在线| 久久久久久久久中文| 亚洲av电影在线进入| 欧美高清成人免费视频www| 国产精品爽爽va在线观看网站| 中文字幕高清在线视频| 极品教师在线免费播放| 757午夜福利合集在线观看| 欧美zozozo另类| 国产黄片美女视频| 十八禁人妻一区二区| 动漫黄色视频在线观看| 熟女人妻精品中文字幕| 精品人妻1区二区| 最新在线观看一区二区三区| 色噜噜av男人的天堂激情| 欧美中文综合在线视频| 国产精品一及| 欧美极品一区二区三区四区| 国产乱人视频| 亚洲美女黄片视频| 91av网一区二区| 亚洲七黄色美女视频| 亚洲欧美日韩高清在线视频| 97人妻精品一区二区三区麻豆| 欧美激情在线99| 国内久久婷婷六月综合欲色啪| 成年版毛片免费区| 在线免费观看的www视频| 午夜精品久久久久久毛片777| 757午夜福利合集在线观看| 国产欧美日韩精品亚洲av| 亚洲第一欧美日韩一区二区三区| 国产免费一级a男人的天堂| 欧美zozozo另类| 色综合婷婷激情| 99热只有精品国产| 老司机福利观看| 男人舔奶头视频| 夜夜夜夜夜久久久久| 97人妻精品一区二区三区麻豆| 欧美另类亚洲清纯唯美| 国产精品久久久久久精品电影| 亚洲天堂国产精品一区在线| 国产成人福利小说| 国产伦在线观看视频一区| 日日干狠狠操夜夜爽| 婷婷精品国产亚洲av| 男人的好看免费观看在线视频| 国产免费一级a男人的天堂| 一进一出抽搐动态| 美女大奶头视频| 国产久久久一区二区三区| 黄片小视频在线播放| 免费在线观看日本一区| 国产精品自产拍在线观看55亚洲| 色老头精品视频在线观看| 中国美女看黄片| 欧美三级亚洲精品| 中文字幕精品亚洲无线码一区| 午夜福利18| 亚洲男人的天堂狠狠| 国产精品,欧美在线| 天堂网av新在线| 丰满乱子伦码专区| 两性午夜刺激爽爽歪歪视频在线观看| 欧美xxxx黑人xx丫x性爽| 不卡一级毛片| 两人在一起打扑克的视频| 美女免费视频网站| 亚洲天堂国产精品一区在线| 亚洲内射少妇av| 一级毛片女人18水好多| 久久精品国产亚洲av香蕉五月| 欧美色视频一区免费| www.www免费av| 欧美不卡视频在线免费观看| 亚洲无线在线观看| 91久久精品电影网| 淫秽高清视频在线观看| 看免费av毛片| 亚洲精品色激情综合| 国内久久婷婷六月综合欲色啪| 五月伊人婷婷丁香| 三级毛片av免费| 不卡一级毛片| 久久性视频一级片| 亚洲电影在线观看av| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品999在线| 法律面前人人平等表现在哪些方面| 18禁国产床啪视频网站| 一级毛片高清免费大全| 少妇裸体淫交视频免费看高清| 精品福利观看| 1024手机看黄色片| 色在线成人网| 亚洲天堂国产精品一区在线| 久久久国产精品麻豆| 国内精品一区二区在线观看| 毛片女人毛片| 男女午夜视频在线观看| www.熟女人妻精品国产| 国产三级黄色录像| 99国产精品一区二区三区| 亚洲精品久久国产高清桃花| 91字幕亚洲| 精品日产1卡2卡| 美女高潮喷水抽搐中文字幕| 免费一级毛片在线播放高清视频| 日日干狠狠操夜夜爽| 全区人妻精品视频| 午夜激情福利司机影院| 久久精品夜夜夜夜夜久久蜜豆| 国产精品一区二区免费欧美| 国产一区二区三区在线臀色熟女| 亚洲精品一卡2卡三卡4卡5卡| 麻豆成人午夜福利视频| 午夜影院日韩av| 尤物成人国产欧美一区二区三区| 床上黄色一级片| 日本熟妇午夜| 男插女下体视频免费在线播放| 国产精品久久久久久亚洲av鲁大| 亚洲久久久久久中文字幕| АⅤ资源中文在线天堂| 天天一区二区日本电影三级| 一本一本综合久久| 国产成人系列免费观看| 国产成人a区在线观看| 亚洲无线在线观看| 国产精品1区2区在线观看.| 欧美日韩一级在线毛片| 国产真人三级小视频在线观看| 天堂影院成人在线观看| 嫩草影院精品99| av天堂中文字幕网| 国产麻豆成人av免费视频| 国产精品香港三级国产av潘金莲| 亚洲欧美日韩高清在线视频| 日本a在线网址| 国产一级毛片七仙女欲春2| 女人被狂操c到高潮| 精品乱码久久久久久99久播| 一本综合久久免费| 国产亚洲精品久久久com| 欧美日本亚洲视频在线播放| 久久国产精品人妻蜜桃| 亚洲精品粉嫩美女一区| 一区二区三区国产精品乱码| 欧美一区二区国产精品久久精品| 精品久久久久久久人妻蜜臀av| 中文亚洲av片在线观看爽| 免费高清视频大片| 日本一本二区三区精品| 美女黄网站色视频| 久久久精品大字幕| 9191精品国产免费久久| 成人特级av手机在线观看| 看片在线看免费视频| 国产在视频线在精品| 国产一区二区在线观看日韩 | 91麻豆精品激情在线观看国产| www国产在线视频色| 国产午夜精品久久久久久一区二区三区 | 久久精品综合一区二区三区| 色综合婷婷激情| 亚洲av一区综合| 婷婷亚洲欧美| 国产精品久久视频播放| 日本成人三级电影网站| 精品人妻偷拍中文字幕| 非洲黑人性xxxx精品又粗又长| 亚洲 国产 在线| 亚洲成a人片在线一区二区| 国产成人系列免费观看| 蜜桃久久精品国产亚洲av| 男女下面进入的视频免费午夜| 一本精品99久久精品77| 亚洲国产欧洲综合997久久,| 日日摸夜夜添夜夜添小说| 90打野战视频偷拍视频| 国产伦在线观看视频一区| 久久6这里有精品| 欧美日韩综合久久久久久 | 欧美+日韩+精品| 岛国在线免费视频观看| 国产精品1区2区在线观看.| 男人的好看免费观看在线视频| 免费在线观看影片大全网站| 亚洲人与动物交配视频| 亚洲自拍偷在线| 高潮久久久久久久久久久不卡| 亚洲欧美一区二区三区黑人| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久电影中文字幕| 亚洲av电影在线进入| 日本黄色视频三级网站网址| 精品午夜福利视频在线观看一区| 国产一区二区亚洲精品在线观看| 亚洲一区二区三区不卡视频| 91久久精品国产一区二区成人 | 国产69精品久久久久777片| 亚洲欧美日韩无卡精品| 色av中文字幕| 国产精品免费一区二区三区在线| 国产精品电影一区二区三区| 国产精品精品国产色婷婷| 国产精品98久久久久久宅男小说| a在线观看视频网站| 欧美最新免费一区二区三区 | 女人高潮潮喷娇喘18禁视频| 国产69精品久久久久777片| 中文字幕人成人乱码亚洲影| 一本精品99久久精品77| 琪琪午夜伦伦电影理论片6080| 无限看片的www在线观看| 男女视频在线观看网站免费| 精品国产亚洲在线| 在线观看日韩欧美| 久久国产乱子伦精品免费另类| svipshipincom国产片| 一二三四社区在线视频社区8| 国产午夜精品论理片| 女人十人毛片免费观看3o分钟| 在线观看66精品国产| 成人性生交大片免费视频hd| 亚洲中文日韩欧美视频| eeuss影院久久| 亚洲在线自拍视频| 亚洲国产欧洲综合997久久,| 久久精品国产综合久久久| 乱人视频在线观看| 国产乱人伦免费视频| 精品欧美国产一区二区三|