• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the k-Abelian Complexity of the Cantor-like Sequence

    2023-02-19 12:12:28LVXiaotao呂小濤
    應(yīng)用數(shù)學(xué) 2023年4期

    LV Xiaotao(呂小濤)

    (College of Science, Huazhong Agricultural University, Wuhan 430070, China)

    Abstract: In this paper,we study the k-abelian complexity(n) of the Cantor-like sequence c,which is defined as the fixed point of the morphism σ : 110l1,00l+2 beginning with 1 for every integer l ≥2.We show that for every integer k with 1 ≤k ≤l,two factors u and v of the Cantor-like sequence which share the same prefix and suffix of length k are (k+1)-abelian equivalent if and only if they are k-abelian equivalent.Moreover,we show that the abelian complexity function and 2-abelian complexity function of the Cantor-like sequence are both (l+2)-regular.

    Key words: Cantor-like sequence; k-abelian equivalence; k-abelian complexity; b-regular sequence

    1.Introduction

    The notion ofk-abelian equivalence,originally introduced in [8],has attracted a lot of interest recently[5,10-12,16].It is an equivalence relation which is a natural extension of the usual abelian equivalence and allows an infinite approximation of the equality of words.Thek-abelian equivalence relation has been widely studied in the following directions: analyzing the fluctuation of thek-abelian complexity of infinite words[4-5],estimating the number ofk-abelian equivalence classes,that is,k-abelian complexity[9,11],avoidingk-abelian powers[16]and so on.We continue the research of estimating the number ofk-abelian equivalence classes.Our starting point is reducing (k+1)-abelian equivalence tok-abelian equivalence.

    Before giving the definition of thek-abelian complexity,we need some basic notation.Given a finite non-empty setAcalled alphabet,we denote byA?,ANandAnthe set of finite words,the set of infinite words and the set of words of lengthnover the alphabetArespectively.Given a finite worduu1u2···unAnwithn ≥1,we denote the length ofuby|u|.The empty word will be denoted byεand we set|ε|0.For two wordsu,,the wordvis said to be a factor ofu,written byv ?u,if there existx,such thatuxvy.Moreover,the factorvis called a prefix (resp.suffix) ofuifx(resp.y) is the empty wordε.For a worduu0u1···un-1,the prefix and suffix of lengthl(1≤l ≤n) are defined as

    while forl ≤0,we define prefl(u)εand suffl(u)ε.The number of occurrences of a wordvinuis denoted by|u|v.Now we give the definitions of thek-abelian equivalence and thek-abelian complexity.

    Definition 1.1Letkbe a positive integer.Two wordsu,are said to bek-abelian equivalent,writtenu ~k v,if the following conditions hold:

    1)|u|w|v|wfor every,

    2) prefmin{k-1,|u|}(u)prefmin{k-1,|v|}(v) and suffmin{k-1,|u|}(u)suffmin{k-1,|v|}(v).

    It is easy to check thatk-abelian equivalence is indeed an equivalence relation.

    whereFω(n) is the set of all factors of lengthnoccurring inω.The 1-abelian complexity of an infinite word is also known as its abelian complexity.

    The abelian complexity functions of some notable sequences,such as the Thue-Morse sequence and the Rudin-Shapiro sequence,are studied in [17] and [14],respectively.There are also many other works devoted to this subject(see [3]).

    This paper is devoted to the study ofk-abelian complexity of the Cantor-like sequence

    which satisfiesc01 and for everyn ≥0,1≤i ≤l

    wherel ≥2 is an integer.The Cantor-like sequence c is also the fixed point of the morphismσ:110l1,00l+2beginning with 1,i.e.,cσ∞(1).

    Our first result states that for every integerkwith 1≤k ≤l,the (k+1)-abelian equivalence of any two factors of the Cantor-like sequence c can be reduced to thek-abelian equivalence of such factors under certain conditions.In detail,we prove the following theorem.

    Theorem 1.1Letkbe a positive integer with 1≤k ≤land letu,vbe two factors of c satisfying|u||v|.If prefk(u)prefk(v) and suffk(u)suffk(v),thenu ~k+1vif and only ifu ~k v.

    To state our next result,we shall recall the definitions ofb-automatic andb-regular sequences.For more details,see [1] and the references therein.

    Definition 1.3Letb ≥2 be an integer.Theb-kernel of an infinite sequence w(w(n))n≥0is the set of subsequences

    The sequence w is called ab-automatic sequence if Kb(w) is finite.The sequence w is said to beb-regular if the Z-module generated by itsb-kernel is finitely generated.

    By using Theorem 1.1,we are able to study thek-abelian complexity of c for every 2≤k ≤l+1.Here we are just concerned with the 2-abelian complexity of c,the method used in computingk-abelian complexity (3≤k ≤l+1) is similar.Actually we obtain the following result.

    Theorem 1.2The 2-abelian complexity function of the Cantor-like sequence is (l+2)-regular.

    Karhum?ki,Saarela,and Zamboni[11]investigated thek-abelian complexity of Sturmian words and gave an characterization of ultimately periodic sequences by means ofk-abelian complexity.They also studied thek-abelian complexity of the Thue-Morse sequence,which is a 2-automatic sequence.Greinecker[7]and Parreau et al.[15]proved independently that the 2-abelian complexity of the Thue-Morse sequence is 2-regular.Our result(Theorem 1.2)gives another example whose 2-abelian complexity function is (l+2)-regular.

    This paper is organized as follows.In Section 2,we study the structure of left and right special factors of the Cantor-like sequence and prove Theorem 1.1.In Section 3,we give the recurrence relations for the abelian complexity function of the sequence c.As a consequence,the abelian complexity function of the Cantor-like sequence is (l+2)-regular.In section 4,we prove Theorem 1.2.

    2.The k-Abelian Equivalence of Two Factors of the Sequence c

    In this section,we reduce(k+1)-abelian equivalence of factors of the Cantor-like sequence c tok-abelian equivalence of them under certain conditions.Before stating the result,we give some auxiliary lemmas.The first one states that the factor setFc(n) is closed under the reversal operator.The second one characterizes the structure of the left and right special factors of c.Recall that a factorvofωis said to be right special (resp.left special) if there exist at least two distinct lettersa,such that bothvaandvb(resp.avandbv) are factorsω.Given an infinite sequenceN,letRSω(n) (resp.LSω(n)) denote the set of all right special (resp.left special) factors ofωof lengthn.The set of all right special factors and left special factors ofωare denoted byRSωandLSωrespectively.

    For everyuu0u1···un-1c(n),there exists an integeri ≥1 such thatu ?σi(1).Therefore,

    Lemma 2.2For every 1≤n ≤l,

    ProofThe result follows from Theorem 1 in [13] and Lemma 2.1 directly.

    Forz,,we define

    Lemma 2.3[6]Let0,1}∞andu,with|u|≥|z|≥2.Supposezaybwherea,0,1}.We have

    Now,we prove Theorem 1.1.

    Proof of Theorem 1.1When|u|≤2k ?1,by the assumptions,we haveuv.In this case,the result is trivial.In the following,we always assume that|u|≥2k.The ‘only if’part follows directly from the definition ofk-abelian equivalence.

    For the ‘if’ part,we only need to show thatu ~k vimplies that for everyc(k+1),|u|z|v|z.For this purpose,we separateFc(k+1) into two disjoint parts,i.e.,Fc(k+1)E1∪E2where

    Suppose1.If suffk(z)/c(k),then by Lemma 2.3,

    If prefk(z)/c(k),then by Lemma 2.3,

    So,for every1,|u|z|v|z.

    Now,we prove the case2.By Lemma 2.2,LSc(n)∩RSc(n){0n}for every integer[1,l+1].Since 1≤k ≤l,E2{0k+1}.By Lemma 2.3 and the assumptions of this result,

    So,for every factor1∪E2,|u|z|v|zwhenu ~k v.

    We may now apply Theorem 1.1ktimes to reduce thek-abelian equivalence to the 1-abelian equivalence under the theorem’s condition.

    Corollary 2.1Let 1≤k ≤landu,vbe two factors of the sequence c with|u||v|.If prefk(u)prefk(v) and suffk(u)suffk(v),thenu ~k+1vif and only ifu ~1v.

    3.The Abelian Complexity of the Sequence c

    In this section,we shall investigate the abelian complexity of the Cantor-like sequence c.

    Letωω0ω1ω2··· be an infinite sequence over{0,1}.It has been proved in Proposition 2.2 of [2] that the abelian complexity ofωis related to its digit sums in the following way:for everyn ≥1,

    For the digit sums of the Cantor-like sequence c,we have the following lemma.

    We first deal with the casem(l+2)j+qfor some 1≤q ≤l+1.By the equation(3.3b) and the inductive assumption,for everyi ≥0,1≤q ≤l+1,

    ProofThe result follows from Lemma 3.1,Corollary 3.1 and the equality (3.1).

    4.The 2-Abelian Complexity of the Sequence c

    In this section,we shall prove the regularity of the 2-abelian complexity of c.We start by giving the following decomposition of the 2-abelian complexity of c.

    For everyx,0,1}and everyn ≥1,let

    Now,we shall show the regularity of{p2(n,x,y)}n≥1for allx,0,1}.

    Lemma 4.1p2(1,0,0)1 and for everyn ≥2,

    Moreover,the sequence{p2(n,0,0)}n≥1is (l+2)-regular.

    ProofThe initial values can be verified by enumerating all factors of length at mostl+1.Now,letn>l+1 and supposen ≤(l+2)ifor somei ≥1.

    By the definition of the functionMc(n),it is obvious that|ω|1≤Mc(n ?2) for every,0,0.So,p2(n,0,0)≤Mc(n ?2)+1.In the following we prove the reverse inequality.

    For every 0≤j ≤n ?1,letWj0n-jprefj(σi(1)) which is a factor ofσi(01) and hence,a factor of c.Note that|W0|10 and it follows from Lemma 3.1 that|Wj|1Mc(j)forj1,···,n ?2.If the last letter ofWjis 0,thenWjWn,0,0.Otherwise,|Wj+1|1|Wj|1ssince ‘11’ is not a factor of c.Therefore,Wj+1,0,0.This implies thatp2(n,0,0)≥Mc(n?2)+1 which proves(4.3).The regularity of the sequence{p2(n,0,0)}n≥1then follows from (4.3) and Corollary 3.1.

    Lemma 4.2p2(1,0,1)p2(1,1,0)0 and for everyn ≥2,

    Moreover,the sequences{p2(n,0,1)}n≥1and{p2(n,1,0)}n≥1are both (l+2)-regular.

    ProofBy Lemma 2.1,for every factorwof c,its reversalis also a factor of c.Therefore,p2(n,1,0)p2(n,0,1).

    Clearly,for every,0,1,1≤|ω|1≤Mc(n ?1).So,p2(n,0,1)≤Mc(n ?1).Next,we prove the reverse inequality.

    Letibe a positive integer such thatn ≤(l+2)i.For every 1≤j ≤n ?1,letWj0n-jprefj(σi(1)) which is a factor ofσi(01) and therefore,a factor of c.By Lemma 3.1,|Wj|1Mc(j) forj1,···,n ?2.If the last letter ofWjis 1,thenWjWn,0,1.Otherwise,suppose thatWjends with 10mwheremis an integer with 1≤m ≤j ?1.ThenWj-mWn,0,1and|Wj-m|1|Wj|1s.This implies thatp2(n,0,1)≥Mc(n ?1).The result then follows from (4.4) and Corollary 3.1.

    To deal with the set of factorsWn,1,1and the sequence{p2(n,1,1)}n≥1,we introduce the following two sets.

    Let{g(i)}i≥0be a monotone increasing sequence of integers whose values equal to the length of the factors of c beginning and ending with 1.Let{G(i)}i≥0be the sets of the corresponding factors of lengthg(i) which begin and end with 1.For examples,g(0)1,g(1)l+2,g(2)l(l+2)+2,g(3)(l+1)(l+2)+1 andG(0){1},G(1){10l1},G(2){10l(l+2)1},G(3){10l(l+2)10l1,10l10l(l+2)1}.Then,we have the following result.

    Lemma 4.3G(0){1},and for every non-negative integeri,

    whereσ(G(i)):{σ(v):(i)}andwv-1u,u-1wvifwuv.

    ProofThis will be done by induction oni.It is easy to check thatG(0){1},G(1){10l1},G2{10l(l+2)1},which implies (4.5) holds wheni0.Suppose (4.5) holds fori<3j(j ≥1).Next we shall prove the results for 3j ≤i<3(j+1).The proof in this step will be separated into the following three cases.

    Case 1i3jfor some 1≤j ≤i ?1.By induction,

    Sinceσ(1)10l1 and every element inG(j)begins and ends with 1,for every(i),there exists(j) such thatU(10l)-1σ(u) orUσ(u)(0l1)-1.Otherwise,suppose there is anotherU′(i) which is not in the forms of (10l)-1σ(u) orσ(u)(0l1)-1.Consider the pre-image ofU′,i.e.,the shortestu′satisfyingU′?σ(u′).By the definition of the morphismσ,the factoru′is unique.Then,u′/(j ?1)∪G(j) andg(j ?1)<|u′|

    Case 2i3j+1 for some 1≤j ≤i ?1.By induction,

    With a similar argument in the Case 1,we obtain that:

    Case 3i3j+2,for some 1≤j ≤i ?1.By induction,G(i ?1)σ(G(j)).For every(j),(j+1),|u|g(j)

    Corollary 4.1g(0)1,and for everyn ≥0,

    Corollary 4.2For everyi ≥0 andu,(i),|u|1|v|1.

    By Corollary 4.2 and (4.1),for everyn ≥1,we have

    The following lemma proves the regularity of the sequence{p2(n,1,1)}n≥1.

    Lemma 4.4p2(1,1,1)1,p2(i,1,1)0 fori2,···,l+1 and for everyn ≥1,0≤j ≤l+1,

    Moreover,the sequence{p2(n,1,1)}n≥1is (l+2)-automatic.

    ProofThe initial values can be proved by enumerating all the factors of length at mostl+1.By the recursive formula given in Corollary 4.1,for everyi ≥0,g(i) mod (l+2)0,1,2}.Therefore,for everyn ≥1 and 3≤j ≤l+1,W(l+2)n+j,1,1?,which impliesp2((l+2)n+j,1,1)0.The equality (4.6d) is proved.

    Now,we verify the equality(4.6a).Clearly,ifng(i)for somei ≥0,thenp2(n,1,1)1 and by Corollary 4.1,(l+2)n(l+2)g(i)g(3i+1).Hence,p2((l+2)n,1,1)1p2(n,1,1).In turn,ifp2((l+2)n,1,1)1,then (l+2)ng(j) for somej ≥1.Using Corollary 4.1 again,ng(j)/(l+2)g((j ?1)/3).Therefore,p2(n,1,1)1p2((l+2)n,1,1).

    The remaining two equalities can be proved in the same way.

    Proof of Theorem 1.2By the equalities (4.2),(4.3) and (4.4),for everyn ≥2,

    The result follows from Lemma 4.1,Lemma 4.2 and Lemma 4.4.

    婷婷精品国产亚洲av在线| 毛片女人毛片| 亚洲欧美激情综合另类| 天堂av国产一区二区熟女人妻| 99视频精品全部免费 在线| 精品久久久久久久久亚洲 | 国模一区二区三区四区视频| 中出人妻视频一区二区| 欧美+日韩+精品| 午夜福利在线在线| av在线天堂中文字幕| 欧美色视频一区免费| 国产成人啪精品午夜网站| 亚洲成av人片在线播放无| 91久久精品电影网| 国产一区二区亚洲精品在线观看| 非洲黑人性xxxx精品又粗又长| 成人美女网站在线观看视频| 全区人妻精品视频| 五月玫瑰六月丁香| 麻豆国产av国片精品| 国产色爽女视频免费观看| 变态另类成人亚洲欧美熟女| www.色视频.com| 亚洲黑人精品在线| 亚洲人成网站在线播| 一个人看视频在线观看www免费| 免费看a级黄色片| a级毛片免费高清观看在线播放| 欧美色视频一区免费| 夜夜躁狠狠躁天天躁| 亚洲成人免费电影在线观看| 高清日韩中文字幕在线| 亚洲av免费高清在线观看| 最近最新中文字幕大全电影3| 波野结衣二区三区在线| 欧美黄色片欧美黄色片| 99精品久久久久人妻精品| 久久久久精品国产欧美久久久| 网址你懂的国产日韩在线| 少妇丰满av| 日日干狠狠操夜夜爽| 一级av片app| 亚洲,欧美,日韩| 国产野战对白在线观看| 99国产精品一区二区蜜桃av| 又爽又黄a免费视频| 波野结衣二区三区在线| 天堂动漫精品| 别揉我奶头~嗯~啊~动态视频| 亚洲av成人精品一区久久| 此物有八面人人有两片| 亚洲性夜色夜夜综合| 午夜激情欧美在线| 国产午夜精品论理片| 最好的美女福利视频网| 欧美性猛交╳xxx乱大交人| 很黄的视频免费| 在线播放无遮挡| 国产乱人视频| 日韩欧美免费精品| 男人狂女人下面高潮的视频| 国产精品1区2区在线观看.| 搡女人真爽免费视频火全软件 | 欧美bdsm另类| 国产精品女同一区二区软件 | 久久久久免费精品人妻一区二区| 欧美bdsm另类| 久久九九热精品免费| 蜜桃久久精品国产亚洲av| 久久国产精品人妻蜜桃| 午夜福利高清视频| 久久婷婷人人爽人人干人人爱| 免费大片18禁| 欧美国产日韩亚洲一区| 人妻夜夜爽99麻豆av| 亚洲内射少妇av| 成人性生交大片免费视频hd| 国产伦在线观看视频一区| 神马国产精品三级电影在线观看| av视频在线观看入口| 又爽又黄无遮挡网站| 欧美最黄视频在线播放免费| 99riav亚洲国产免费| 高清毛片免费观看视频网站| 亚洲精品456在线播放app | 成年女人毛片免费观看观看9| 欧美一级a爱片免费观看看| 国产亚洲精品av在线| 欧美日韩综合久久久久久 | 在线a可以看的网站| 嫩草影视91久久| 九九久久精品国产亚洲av麻豆| 成年女人永久免费观看视频| 亚洲aⅴ乱码一区二区在线播放| 国产人妻一区二区三区在| 精品99又大又爽又粗少妇毛片 | 韩国av一区二区三区四区| 亚洲三级黄色毛片| 中文资源天堂在线| 男女下面进入的视频免费午夜| 欧美黑人巨大hd| 精品久久久久久久久久久久久| 在线天堂最新版资源| 五月玫瑰六月丁香| 日韩 亚洲 欧美在线| 国产精品不卡视频一区二区 | 级片在线观看| 不卡一级毛片| 精品久久久久久久久av| 国产精品久久久久久久久免 | 一个人免费在线观看电影| 国产v大片淫在线免费观看| 99久久九九国产精品国产免费| 日韩欧美一区二区三区在线观看| 成人性生交大片免费视频hd| 成人高潮视频无遮挡免费网站| 男女下面进入的视频免费午夜| www.www免费av| 久久久精品大字幕| 亚洲美女黄片视频| 免费人成视频x8x8入口观看| 尤物成人国产欧美一区二区三区| 久久欧美精品欧美久久欧美| 夜夜爽天天搞| 国产色婷婷99| 免费看a级黄色片| 久久6这里有精品| 国产在视频线在精品| 我的老师免费观看完整版| 欧美日韩中文字幕国产精品一区二区三区| 国产69精品久久久久777片| 亚洲欧美日韩东京热| 亚洲美女视频黄频| 欧美日韩福利视频一区二区| 国内精品一区二区在线观看| 日韩欧美三级三区| 国产麻豆成人av免费视频| 中文资源天堂在线| 国产精品免费一区二区三区在线| 午夜激情福利司机影院| 又紧又爽又黄一区二区| 九九热线精品视视频播放| 久久精品国产99精品国产亚洲性色| 成年版毛片免费区| 丰满乱子伦码专区| 国内久久婷婷六月综合欲色啪| 精品一区二区三区视频在线观看免费| 精品久久国产蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 我的老师免费观看完整版| 听说在线观看完整版免费高清| 特大巨黑吊av在线直播| 1000部很黄的大片| 免费搜索国产男女视频| 国产在线男女| 他把我摸到了高潮在线观看| 一进一出抽搐动态| 免费av不卡在线播放| 天堂√8在线中文| 色视频www国产| 亚洲色图av天堂| 99热只有精品国产| 91麻豆av在线| 91午夜精品亚洲一区二区三区 | 亚洲av电影不卡..在线观看| 国产精品综合久久久久久久免费| 国产精品久久久久久人妻精品电影| 最近最新中文字幕大全电影3| 国产乱人视频| 18禁裸乳无遮挡免费网站照片| a级一级毛片免费在线观看| 精品久久久久久,| 亚洲五月天丁香| 午夜精品一区二区三区免费看| 自拍偷自拍亚洲精品老妇| 国产精品久久视频播放| 在线观看舔阴道视频| 国产精品av视频在线免费观看| 午夜精品在线福利| 黄色一级大片看看| 噜噜噜噜噜久久久久久91| 欧美黄色淫秽网站| 亚洲第一区二区三区不卡| 我要看日韩黄色一级片| 真实男女啪啪啪动态图| 亚洲精品成人久久久久久| 美女cb高潮喷水在线观看| 亚洲午夜理论影院| 美女高潮喷水抽搐中文字幕| 成人鲁丝片一二三区免费| 变态另类成人亚洲欧美熟女| 欧美日韩乱码在线| 99久久精品一区二区三区| 少妇被粗大猛烈的视频| 老司机午夜十八禁免费视频| 欧美三级亚洲精品| 久久6这里有精品| 看免费av毛片| 99久久精品热视频| 又爽又黄无遮挡网站| 午夜两性在线视频| 嫩草影院精品99| 日韩欧美在线二视频| 一区二区三区高清视频在线| 中亚洲国语对白在线视频| 成人欧美大片| 丰满人妻一区二区三区视频av| 性色avwww在线观看| 亚洲精品乱码久久久v下载方式| 国产极品精品免费视频能看的| 久久精品国产亚洲av香蕉五月| 免费观看的影片在线观看| 国产伦一二天堂av在线观看| 国产一区二区亚洲精品在线观看| 国产色爽女视频免费观看| 国产野战对白在线观看| 欧美成狂野欧美在线观看| 久久精品国产亚洲av涩爱 | 亚洲无线观看免费| 色哟哟·www| 国产成人欧美在线观看| 欧美激情久久久久久爽电影| 亚洲国产精品999在线| 久久久久久大精品| 亚洲成人久久爱视频| 国产久久久一区二区三区| 日韩国内少妇激情av| 好男人电影高清在线观看| 天堂√8在线中文| 国产欧美日韩一区二区精品| 午夜久久久久精精品| 波野结衣二区三区在线| 一级a爱片免费观看的视频| 久久久精品欧美日韩精品| 一级作爱视频免费观看| 乱码一卡2卡4卡精品| 熟女电影av网| 国产精品一及| 亚洲精品久久国产高清桃花| 久久国产精品人妻蜜桃| 一级a爱片免费观看的视频| av女优亚洲男人天堂| 亚洲经典国产精华液单 | 伊人久久精品亚洲午夜| 亚洲狠狠婷婷综合久久图片| 99精品在免费线老司机午夜| 久久久久久久久久黄片| 欧美高清性xxxxhd video| 亚洲av成人不卡在线观看播放网| 久久久色成人| 国产视频一区二区在线看| 国内毛片毛片毛片毛片毛片| 午夜免费男女啪啪视频观看 | 国产高清激情床上av| 很黄的视频免费| 国产极品精品免费视频能看的| 成人午夜高清在线视频| 一本综合久久免费| 丰满乱子伦码专区| 窝窝影院91人妻| 亚洲综合色惰| 国产成人欧美在线观看| 国产乱人视频| 简卡轻食公司| 欧美日韩黄片免| 啪啪无遮挡十八禁网站| 日本熟妇午夜| 天美传媒精品一区二区| 中文资源天堂在线| 欧美日韩中文字幕国产精品一区二区三区| 国产综合懂色| 男女做爰动态图高潮gif福利片| 午夜激情福利司机影院| 精品人妻偷拍中文字幕| av女优亚洲男人天堂| 又紧又爽又黄一区二区| 最近最新免费中文字幕在线| 黄色配什么色好看| 最近中文字幕高清免费大全6 | 激情在线观看视频在线高清| 制服丝袜大香蕉在线| 国产精品电影一区二区三区| www.999成人在线观看| 精品99又大又爽又粗少妇毛片 | 观看美女的网站| 天堂av国产一区二区熟女人妻| 久久中文看片网| 亚洲av不卡在线观看| 亚洲真实伦在线观看| 国产淫片久久久久久久久 | 亚洲七黄色美女视频| 中文字幕av在线有码专区| 国产免费av片在线观看野外av| 又爽又黄无遮挡网站| 91字幕亚洲| 亚洲成av人片免费观看| 成人特级黄色片久久久久久久| 69av精品久久久久久| 一本综合久久免费| 亚洲无线在线观看| 国产欧美日韩精品一区二区| АⅤ资源中文在线天堂| 老女人水多毛片| 国产主播在线观看一区二区| 精品99又大又爽又粗少妇毛片 | 岛国在线免费视频观看| 人妻制服诱惑在线中文字幕| 午夜亚洲福利在线播放| 欧美激情国产日韩精品一区| 俄罗斯特黄特色一大片| 好看av亚洲va欧美ⅴa在| 欧美日韩中文字幕国产精品一区二区三区| 久久精品久久久久久噜噜老黄 | 99国产精品一区二区三区| 久久久久久大精品| 午夜日韩欧美国产| 色综合站精品国产| 怎么达到女性高潮| 久久久久久久久大av| 校园春色视频在线观看| 无遮挡黄片免费观看| 99热6这里只有精品| ponron亚洲| 亚洲成av人片免费观看| 精品一区二区三区人妻视频| 99riav亚洲国产免费| av福利片在线观看| 午夜老司机福利剧场| 欧美不卡视频在线免费观看| 久久6这里有精品| 老司机深夜福利视频在线观看| 淫秽高清视频在线观看| 在线观看舔阴道视频| a级毛片a级免费在线| 成人欧美大片| a级毛片免费高清观看在线播放| 亚洲电影在线观看av| 色播亚洲综合网| 免费看光身美女| 国内毛片毛片毛片毛片毛片| 熟妇人妻久久中文字幕3abv| 欧美成人性av电影在线观看| 免费无遮挡裸体视频| 69人妻影院| 欧美乱色亚洲激情| 日韩欧美免费精品| 亚洲欧美日韩东京热| 观看美女的网站| 欧美日韩国产亚洲二区| 极品教师在线免费播放| 久久精品国产亚洲av涩爱 | 国产亚洲精品久久久久久毛片| 啪啪无遮挡十八禁网站| 在线观看66精品国产| 亚洲精华国产精华精| 国产精品98久久久久久宅男小说| 久久久久国内视频| 亚洲第一区二区三区不卡| 男女视频在线观看网站免费| 国产精品98久久久久久宅男小说| 午夜老司机福利剧场| av天堂中文字幕网| 俺也久久电影网| 女同久久另类99精品国产91| 国产亚洲av嫩草精品影院| 亚洲人成网站在线播放欧美日韩| 午夜福利视频1000在线观看| 三级国产精品欧美在线观看| 久9热在线精品视频| av在线蜜桃| 亚洲国产色片| 欧美激情久久久久久爽电影| 我要看日韩黄色一级片| 久久久久久大精品| 好男人在线观看高清免费视频| 欧美+日韩+精品| 久久精品国产亚洲av香蕉五月| 亚洲国产色片| 久久精品国产亚洲av涩爱 | 国产精品爽爽va在线观看网站| 欧美国产日韩亚洲一区| 久久欧美精品欧美久久欧美| a在线观看视频网站| 特级一级黄色大片| 天堂√8在线中文| 亚洲精品乱码久久久v下载方式| 亚洲av成人不卡在线观看播放网| 日韩欧美精品免费久久 | 成人特级av手机在线观看| 国产av一区在线观看免费| 亚洲精品一区av在线观看| 亚洲五月天丁香| 91在线观看av| 国产成年人精品一区二区| 国产精品伦人一区二区| 久久精品夜夜夜夜夜久久蜜豆| 直男gayav资源| 色吧在线观看| 高潮久久久久久久久久久不卡| 97超视频在线观看视频| 成人亚洲精品av一区二区| 成人国产一区最新在线观看| 听说在线观看完整版免费高清| 欧洲精品卡2卡3卡4卡5卡区| 999久久久精品免费观看国产| 久久久久久大精品| 99久国产av精品| 精品一区二区三区人妻视频| 国产黄色小视频在线观看| 免费观看精品视频网站| 一区福利在线观看| 两人在一起打扑克的视频| 国产午夜福利久久久久久| 一区二区三区四区激情视频 | 久久热精品热| 性色avwww在线观看| 老熟妇乱子伦视频在线观看| av在线天堂中文字幕| 精品国内亚洲2022精品成人| 一区福利在线观看| 性欧美人与动物交配| 日韩人妻高清精品专区| 国产成人影院久久av| 99久久九九国产精品国产免费| 18禁在线播放成人免费| 黄色配什么色好看| 一本久久中文字幕| 91字幕亚洲| 成人鲁丝片一二三区免费| 久久精品久久久久久噜噜老黄 | 日本黄大片高清| 欧美日韩福利视频一区二区| 村上凉子中文字幕在线| 精品99又大又爽又粗少妇毛片 | 成年人黄色毛片网站| 日韩免费av在线播放| 精品无人区乱码1区二区| 国产真实伦视频高清在线观看 | 黄色日韩在线| 99在线视频只有这里精品首页| 久久精品人妻少妇| 老司机午夜福利在线观看视频| avwww免费| 真实男女啪啪啪动态图| 亚洲三级黄色毛片| 中文字幕熟女人妻在线| 又黄又爽又免费观看的视频| 午夜免费激情av| 12—13女人毛片做爰片一| 老司机午夜十八禁免费视频| 久久精品久久久久久噜噜老黄 | 1000部很黄的大片| 最新在线观看一区二区三区| 久久99热这里只有精品18| 怎么达到女性高潮| 深爱激情五月婷婷| 一个人看的www免费观看视频| 美女cb高潮喷水在线观看| 在线观看av片永久免费下载| 性欧美人与动物交配| 国产精品av视频在线免费观看| 精品久久久久久久久久免费视频| 中文字幕熟女人妻在线| 网址你懂的国产日韩在线| 欧美成狂野欧美在线观看| 神马国产精品三级电影在线观看| 99热这里只有精品一区| 男女床上黄色一级片免费看| 在线播放无遮挡| 亚洲黑人精品在线| 国产免费一级a男人的天堂| 日本撒尿小便嘘嘘汇集6| 18禁黄网站禁片免费观看直播| 级片在线观看| 90打野战视频偷拍视频| 激情在线观看视频在线高清| 好男人在线观看高清免费视频| 亚洲精品在线观看二区| 别揉我奶头 嗯啊视频| 精品午夜福利在线看| 韩国av一区二区三区四区| 一个人观看的视频www高清免费观看| 午夜福利在线观看免费完整高清在 | 国产午夜精品论理片| 性插视频无遮挡在线免费观看| 午夜福利在线观看免费完整高清在 | 动漫黄色视频在线观看| 97超级碰碰碰精品色视频在线观看| eeuss影院久久| 最近最新中文字幕大全电影3| 九九热线精品视视频播放| 国产精品国产高清国产av| 成人无遮挡网站| 国产一区二区三区视频了| 1024手机看黄色片| 国内精品美女久久久久久| 18美女黄网站色大片免费观看| 国产精品99久久久久久久久| 嫩草影院精品99| 日日摸夜夜添夜夜添av毛片 | www日本黄色视频网| 亚洲第一欧美日韩一区二区三区| 无遮挡黄片免费观看| 男人狂女人下面高潮的视频| 亚洲成人精品中文字幕电影| 99热这里只有是精品在线观看 | 97热精品久久久久久| 不卡一级毛片| 老司机午夜福利在线观看视频| 99热只有精品国产| 国产伦一二天堂av在线观看| 男人的好看免费观看在线视频| 99国产极品粉嫩在线观看| 直男gayav资源| 亚洲av日韩精品久久久久久密| 伦理电影大哥的女人| 精品欧美国产一区二区三| 自拍偷自拍亚洲精品老妇| 精品久久久久久久久久久久久| 亚洲无线在线观看| av福利片在线观看| 一级黄片播放器| 久久久成人免费电影| 亚洲中文日韩欧美视频| 成人午夜高清在线视频| 成人毛片a级毛片在线播放| 成熟少妇高潮喷水视频| 天堂√8在线中文| 国内精品一区二区在线观看| 别揉我奶头~嗯~啊~动态视频| 婷婷色综合大香蕉| 中文字幕久久专区| 日本a在线网址| 欧美日韩黄片免| 蜜桃亚洲精品一区二区三区| 长腿黑丝高跟| 激情在线观看视频在线高清| 亚洲成人久久爱视频| 国产主播在线观看一区二区| 小蜜桃在线观看免费完整版高清| 久久午夜福利片| 久久欧美精品欧美久久欧美| 亚洲天堂国产精品一区在线| 欧美一区二区亚洲| 亚洲 欧美 日韩 在线 免费| 国产精品伦人一区二区| 长腿黑丝高跟| 亚洲av五月六月丁香网| 可以在线观看的亚洲视频| 久久这里只有精品中国| 国产在线男女| 欧美成人一区二区免费高清观看| 国产精品久久久久久亚洲av鲁大| 乱码一卡2卡4卡精品| 免费看美女性在线毛片视频| 亚洲 欧美 日韩 在线 免费| 蜜桃亚洲精品一区二区三区| 国产黄a三级三级三级人| 亚洲色图av天堂| 一级黄片播放器| 国产精品免费一区二区三区在线| 欧美绝顶高潮抽搐喷水| 久久久国产成人免费| 亚洲片人在线观看| 中文字幕av在线有码专区| 日韩欧美精品免费久久 | 精品人妻一区二区三区麻豆 | 一级a爱片免费观看的视频| 免费在线观看日本一区| 男女视频在线观看网站免费| 午夜免费成人在线视频| 99热这里只有是精品50| 欧美激情在线99| 好男人电影高清在线观看| 天堂影院成人在线观看| 日韩欧美免费精品| 亚洲成人久久性| 欧美高清性xxxxhd video| 久久久精品欧美日韩精品| 精品国产亚洲在线| 亚洲第一欧美日韩一区二区三区| 国产一区二区在线av高清观看| 波野结衣二区三区在线| 麻豆av噜噜一区二区三区| 一二三四社区在线视频社区8| 人妻制服诱惑在线中文字幕| 无人区码免费观看不卡| 精品乱码久久久久久99久播| 亚洲va日本ⅴa欧美va伊人久久| 能在线免费观看的黄片| 国产欧美日韩一区二区三| 特级一级黄色大片| 精品熟女少妇八av免费久了| 亚洲综合色惰| 亚洲va日本ⅴa欧美va伊人久久| 日韩 亚洲 欧美在线| 免费电影在线观看免费观看| 亚洲最大成人中文| 熟女人妻精品中文字幕| 高清日韩中文字幕在线| 在线十欧美十亚洲十日本专区| 欧美日韩福利视频一区二区| 91麻豆精品激情在线观看国产| 特级一级黄色大片| 国产精品美女特级片免费视频播放器| 久久精品国产清高在天天线| 99国产精品一区二区三区| bbb黄色大片| 美女黄网站色视频| 激情在线观看视频在线高清| 97超级碰碰碰精品色视频在线观看| 一二三四社区在线视频社区8| 波野结衣二区三区在线| 国产成人欧美在线观看|