• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于硼酸酯的19F磁共振分子探針的設(shè)計(jì)合成及活體深組織活性氧物種的激活響應(yīng)成像

    2023-01-25 05:34:46李凌軒左翠翠陳傳凱樊一凡步逸凡林泓域高錦豪
    關(guān)鍵詞:活性氧實(shí)驗(yàn)室化學(xué)

    李 奧,李凌軒,左翠翠,陳傳凱,樊一凡,步逸凡,林泓域,高錦豪

    (廈門大學(xué)化學(xué)化工學(xué)院化學(xué)生物學(xué)系,譜學(xué)分析與儀器教育部重點(diǎn)實(shí)驗(yàn)室,福建省化學(xué)生物學(xué)重點(diǎn)實(shí)驗(yàn)室,廈門 361005)

    1 Introduction

    Reactive oxygen species(ROS)have been widely accepted to have deleterious consequences when they are excessive in the cells but also serve as signaling molecules at low concentrations[1—3].Mounting evidence in a number of previous reports reveals that cells can manipulate ROS levels during various biological processes to maintain the homeostasis and fitness of living organisms[4—6].Thus,the level of ROS is kept within a proper range during normal cellular metabolism[7,8].In contrast,during the abnormal metabolism of many diseases,such as inflammation,tumor,and organ injuries,an aberrant level of ROS is often observed and regarded as one of the significant features[9].Nowadays,the annual incidence of cancer has exceeded 20 million per year all around the world,which generates an urgent demand on research methods and diagnostic means for tumor[10].Because of the high level of ROS in tumor,detection techniques for monitoring the level of ROS has become one of the most promising tools for tumor research and diagnosis.Plenty of interesting sensors based on the reaction-based indicated assay(RIA)have been reported for the detection and imaging of ROS[11—15].Most of the chemical structures of these probes contain a boronate group both as a quencher for fluorescent dyes and a responsive moiety to ROS[16,17].Nevertheless,some of these boronate-based probes are yet to overcome the challenges ranging from water-solubility to photo-stability.Moreover,fluorescence imaging methods are of several limitations when appliedin vivo,including shallow tissue penetration and autofluorescence interference[18].

    Over last decades,as a non-ionizing and multi-parameter imaging technique with deep penetration and high resolution,magnetic resonance imaging(MRI)has achieved eminent success in tumor imaging and diagnosis[19—21].Nowadays,1H MRI,which takes advantage of the difference in relaxation times for abundant protons(in water or lipid molecules)in various tissues,demonstrates its outstanding capacity for obtaining anatomical details from soft tissues[22—24].However,strong background signals from the complicated internal environment often impede further applications of1H MRI for detecting small bioactive molecules like ROS in deep tissues[25].Fortunately,19F stands out as a promising nucleus complementary to1H for MRI due to its favorable properties,such as good sensitivity(83%of1H),100%natural abundance,and low biological distribution(<10-6mol/L)[26—29].These advantages render19F MRI promising as a feasible means for detecting low-concentration biomoleculesin vivoto provide“hot-spot”images with nearly negligible background[30—32].Several strategies have been proposed for the design of19F MRI probes for bioactive molecules[33,34].Among them,RIA has been extensively used in the construction of activatable19F MRI probes,which can switch19F MRI signals“on”or“off”in response to certain stimuli.Currently,several RIA-based19F MRI probes for imaging biomoleculesin vivohave been reported,including HClO and other specific ROS[35—38],metal ions[39,40],enzymes[41,42],neurotransmitters[43]and acidosis[44—49].Nevertheless,there are few reports regarding19F probes forin vivoimaging of generic ROS.

    Herein,we report a generic ROS-responsive19F MRI probe(Gd-DPBF),which consists of a19F signal modulator Gd-chelate(Gd-DP)with a highly-fluorinated small molecule 3,5-bis(trifluoromethyl)-phenylboronic acid(BTFB)viaa widely used ROS-responsive boronate linker.The19F signal modulator(Gd chelate)imposes strong paramagnetic relaxation enhancement(PRE)effect to19F nuclei in Gd-DPBF,which abates their relaxation times(T1andT2)significantly,leading to considerably suppressed19F NMR/MRI signals.In the presence of ROS(H2O2,HClO,etc.),which cleave the boronate linkage in Gd-DPBF and release the product 3,5-bis(trifluoromethyl)phenol(BTFP),the PRE effect is substantially attenuated due to the increased distance between the Gd chelate and19F nuclei,resulting in the extension of the19F relaxation times.Consequently,the intensity of19F NMR/MRI signals is remarkably enhanced,which allows for the detection and imaging of generic ROS(Fig.1).The relaxation times of19F before and after incubation with a typical ROS,hydrogen peroxide,were measured to confirm the mechanism of our probe.Meanwhile,we investigated the response of Gd-DPBF to ROS underin vitroconditionsvia19F NMR/MRI.Furthermore,ex vivoimaging experiments of hydrogen peroxide in a piece of pork by19F MRI with Gd-DPBF manifested the potential of the probe for imaging ROS in deep tissues(such as tumor).Finally,real-time19F MRI of ROS in the tumors of living mice with Gd-DPBF revealed its feasibility for detection and imaging of generic ROS in deep tissues of living subjects.

    Fig.1 Schematic illustration showing the chemical structure and functioning mechanism of the ROS-triggered 19F NMR/MRI probe(Gd-DPBF)

    2 Experimental

    2.1 Materials and Measurements

    Bromoacetyl bromide(99%)was purchased from Aladdin(China);propargylamine(98%)was purchased from Inno-Chem(China);trifluoroacetic acid(99%),cyclen(99%),tert-butyl bromoacetate(99%),gadolinium(III)chloride hexahydrate and 3-hydroxytyramine hydrochloride were purchased from J&K Scientific(China).All chemicals were used as received without further purification.Unless noted otherwise,all reactions were performed under inert(N2or Ar)environments.Milli-Q ultrapure water(Resistivity:18.2 MΩ·m)was used in all experiments.

    The molecular weights of the synthesized compounds were measured on a Bruker Esquire 3000 Plus electrospray ionization instrument using an ICR analyzer(ESI-MS)and Bruker microflex MALDI-TOF-MS.All1H NMR and13C NMR experiments were carried out on a Bruker AVANCE III HD Ascend(600 MHz for1H,151 MHz for13C)with tetramethylsilane as an internal referencing standard.All19F magnetic resonance imaging(19F MRI)and relevant1H MRI were performed on a Bruker BioSpec 94/20 system(400 MHz for1H and 376 MHz for19F)equipped with a 40 mm(inner diameter)volume coil.Image acquisition,SNR analysis and pseudocolor rending were carried out with ParaVision 5.1(Bruker BioSpin).

    2.2 Experimental Methods

    2.2.119F NMR Characterization19F NMR experiments were carried out on a Bruker AVANCE III HD Ascend spectrometer(564 MHz for19F)using a 5 mm BBFO cryoprobe.19F NMR spectra were acquired with 18μs delay and 200 scans.Samples were prepared in 10%D2O/H2O solution and CF3COONa(δ-75.4)was used as a reference for chemical shift.

    2.2.2 Relaxation Time Measurements Relaxation measurements were performed on the same Bruker AVANCE III HD Ascend spectrometer(564 MHz for19F).Samples were prepared in 10%D2O/H2O solution for shimming.Longitudinal relaxation times(T1)were measured using an inversion recovery(IR)sequence.Transverse relaxation times(T2)were measured using a Carr-Purcell-Meiboom-Gill(CPMG)sequence.The vdlist(T1fitting)and VClist(T2fitting)were set according to exponential equations.The following equations were used forT1andT2curve fitting,respectively:

    whereT1was directly obtained from the fitting report,T2=fitting cycle number×(2D20+P2),D20=0.005 s or 0.004 s,P2=28μs.

    2.2.3 Detection of ROS/RNS and Other Analytes with Gd-DPBF by19F NMR Gd-DPBF were incubated with indicated analytes in PBS buffer(50 mmol/L,pH=7.4)at 25℃for 2 h.The resulting solutions were subjected to19F NMR with the aforementioned parameters.ONOO-was generated by mixing NaNO2with H2O2;HO·was made by mixing(NH4)2Fe(SO4)2with H2O2;ROO·was made by dissolving 2,2′-azobis(2-amidinopropane)dihydrochloride(AAPH)in water;other analytes were purchased from commercial sources and used as received.

    2.2.4In vitro19F MRI19F MRI were acquired on a 9.4 T Bruker BioSpec MRI scanner with commercially available19F/1H MRI coils.Gd-DPBF(final concentrations as indicated)were incubated with indicated analytes in PBS buffer(50 mmol/L,pH=7.4)for 1 h.The resulting solutions were subjected to19F MRI.A RARE sequence was used to acquire19F MR images with the following parameters:TR/TE=400 ms/8.1 ms,flip angle=90°,F(xiàn)OV=4 cm×4 cm,the slice thickness=20 mm,Matrix=32×32 and 128 average(NEX=128).The total experiment time was about 5.12 min.

    2.2.5Ex vivoImaging of ROS/RNS by19F MRI with Gd-DPBF Gd-DPBF(10 mmol/L)in 1×PBS solutions were subcutaneously injected to two spots of a piece of pork.H2O2(15 mmol/L)dissolved in PBS was subcutaneously injected into one of the two spots as indicated.The center frequency corresponding to the19F chemical shift atδ-62.6 was chosen for19F MRI.For acquiring1H MR images,a RARE sequence was used with the following parameters:TR/TE=1000 ms/8.5 ms,flip angle=180°,F(xiàn)OV=4 cm×4 cm,slice thickness=1 mm,matrix=256×256,average=4(NEX=4).The total acquisition time for each time point was about 3.2 min.For acquiring19F MR images,A RARE sequence was used to acquire19F MR images with the following parameters:TR/TE=400 ms/8.1 ms,flip angle=90°,F(xiàn)OV=4 cm×4 cm,slice thickness=15 mm,Matrix=32×32 and 196 average(NEX=196).The total experiment time was about 7.84 min.

    2.2.6 Animal Ethics Animal experiments were conducted according to the protocols approved by the Institutional Animal Care and Use Committee of Xiamen University.

    2.2.7 Establishment of Tumor-bearing Mouse Models Tumor inoculation was carried out by injecting 200μL of cell suspension containing 1×107U87 cells subcutaneously into the right forelimbs of male nude mice.The tumors were allowed to reach 100—200 mm3before experimentation.

    2.2.8In vivoImaging of ROS with1H/19F MRI Allin vivo1H/19F MRI were acquired on a 9.4 T Bruker MRI scanner with commercially available19F/1H MRI coils.Two groups,each of which contains three male nude mice,were intramuscularly or intratumorally injected with Gd-DPBF(120μL,15 mmol/L in PBS)and subjected to1H/19F MRI as indicated.For acquiring19F MR images,a RARE sequence was used with the following parameters:TR/TE=400 ms/8.1 ms,flip angle=180°,F(xiàn)OV=4 cm×4 cm,slice thickness=10 mm,matrix=32×32,average=1960(NEX=1960).The total acquisition time was about 78.3 min.For acquiring1H MR images,a RARE sequence was used with the following parameters:TR/TE=1000 ms/8.5 ms,flip angle=180°,F(xiàn)OV=4 cm×4 cm,slice thickness=1 mm,matrix=256×256,average=4(NEX=4).The total acquisition time for each time point was about 3.2 min.

    3 Results and Discussion

    3.1 Synthesis of Gd-DPBF

    Gd-DPBF was synthesizedviaa facile approach(Scheme S1,see the supporting information of this papaer).Specifically,the amino group of dopamine was transformed to an azido group to afford compound 1,which was coupled with a previously reported Gd-DO3A derivative 2 with a terminal alkyneviacopper(I)-catalyzed azide-alkyne cycloaddition(CuAAC)to give Gd-DP(3)as the19F signal modulator.Gd-DPBF(4)was prepared by esterification(44%yield)between Gd-DP and 3,5-bis(trifluoromethyl)phenylboronic acid(BTFB),the latter of which serves as the fluorine-building block.The boronate ester linkage could be facilely cleaved in the presence of ROS.Synthetic details as well as characterization data of Gd-DPBF and important intermediates are included in the supporting information of this paper.

    3.2 Measurements of 19F Relaxation Times

    Longitudinal and transverse relaxation times(T1andT2)of19F in Gd-DPBF were assessed with Inversion Recovery(IR,forT1)and Carr-Purcell-Meiboom-Gill(CPMG,forT2)sequences on an NMR spectrometer(564 MHz for19F)at 25℃.As shown in Table 1,theT1andT2of19F in Gd-DPBF in PBS were significantly shortened(less than 3 ms)compared to those in BTFP in PBS(987 and 806 ms,respectively),which indicates the strong PRE effect between19F nuclei and unpaired electrons of Gd3+ions in intact Gd-DPBF.However,after the reaction of Gd-DPBF with 0.3 mmol/L H2O2in PBS,theT1andT2of19F were substantially extended(416 and 279 ms,respectively),which implicates the considerable weakening of the paramagnetic relaxation enhancement(PRE)effect.These results suggest that our design can adjust the relaxation times of19F in Gd-DPBF before and after incubation with H2O2,which permits its detection and imaging with this activatable19F MRI probe.

    Table 1 T1 and T2 of 19F in 3,5-bis(trifluoromethyl)phenol(BTFP)and Gd-DPBF before and after the responsive process*

    We also utilized the high-performance liquid chromatography(HPLC)to investigate the response of Gd-DPBF to H2O2.As shown in Fig.S1,two peaks(Gd-DP and BTFB)appeared in HPLC chromatogram of Gd-DPBF alone,indicating the hydrolysis of Gd-DPBF during the HPLC process.After incubation of Gd-DPBF with 0.4 mmol/L H2O2,several new peaks appeared,which correspond to be the products Gd-DP and BTFP.These results implicate the successful response of Gd-DPBF to H2O2,which is in accordance with our design.

    3.3 In vitro Sensing of Generic ROS with Gd-DPBF Using 19F NMR

    To investigate thein vitrogeneric detection of ROS with Gd-DPBF by19F NMR,0.2 mmol/L Gd-DPBF in PBS was incubated with various ROS(including KO2,H2O2,ROO·,ONOO-and HClO)as well as common biomolecules such as proteins in FBS,glutathione(GSH)and glucose(Glu).As shown in the spectra of Fig.2(A),sharp19F NMR peaks atδ-62.6 could be seen for Gd-DPBF in the presence of many types of ROS(including KO2,H2O2,ONOO-and HClO),yielding high relative signal-to-noise ratios(SNRs>25)[Fig.2(B)].By comparison,no significant19F NMR signals(relative SNRs<5)were observed after the exposure of Gd-DPBF to the other biomolecules,indicating the excellent selectivity of Gd-DPBF for generic ROS[Figs.2(A)and(B)].These results illustrate that Gd-DPBF could respond to generic ROS with high selectivity,resulting in strong19F signals.

    Fig.2 Representative 19F NMR spectra of 0.2 mmol/L Gd-DPBF treated with various analytes(0.4 mmol/L)for 1 h in PBS buffer.CF3COONa(atδ-75.4)was used as an internal reference of 19F chemical shift(A),SNR analysis corresponding to(A)(n=3).The SNR for the peak of Gd-DPBF in PBS was set as 1.0 and the other SNRs were normalized accordingly(B),representative 19F MR images of Gd-DPBF phantoms at different concentrations before and after specific activation toward 2.2,4.4,6.6,8.8 and 11 mmol/L H2O2(1 h incubation)respectively in PBS buffer at 37℃(C)and SNR analysis of Gd-DPBF before and after activation corresponding to(C)(n=3).The SNR for the peak of 2.0 mmol/L Gd-DPBF in PBS was set as 1.0 and the other SNRs were normalized accordingly(D)

    3.4 In vitro Imaging of Generic ROS Using 19F MRI with Gd-DPBF

    The imaging of generic ROS by19F MRI with Gd-DPBF using a rapid acquisition using relaxation enhancement(RARE)sequence(TR/TE=400 ms/8.1 ms)on a 9.4 T MRI scanner equipped with commercially available1H/19F MRI coils was also investigated.With the given pulse sequence and parameters,no apparent19F MRI signals were observed for intact Gd-DPBF because theT2of19F was substantially shortened.As expected,upon the exposure of Gd-DPBF to excessive H2O2,the19F MRI signals were significantly enhanced[Fig.2(C)].Furthermore,the concentration-dependent imaging and relevant SNR analysis indicate the positive correlation the between the intensities of19F MRI signals and the concentrations of19F[Fig.2(D)].These results demonstrate the practicability of visualizing H2O2(and other ROS)with Gd-DPBF by19F MRI.

    3.5 Ex vivo Imaging of Gd-DPBF by 19F MRI with H2O2

    Ex vivo19F MRI utilizing porcine tissues were then carried out.Gd-DPBF was subcutaneously injected into a piece of pork at two different spots.The bottom spot was further injected with excessive H2O2[Fig.3(A)].The injection spots could be clearly identified using1H MRI because the Gd-chelate moiety in Gd-DPBF and Gd-DP could serve as aT1contrast agent that can significantly enhance the1H MRI signals of surrounding tissues[Fig.3(B)].To confirm this observation,the longitudinal relaxivities(r1)of Gd-DPBF and Gd-DP for1H MRI were measured to be 5.92 and 5.79 mmol·L-1·s-1at 0.5 T,respectively,which are both higher than that of Gd-DOTA(4.77 mmol·L-1·s-1),facilitating the generation of strongT1-weighted1H MRI signals(Fig.S2,see the Electronic Supplementary Material of this paper).Meanwhile,the tissues injected with both Gd-DPBF and H2O2[the bottom spot in Fig.3(B)]showed strong19F MRI signals,the intensity of which reached the apex at 30 min after injection and gradually decreased afterwards,as confirmed by SNR analysis[Fig.3(C)].In contrast,no significant19F MRI signals were observed for the tissues injected with Gd-DPBF only[the top spot in Fig.3(B)].These results implicate the feasibility of imaging H2O2in deep tissues with Gd-DPBF by19F MRI,illustrating the potential of Gd-DPBF as a19F MRI probe forin vivoimaging of generic ROS.

    Fig.3 Schematic illustration showing the protocol for ex vivo 19F MRI.The center frequency corresponding to the 19F chemical shift atδ-62.6 was chosen for 19F MRI(A),representative 1H and 19F MR images of a piece of pork(43 mm×16 mm×31 mm)at indicated time points after hypodermic injection of Gd-DPBF solution(10 mmol/L,200μL)in 1×PBS alone(top,indicated by the white circles)and incubated with 15 mmol/L H2O2(bottom,indicated by the pink circles)for 3 h(B),SNR analysis corresponding to(B)(n=3).The SNR for the 19F MR image of Gd-DPBF with PBS at 0 min was set as 1.0 and the other SNRs were normalized accordingly(C)

    3.6 In vivo Imaging of Generic ROS via 19F MRI with Gd-DPBF in Living Mice

    Encouraged by theex vivoimaging experiments,thein vivo“hot-spot”19F MRI with Gd-DPBF was further explored to visualize endogenous ROS in tumor-bearing living mice.The biocompatibility of Gd-DPBF was assessed before experiments.As a result,Gd-DPBF did not reveal obvious cytotoxicity to HepG2 or L02 cells even at 15 mmol/L.Additionally,no conspicuous microscopic lesions were observed for hematoxylin and eosin(H&E)stained tissue section of all major organs collected from the mice at 3 d after intravenous injection of Gd-DPBF(Fig.S3,see the supporting information of this paper).Table S1(see the supporting information of this paper)shows the results of liver and kidney function tests(including ALT,AST,ALP and BUN)of BALB/c mice after intravenous injection of 200μL Gd-DPBF(15 mmol/L).All indicators of the experimental group at 24 h were not significantly deviated from the reference ranges.These results demonstrated the good biocompatibility of Gd-DPBF,which permits further imaging experiment on animals.The right forelimbs of healthy BALB/c mice were intramuscularly injected with Gd-DPBF and were further subjected to MRI.Bright1H MRI signals were observed in the tissues of right forelimbs due to the enhanced1H MRI signals resulting from the Gd-chelate moiety of Gd-DPBF.Concurrently,the bladder regions also showed strong1H MRI signals,which could be ascribed to the quick renal clearance of Gd-DPBF[Fig.4(A)].As expected,no apparent19F MRI signals were detected in the forelimb and bladder regions,indicating that Gd-DPBF is still intact under these conditions.However,when injected Gd-DPBF intratumorally to U87 tumor-bearing mice,evident19F MRI signals were observed in both the tumor and bladder regions along with strong1H MRI signals serving for co-localization analysis[Fig.4(B)].This observation could be attributed to the releasing of BTFP and Gd-DP from Gd-DPBF due to excess endogenous ROS in the tumor,which are subsequently accumulated in the bladderviarapid renal clearance,leading to significant19F and1H MRI signals in both the tumor and bladder regions.These results demonstrate the feasibility of imaging intratumoral endogenous ROS in living subjects with the probe using19F MRI.

    Fig.4 In vivo 19F MRI using Gd-DPBF

    4 Conclusions

    A small molecular19F MRI probe(Gd-DPBF)for detecting and imaging of generic ROS was developed,which consists of a fluorine-containing moiety and a paramagnetic Gd chelateviaa ROS-responsive boronate linkage.The feasibility of using Gd-DPBF for in-depth and real-time detection and imaging of ROSvia19F NMR/MRI have been clearly demonstrated byin vitro,ex vivo,andin vivoexperiments.Interestingly,Gd-DPBF and its cleaved products could undergo rapid renal clearance,which is beneficial for further biomedical applications.In addition,according to the flexibility in the constructing strategy of this probe,imaging targets can be easily extended to other biomolecules in different biological systems.Though there are still some challenges needed to be overcome for further clinical applications,we believe that Gd-DPBF and related19F MRI probes constructed according to our strategy,could serve as promising diagnostic agents for various diseases in the future.

    The supporting information of this paper see http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20220545.

    猜你喜歡
    活性氧實(shí)驗(yàn)室化學(xué)
    電競實(shí)驗(yàn)室
    電子競技(2019年22期)2019-03-07 05:17:26
    電競實(shí)驗(yàn)室
    電子競技(2019年21期)2019-02-24 06:55:52
    電競實(shí)驗(yàn)室
    電子競技(2019年20期)2019-02-24 06:55:35
    電競實(shí)驗(yàn)室
    電子競技(2019年19期)2019-01-16 05:36:09
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    TLR3活化對正常人表皮黑素細(xì)胞內(nèi)活性氧簇表達(dá)的影響
    硅酸鈉處理對杏果實(shí)活性氧和苯丙烷代謝的影響
    国产伦一二天堂av在线观看| 男女视频在线观看网站免费| 亚洲av二区三区四区| 久久亚洲国产成人精品v| 久久久国产成人免费| a级毛片免费高清观看在线播放| 国产一区二区三区av在线| 国产精品99久久久久久久久| 国产91av在线免费观看| 亚洲欧美清纯卡通| 国产亚洲91精品色在线| 亚洲成人av在线免费| 小蜜桃在线观看免费完整版高清| 少妇人妻精品综合一区二区| 亚洲av成人精品一二三区| 日本-黄色视频高清免费观看| av专区在线播放| 99热这里只有是精品在线观看| 深爱激情五月婷婷| 亚洲怡红院男人天堂| 亚洲av日韩在线播放| 亚洲欧美成人精品一区二区| 又爽又黄无遮挡网站| 亚洲高清免费不卡视频| АⅤ资源中文在线天堂| 只有这里有精品99| 亚洲av二区三区四区| 色尼玛亚洲综合影院| 噜噜噜噜噜久久久久久91| 少妇丰满av| 久久精品国产鲁丝片午夜精品| 亚洲aⅴ乱码一区二区在线播放| 91久久精品国产一区二区三区| 日本猛色少妇xxxxx猛交久久| 午夜福利高清视频| 亚洲av成人精品一区久久| 简卡轻食公司| 日韩 亚洲 欧美在线| 亚洲欧美一区二区三区国产| 女人十人毛片免费观看3o分钟| 在线免费观看的www视频| 久久精品国产自在天天线| 国产亚洲5aaaaa淫片| 亚洲av日韩在线播放| 天堂av国产一区二区熟女人妻| 99久久无色码亚洲精品果冻| 免费av毛片视频| 日韩av在线免费看完整版不卡| 边亲边吃奶的免费视频| 国语自产精品视频在线第100页| 欧美精品国产亚洲| 日本与韩国留学比较| 久久久久久九九精品二区国产| 秋霞伦理黄片| 精品久久久久久久久久久久久| 国产久久久一区二区三区| 欧美另类亚洲清纯唯美| 午夜老司机福利剧场| 亚洲综合色惰| 久久久午夜欧美精品| 国产精品国产高清国产av| a级一级毛片免费在线观看| 亚洲丝袜综合中文字幕| av专区在线播放| 国产伦一二天堂av在线观看| 亚洲欧美精品综合久久99| 成人特级av手机在线观看| 国产亚洲午夜精品一区二区久久 | 免费观看性生交大片5| 久久这里只有精品中国| 日日啪夜夜撸| 久久热精品热| av.在线天堂| 色网站视频免费| 亚洲不卡免费看| 免费黄色在线免费观看| 一区二区三区免费毛片| 舔av片在线| 国产高清视频在线观看网站| 亚洲成人中文字幕在线播放| 一区二区三区高清视频在线| 一级黄色大片毛片| 久久久久免费精品人妻一区二区| 九九爱精品视频在线观看| 欧美xxxx性猛交bbbb| 春色校园在线视频观看| 亚洲av熟女| 精品免费久久久久久久清纯| 久久热精品热| 人妻制服诱惑在线中文字幕| 国产精品一区二区三区四区免费观看| 成年版毛片免费区| 91狼人影院| 日韩一区二区视频免费看| 18禁裸乳无遮挡免费网站照片| 一边摸一边抽搐一进一小说| 男人和女人高潮做爰伦理| 男人和女人高潮做爰伦理| 能在线免费看毛片的网站| 国内精品宾馆在线| 秋霞在线观看毛片| 99热这里只有是精品在线观看| 精品人妻熟女av久视频| 亚洲av电影在线观看一区二区三区 | 国产精品久久电影中文字幕| 成人亚洲精品av一区二区| 99热全是精品| 国产亚洲午夜精品一区二区久久 | 亚洲激情五月婷婷啪啪| av在线亚洲专区| 欧美高清成人免费视频www| 不卡视频在线观看欧美| 国产精品久久久久久久电影| 纵有疾风起免费观看全集完整版 | 在线免费十八禁| 一区二区三区四区激情视频| 久久精品久久精品一区二区三区| av卡一久久| 亚洲四区av| 久久久久性生活片| 亚洲成人久久爱视频| 我的女老师完整版在线观看| 午夜福利网站1000一区二区三区| 亚洲精品自拍成人| 久久精品国产自在天天线| 久久国产乱子免费精品| 午夜福利高清视频| 纵有疾风起免费观看全集完整版 | 色尼玛亚洲综合影院| 99久久成人亚洲精品观看| 国产av一区在线观看免费| 超碰97精品在线观看| 日韩欧美精品免费久久| 亚洲av免费高清在线观看| 精品免费久久久久久久清纯| 丰满乱子伦码专区| АⅤ资源中文在线天堂| av又黄又爽大尺度在线免费看 | 美女xxoo啪啪120秒动态图| 男女边吃奶边做爰视频| 国产国拍精品亚洲av在线观看| 美女国产视频在线观看| 久久这里只有精品中国| 免费av毛片视频| 免费观看在线日韩| 九草在线视频观看| 亚洲精品aⅴ在线观看| 亚洲乱码一区二区免费版| 91午夜精品亚洲一区二区三区| 美女脱内裤让男人舔精品视频| 午夜激情欧美在线| 淫秽高清视频在线观看| 一夜夜www| 在现免费观看毛片| 国产v大片淫在线免费观看| 亚洲精品乱码久久久v下载方式| av卡一久久| 2021少妇久久久久久久久久久| 亚洲av免费高清在线观看| 成年免费大片在线观看| 亚洲av免费高清在线观看| 黄片无遮挡物在线观看| av福利片在线观看| 国产精品久久久久久久电影| 亚洲真实伦在线观看| 热99在线观看视频| 菩萨蛮人人尽说江南好唐韦庄 | 少妇人妻一区二区三区视频| 久久精品人妻少妇| 免费看a级黄色片| 日韩精品青青久久久久久| 精品国产三级普通话版| 国产精品一区二区三区四区久久| 深爱激情五月婷婷| 在线观看美女被高潮喷水网站| 亚洲av一区综合| 免费观看的影片在线观看| 一本久久精品| 午夜福利视频1000在线观看| 免费看日本二区| 国产一区有黄有色的免费视频 | 少妇的逼好多水| 99视频精品全部免费 在线| 内射极品少妇av片p| 麻豆久久精品国产亚洲av| 少妇被粗大猛烈的视频| 日本五十路高清| 少妇人妻一区二区三区视频| 九九久久精品国产亚洲av麻豆| 亚洲精品乱久久久久久| 国产亚洲午夜精品一区二区久久 | 99热精品在线国产| 成人二区视频| 国产麻豆成人av免费视频| 国产视频内射| 国产成人aa在线观看| 人妻系列 视频| 国产av一区在线观看免费| 久久人人爽人人片av| 建设人人有责人人尽责人人享有的 | 亚洲经典国产精华液单| 网址你懂的国产日韩在线| 欧美最新免费一区二区三区| 免费观看在线日韩| 男的添女的下面高潮视频| 国产极品天堂在线| 五月伊人婷婷丁香| 国产精品久久久久久精品电影| 黑人高潮一二区| 国国产精品蜜臀av免费| 听说在线观看完整版免费高清| 久久精品久久精品一区二区三区| 亚洲婷婷狠狠爱综合网| 国产精品久久视频播放| 日韩 亚洲 欧美在线| 日韩欧美精品免费久久| 性色avwww在线观看| 1024手机看黄色片| 国产在视频线在精品| 成人高潮视频无遮挡免费网站| 国产精品福利在线免费观看| 男人舔女人下体高潮全视频| 日韩大片免费观看网站 | 青青草视频在线视频观看| 色播亚洲综合网| 又爽又黄无遮挡网站| 欧美变态另类bdsm刘玥| 九草在线视频观看| 日本黄大片高清| 99热网站在线观看| 日日摸夜夜添夜夜爱| 水蜜桃什么品种好| 久久人妻av系列| 欧美日本视频| 丝袜美腿在线中文| 国产高清国产精品国产三级 | 国产精品久久视频播放| 色播亚洲综合网| 国产免费视频播放在线视频 | 亚洲熟妇中文字幕五十中出| 亚洲精品色激情综合| 国产av不卡久久| 亚洲av不卡在线观看| 建设人人有责人人尽责人人享有的 | 亚洲欧美精品自产自拍| 国产高潮美女av| 亚洲国产精品专区欧美| 在线观看美女被高潮喷水网站| 国产人妻一区二区三区在| 亚洲国产精品久久男人天堂| 成人午夜精彩视频在线观看| 熟女电影av网| 永久免费av网站大全| 欧美又色又爽又黄视频| 七月丁香在线播放| 免费观看性生交大片5| 干丝袜人妻中文字幕| 尤物成人国产欧美一区二区三区| 亚洲成av人片在线播放无| 欧美最新免费一区二区三区| 亚洲精品亚洲一区二区| 99久久精品热视频| or卡值多少钱| 国产精品熟女久久久久浪| 国产一级毛片在线| 十八禁国产超污无遮挡网站| 欧美变态另类bdsm刘玥| 久久精品国产亚洲av涩爱| 汤姆久久久久久久影院中文字幕 | 国产av一区在线观看免费| 国产精品野战在线观看| 黄色一级大片看看| 永久网站在线| 国产一区二区三区av在线| 最近最新中文字幕免费大全7| 丰满乱子伦码专区| 欧美成人a在线观看| 国产美女午夜福利| 一级毛片我不卡| 在现免费观看毛片| av黄色大香蕉| 国产老妇女一区| 97人妻精品一区二区三区麻豆| 日韩三级伦理在线观看| 69人妻影院| 老司机影院成人| 级片在线观看| 国产高清不卡午夜福利| 看非洲黑人一级黄片| 噜噜噜噜噜久久久久久91| 91久久精品国产一区二区成人| 男人狂女人下面高潮的视频| 国产精品不卡视频一区二区| 亚洲电影在线观看av| 国产精品av视频在线免费观看| 欧美性猛交╳xxx乱大交人| 一区二区三区免费毛片| 午夜精品国产一区二区电影 | 能在线免费观看的黄片| 成人性生交大片免费视频hd| 观看免费一级毛片| 女人久久www免费人成看片 | 建设人人有责人人尽责人人享有的 | 国内揄拍国产精品人妻在线| 亚洲熟妇中文字幕五十中出| 国产精品久久视频播放| 啦啦啦啦在线视频资源| 久久久欧美国产精品| 91久久精品电影网| 99在线人妻在线中文字幕| 日本欧美国产在线视频| 丝袜喷水一区| 免费观看在线日韩| 日韩三级伦理在线观看| 成人无遮挡网站| 极品教师在线视频| 麻豆成人av视频| 婷婷色麻豆天堂久久 | 久久草成人影院| 久久精品国产亚洲av涩爱| 97人妻精品一区二区三区麻豆| 亚洲av一区综合| 国产v大片淫在线免费观看| kizo精华| 国产一级毛片七仙女欲春2| 亚洲国产精品sss在线观看| 淫秽高清视频在线观看| 亚洲人与动物交配视频| 成人一区二区视频在线观看| 亚洲欧美精品自产自拍| 看非洲黑人一级黄片| 男女国产视频网站| 日本猛色少妇xxxxx猛交久久| 卡戴珊不雅视频在线播放| 嫩草影院新地址| 99热这里只有是精品在线观看| 免费人成在线观看视频色| 人体艺术视频欧美日本| 亚洲av成人精品一二三区| 在线观看美女被高潮喷水网站| 91精品国产九色| 在线a可以看的网站| 久久精品夜夜夜夜夜久久蜜豆| 国产黄色小视频在线观看| 日韩亚洲欧美综合| 国产在视频线在精品| 看十八女毛片水多多多| 日韩人妻高清精品专区| 黑人高潮一二区| 一边摸一边抽搐一进一小说| 又爽又黄无遮挡网站| 国产人妻一区二区三区在| 国产又黄又爽又无遮挡在线| 三级经典国产精品| 亚洲国产精品sss在线观看| 国产成人福利小说| 免费观看的影片在线观看| 色尼玛亚洲综合影院| 看免费成人av毛片| av播播在线观看一区| 久久精品综合一区二区三区| 老司机影院成人| 国产高清三级在线| .国产精品久久| 成人三级黄色视频| 一二三四中文在线观看免费高清| 在现免费观看毛片| 啦啦啦观看免费观看视频高清| 亚洲国产高清在线一区二区三| 长腿黑丝高跟| 免费在线观看成人毛片| 高清视频免费观看一区二区 | 国产精品乱码一区二三区的特点| 国内精品美女久久久久久| 黑人高潮一二区| 午夜激情欧美在线| 国产精品乱码一区二三区的特点| 99热网站在线观看| 国产精华一区二区三区| 国产又黄又爽又无遮挡在线| 亚洲国产高清在线一区二区三| 日本猛色少妇xxxxx猛交久久| 麻豆乱淫一区二区| 内射极品少妇av片p| 免费播放大片免费观看视频在线观看 | 亚洲乱码一区二区免费版| 久久久久久国产a免费观看| 国产精品嫩草影院av在线观看| 久久精品熟女亚洲av麻豆精品 | 在线播放无遮挡| av免费观看日本| 六月丁香七月| 观看免费一级毛片| 一区二区三区高清视频在线| 久久久久久久午夜电影| 三级国产精品片| 91狼人影院| 久久这里只有精品中国| 国产精品嫩草影院av在线观看| 国产亚洲精品av在线| 久久精品夜夜夜夜夜久久蜜豆| 午夜免费激情av| 97超碰精品成人国产| 久久99精品国语久久久| 亚洲欧美日韩卡通动漫| 真实男女啪啪啪动态图| 天天躁夜夜躁狠狠久久av| 免费看美女性在线毛片视频| 免费看日本二区| 亚洲成人av在线免费| 国产精品日韩av在线免费观看| 欧美极品一区二区三区四区| 亚洲欧美精品自产自拍| 欧美性猛交╳xxx乱大交人| 亚洲精品乱码久久久v下载方式| ponron亚洲| 听说在线观看完整版免费高清| 亚洲在线自拍视频| 国产爱豆传媒在线观看| 欧美一区二区亚洲| 男人狂女人下面高潮的视频| 国产免费男女视频| 精品久久久久久久久亚洲| av国产久精品久网站免费入址| 欧美潮喷喷水| 2021天堂中文幕一二区在线观| 两个人视频免费观看高清| 亚洲欧美精品综合久久99| 在线天堂最新版资源| 高清av免费在线| 欧美xxxx性猛交bbbb| 国产免费男女视频| 久久婷婷人人爽人人干人人爱| 亚洲国产精品成人久久小说| 免费观看精品视频网站| 蜜臀久久99精品久久宅男| av视频在线观看入口| 老师上课跳d突然被开到最大视频| 欧美精品一区二区大全| 嫩草影院精品99| 99久久人妻综合| 中文天堂在线官网| 亚洲精品国产成人久久av| 成人二区视频| av福利片在线观看| 亚洲av福利一区| 人妻系列 视频| 大香蕉久久网| 精品午夜福利在线看| 亚洲最大成人手机在线| 麻豆一二三区av精品| 日韩亚洲欧美综合| 日韩欧美精品v在线| 国产高清有码在线观看视频| 久久久精品大字幕| 波多野结衣高清无吗| av卡一久久| 亚洲人成网站高清观看| 国产女主播在线喷水免费视频网站 | 国产高清不卡午夜福利| 成年女人永久免费观看视频| 欧美高清成人免费视频www| 深夜a级毛片| 春色校园在线视频观看| 亚洲,欧美,日韩| 色吧在线观看| 麻豆精品久久久久久蜜桃| 你懂的网址亚洲精品在线观看 | 国产伦精品一区二区三区四那| 久久精品夜夜夜夜夜久久蜜豆| 国产黄色视频一区二区在线观看 | 国产免费视频播放在线视频 | 国产大屁股一区二区在线视频| 久久99蜜桃精品久久| 国产老妇伦熟女老妇高清| 国产又色又爽无遮挡免| 精品久久久久久电影网 | 三级国产精品欧美在线观看| 日日干狠狠操夜夜爽| 亚洲丝袜综合中文字幕| 亚洲美女视频黄频| 亚洲一区高清亚洲精品| 国产免费一级a男人的天堂| 久久精品久久精品一区二区三区| 国产精品电影一区二区三区| 国产一区二区在线观看日韩| 日韩亚洲欧美综合| 亚洲最大成人中文| 国产成人福利小说| 国产 一区 欧美 日韩| 深夜a级毛片| 非洲黑人性xxxx精品又粗又长| 精品熟女少妇av免费看| 少妇猛男粗大的猛烈进出视频 | 久久亚洲精品不卡| 国产成人aa在线观看| 国产精品.久久久| 国产视频首页在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产极品天堂在线| 大香蕉97超碰在线| 国产免费男女视频| 一边亲一边摸免费视频| 九九爱精品视频在线观看| 免费看a级黄色片| 国产片特级美女逼逼视频| 国语自产精品视频在线第100页| 成年女人永久免费观看视频| 九九爱精品视频在线观看| 午夜日本视频在线| 亚洲国产最新在线播放| 久久久久久久久久成人| 久久久久久久久久黄片| 男人狂女人下面高潮的视频| 国产高潮美女av| 毛片一级片免费看久久久久| 国产激情偷乱视频一区二区| 亚洲欧洲国产日韩| 成年免费大片在线观看| 欧美日韩一区二区视频在线观看视频在线 | 免费播放大片免费观看视频在线观看 | 一区二区三区四区激情视频| 久久精品熟女亚洲av麻豆精品 | 高清视频免费观看一区二区 | 精品久久久久久电影网 | 国产熟女欧美一区二区| 欧美性感艳星| 亚洲在久久综合| 超碰av人人做人人爽久久| 人人妻人人看人人澡| 少妇的逼好多水| av黄色大香蕉| 亚洲精品日韩av片在线观看| 国产精品国产三级国产专区5o | 亚洲精品影视一区二区三区av| 欧美激情国产日韩精品一区| 天堂√8在线中文| 国产精品久久电影中文字幕| 亚洲激情五月婷婷啪啪| 大香蕉97超碰在线| 日韩,欧美,国产一区二区三区 | 国产色婷婷99| 七月丁香在线播放| 亚洲精品一区蜜桃| 男人舔女人下体高潮全视频| 啦啦啦啦在线视频资源| 在线观看av片永久免费下载| 99久国产av精品国产电影| 大香蕉久久网| 免费观看人在逋| 91精品一卡2卡3卡4卡| 国产精品日韩av在线免费观看| 秋霞伦理黄片| 日韩欧美三级三区| 三级国产精品片| 在线观看av片永久免费下载| 一级毛片我不卡| 国产成人一区二区在线| 亚洲自偷自拍三级| 欧美极品一区二区三区四区| 亚洲精品自拍成人| 国产片特级美女逼逼视频| 亚洲第一区二区三区不卡| 欧美成人一区二区免费高清观看| 免费无遮挡裸体视频| 91久久精品国产一区二区成人| 麻豆成人av视频| 97在线视频观看| 精品久久久久久久人妻蜜臀av| 亚洲av成人av| 十八禁国产超污无遮挡网站| 久久这里只有精品中国| 老司机福利观看| 色噜噜av男人的天堂激情| 99久国产av精品| 免费看a级黄色片| 亚洲国产色片| 91久久精品电影网| 国产人妻一区二区三区在| 欧美一区二区精品小视频在线| 99久国产av精品国产电影| 中文亚洲av片在线观看爽| 男插女下体视频免费在线播放| 日韩成人伦理影院| 色综合站精品国产| 久久久精品大字幕| 午夜a级毛片| 日韩 亚洲 欧美在线| 日韩人妻高清精品专区| 插阴视频在线观看视频| 人人妻人人看人人澡| 丰满人妻一区二区三区视频av| 亚洲av电影不卡..在线观看| 又粗又爽又猛毛片免费看| 人妻系列 视频| 2021天堂中文幕一二区在线观| 桃色一区二区三区在线观看| 国产精品无大码| 女的被弄到高潮叫床怎么办| 亚洲真实伦在线观看| 亚洲人与动物交配视频| 中文字幕av成人在线电影| 亚洲欧美中文字幕日韩二区| 免费观看在线日韩| 国产亚洲av嫩草精品影院| 午夜福利在线观看免费完整高清在| 99久久精品国产国产毛片| 91久久精品电影网| 简卡轻食公司| 亚洲精品日韩在线中文字幕| 建设人人有责人人尽责人人享有的 | 久久精品夜夜夜夜夜久久蜜豆| 中文字幕免费在线视频6| 成人国产麻豆网| 最近最新中文字幕大全电影3|