• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    磁粒子成像示蹤劑的研究進展

    2023-01-25 05:33:56張慶鵬關(guān)國強劉慧怡宋國勝
    高等學?;瘜W學報 2022年12期
    關(guān)鍵詞:湖南大學化工學院示蹤劑

    張慶鵬,關(guān)國強,劉慧怡,陸 暢,周 穎,宋國勝

    (湖南大學化學化工學院,長沙 410082)

    1 Introduction

    The development of biomedical imaging technology is of great significance,helping people to explore and study living systems,structures and physiological processes,and helping to diagnose and treat various diseases in clinical practice[1].Although a variety of biomedical imaging technologies have been developed,including various optical imaging,magnetic resonance imaging(MRI),ultrasound imaging(US),X-ray computed tomography(CT)and positron emission tomography(PET),etc.,all of these imaging technologies have certain disadvantages[2,3].In 2005,Gleich and Weizenecker[4]introduced a novel and promising imaging mode called magnetic particle imaging(MPI).

    MPI has the advantages of positive contrast signal,low tissue background,unlimited tissue penetration depth,non-invasive imaging and no ionizing radiation.Comparing to MRI,MPI can directly detect changes in the responsiveness of nanoparticles in the magnetic field,and has a higher signal-to-noise ratio[5—8].Around the characteristics of MPI,superparamagnetic iron oxide nanoparticles(SPIONs),the most commonly used MRI contrast agent,were first used as MPI tracers.Examples include Ferucarbotran(Resovist,Bayer Healthcare)and Feridex(Ferumoxides,Berlex Laboratories)[9].However,according to current studies,MPI is inferior to MRI in spatial resolution and CT in sensitivity,and currently there are only a few kinds of nanoparticles that can be used as MPI tracers.Table 1 compares MPI and various medical imaging techniques in different ways[10].

    Table 1 Comparison of different imaging modalities

    The sensitivity and resolution of MPI are highly dependent on the performance of the nanoparticle tracer itself,so current research is mainly focused on the design and synthesis of nanoparticle tracers.In this review,the latest progress of MPI tracers in recent years is summarized,and the types,synthesis methods,properties and biomedical applications of magnetic nanoparticles that can be used as MPI tracers are discussed.

    2 The Fundamentals of MPI

    MPI is a tracer method for detecting the spatial distribution of MNPs based on functional and tomography imaging techniques.The imaging system includes magnetic field excitation part,signal acquisition part and computer image processing part.The image processing part is mainly responsible for processing the magnetic field signal through reconstruction algorithm,to obtain MNPs concentration distribution information,which is the core part of the whole imaging system[11].

    2.1 The Signal Generation of MPI

    The signal generation of MPI is based on langevin’s nonlinear magnetization curve law[5].MPI determines the spatial distribution of the MNPs by measuring the magnetization change of the MNPs in the timevarying external magnetic field.The magnetization behavior of MNPs is described by Langevin’s theory[12].The theory assumes that the magnetization of particles is always consistent with the external magnetic field and there is no hysteresis effect.The relationship between the external magnetic field and magnetization is nonlinear,so when the excitation field passes through the MNPs,the received signal is a harmonic signal[Fig.1(A)].To determine the position of the detected signal,an additional static gradient field,called the selection field,is introduced into the spatial coding,usually consisting of two magnets arranged in a Maxwell structure[Fig.1(B)].MPI’s static gradient magnetic field,or selection field,causes MNPs at different positions to produce differentiated signals.The selected field has a corresponding field vector at each spatial position,and the field vector at the central position is 0,which is called the field-free point(FFP)and the magnetic field intensity is 0.When FFP passes through a region containing MNPs,particles farther away from FFP reach magnetic saturation,do not react to changes in the total magnetic field,and the receiving coil does not detect the signal.On the contrary,the particles in the region near FFP have not reached magnetic saturation,and the magnetization of MNPs changes in size and direction.The signal voltage is detected in the receiving coil,and the voltage signal is allocated to each position of FFP for reconstruction,so that the spatial distribution information of magnetic particles,namely MPI signal,can be obtained.Due to the diamagnetism of body tissues,no interfering signal is generated,so MPI does not display anatomical structure[13].

    Fig.1 Schematic diagram of MPI signal generation[13]

    2.2 The Factors Affecting MPI Imaging Quality

    MNPs are subjected to an oscillating magnetic field,resulting in nonlinear magnetization.After magnetization,MNPs relax according to Brownian and Néel rotations[Fig.2(A)][14].Brownian rotations are rotations of physical particles,and Neel rotations are rotations of internal magnetic moments.The Brownian and Néel rotations time depend strongly on size,anisotropy constant and fluidity of MNPs.Shorter relaxation time can make the magnetization behavior of MNPs respond faster under time-varying external magnetic field,obtain higher MPI signal,and improve the imaging effect[5].

    Based on MPI signal acquisition,MPI image is output through X-space reconstruction,and its imaging effect depends on the diffusion function(PSF)[15,16].PSF is determined by the gradient magnetic field(G)and the derived function of the tracer magnetization curve(dM/dH)[12].The gradient magnetic field(G)is the intrinsic parameter of the instrument,so we can improve the imaging sensitivity and spatial resolution by increasing the peak height of dM/dH or decreasing the half-peak width(FWHM)[Fig.2(B)and(C)].Importantly,the dM/dH height and FWHM depend largely on the intrinsic magnetic properties of the MPI tracer,including saturation magnetization(Ms),susceptibility(χ),magnetic relaxation time(τ),and coercivity(Hc).

    Fig.2 Schematic diagram of magnetic relaxation mechanism and X-space image reconstruction technique[16]

    Based on relaxation theory and X-space theory,the imaging effect of MPI depends on the magnetism and relaxation time of MNPs.The magnetic properties and relaxation time of MNPs are affected by the composition,size and morphology,etc.Table 2 compares MPI performance of different MNPs.

    Table 2 Comparison of MPI performance of different MNPs

    3 Nanoparticle Tracers for MPI

    At present,the reported tracers that can be used in MPI are mainly magnetic nanoparticles with superparamagnetic properties,including iron oxide nanoparticles(IONPs)and magnetic heterostructure nanoparticles.Here,the synthesis methods of these magnetic nanoparticles and their performance in MPI imaging are summarized.In addition,the influencing factors of MPI signal of these nanoparticle tracers and the methods to improve their MPI signal are discussed,to promote the future development of nanoparticle tracers for MPI.

    3.1 Iron Oxide

    IONPs are the most studied and widely used tracers in MPI.They are benign,non-toxic,biodegradable and have adjustable magnetic properties.In a certain size range,IONPs exhibit superparamagnetism and high MPI signal[21].At present,there are many reported synthesis methods of IONPs,including coprecipitation,hydrothermal process,thermal decomposition process,etc.[22].Previous researches show that there are many factors affecting the properties of IONPs,including size,shape,composition,aggregation[23,24].

    Wanget al.[18]developed a special MPI tracer based on cubic IONPs with an edge length of 22 nm(CIONs-22)by controlling the size and shape of MNPs in accordance with MPI physics theory.They found that the disordered surface of CIONs-22 has a lower ratio of spin and a significantly higher saturation magnetization than that of the sphere.Compared with the larger size CIONs,their saturation magnetization is not much different,but it has a lower coercivity[Fig.3(A)and(B)].Due to these special magnetic properties,CIONs-22 has significant advantages as a dedicated tracer for MPI with high sensitivity and resolution.Their data showed that,at the same iron concentration,the MPI signal of CIONs-22 was significantly stronger than that of Version and larger CIONs,and the MPI signal intensity generated by CIONs-22 was 4.15 times higher than that of the commercial Vivotrax[Fig.3(C)and(D)].

    Fig.3 IONPs of different sizes and shapes act as MPI tracers[18]

    Based on the principle that carbon loading and metal doping can improve the MPI property of IONPs,Jianget al.[17]designed and synthesized a series of new MPI tracers MFe2O4/C(M=Mn,Co,or Zn)andγ-Fe2O3/C.Using MIL-88A as raw material,MFe2O4andγ-Fe2O3nanoparticles loaded with carbon were prepared by thermal decomposition in 450℃and coated with polydopamine(PDA)to improve the biocompatibility of the nanoparticles[Fig.4(A)].The nonlinear magnetization curves of all nanoparticles were measured at 25℃using a vibrating sample magnetometer(VSM),and the superparamagnetism and saturation susceptibility of various nanoparticles were obtained with aMs value of 32.06 emu/g for ZnFe2O4/C[Fig.4(B)].Inin vitroMPI test,it was found that the MPI signal intensity of various nanoparticles at the same concentration was in the order of ZnFe2O4/C@PDA>MnFe2O4/C@PDA>γ-Fe2O3/C@PDA>CoFe2O4/C@PDA>Vivotrax>ZnFe2O4.The MPI signal of ZnFe2O4/C@PDA was 1787.7,4.7 times that of the commercial Vivotrax(383.2)[Fig.4(C)—(E)].

    Fig.4 Carbon loading and metal doping improve the performance of MPI tracers[17]

    Existing nanoparticles have mild S-type magnetization responses that limit resolution and sensitivity.Tayet al.[25]developed a chain of superferromagnetic iron oxide nanoparticles(SFMIO)to achieve an ideal stepped magnetization response,thereby improving image distinguishability and SNR by more than ten times that of conventional MPI.The basic mechanism relies on dynamic magnetized MPI excitation with square hysteresis loops in response to 20 kHz and 15 KAM-1,and the nanoparticles are assembled into chains under an external magnetic field.The“one-dimensional avalanche”dipole inversion of each nanoparticle in the chain occurs when the applied field overcomes the dynamic coercivity threshold from the dipole-dipole field of adjacent nanoparticles in the chain[Fig.5(A)].The event produces a strong sensing signal,which causes a sharp signal spike.SFMIOs did achieve its goal of improving MPI image property by switching between application areas of approximately 1 mT.Compared with the existing MPI nanoparticle Vivotrax,SFMIOs has a 40-fold improvement in SNR and a 10-fold improvement in spatial distinguishability[Fig.5(B)—(D)].

    Fig.5 Order-of-magnitude mass sensitivity and resolution gains using superferro magnetic chains(SFMIOs)[25]

    3.2 Heterostructured Nanoparticles

    3.2.1 Iron-base Alloy The sensitivity and distinguishability of MPI are highly dependent on the performance of nanoparticles tracer,and the magnetic properties of nanoparticles depend on its nonlinear magnetization curve[4].With the increase of magnetic field intensity,magnetization tends to saturate,and high saturation magnetization usually has high MPI signal.Among various MNPs,the saturation susceptibility of iron-based alloys,such as PtFe(100 emu/g),F(xiàn)e5C2(125 emu/g),and FeCo(215 emu/g),is better than that of Fe3O4(21—80 emu/g)[26—29].Therefore,the development of iron-based alloy as MPI tracers has a great prospect.

    Owing to the instability of uncoated FeCo nanoparticles in air,Songet al.[19]introduced graphite carbon shell protection and prepared carbon-coated FeCo nanoparticles(FeCo@C)by methane chemical vapor deposition(CVD)as a novel MPI tracer.They modified the amphiphilic PEG-grafted poly(maleicanhydridealt-1-octadecene)onto the surface of FeCo@C through hydrophobicity and obtained biocompatible nanoparticles(FeCo@C-PEG).They investigated the effects of metal core composition and particle size on the MPI signal strength of FeCo@C-PEG nanoparticles.The best nuclear mole ratio of FeCo@C-PEG is Fe to Co=1∶1.Using the method of density gradient rate separation,the synthesized FeCo@C-PEG nanoparticles were centrifuged into gradient layers,and five kinds of nanoparticles with different sizes were collected manually[Fig.6(A)—(G)].The study showed that under the condition of the same nuclear molar concentration,The MPI signal produced by FeCo@C nanoparticles with a 10 nm nuclear diameter was 6.08 times that of VivoTrax(a commercial MPI tracer),and 14.91 times that of Feraheme[Fig.6(H)].

    Fig.6 Representation and MPI performance of FeCo@C-PEG[19]

    3.2.2 Core-shell Nanoparticles The size of core-shell magnetic nanoparticles is regulated by core diameter and shell thickness,and the direct contact between core and shell leads to strong exchange coupling[30].Research on magnetic nanoparticles with core-shell structure is progressing[31].

    For example,Chaiet al.[32]developed a one-pot organic phase synthesis method to prepare nanoparticles with magnetic core-shell structure.In this method,they prepared core-shell nanoparticles with uniform morphology,high crystallinity and tunable composition,such as FePt@Mn-oxide,F(xiàn)ePt@Mn-oxide,F(xiàn)ePt@Cooxide and FePt@Ni-oxide,and studied their magnetic properties.Their data show that core-shell nanoparticles have stronger saturation susceptibility.

    Gloaget al.[20]developed a<15 nm magnetic nanoparticle composed of a zero-valent iron core and an iron oxide shell for MPI tracers.They found that magnetic nanoparticles with small,highly magnetic zero-valent cores,which are half the diameter of Vivotrax,the best commercial MPI tracer,have similar MPI signal size and resolution.Therefore,the strong magnetism of zero-valent iron enables the smaller nano core to produce stronger MPI signals.Compared to the commercial VivoTrax nanopore tracer,the core coated with the 11-nm polymer achieved more than 40%of the MPI signal at the same iron content and more than 80%at 14 nm(Fig.7).

    Fig.7 Representation and MPI performance of zero valent iron core-iron oxide shell nanoparticles[20]

    The study of these core-shell magnetic nanoparticles enriches MNPs that can be used for MPI.Their unique magnetic properties allow them to be used in MPI with higher sensitivity,resolution and more possibilities.Therefore,magnetic core-shell nanoparticles have broad application prospects in MPI field.

    3.2.3 Janus Nanoparticles We know that a certain imaging method has more or less shortcomings,and in the process of disease diagnosis and treatment,a variety of imaging methods are usually used to obtain more accurate information[33].Therefore,the development of nanoparticles with multi-mode imaging function has great potential.Janus nanoparticles with regulable asymmetric structures provide two different nanoparticle territories for multi-mode imaging.The two different territories of Janus nanoparticles can fully retain the characteristics of the two domains,and there is no steric hindrance between each other,which can carry out the functions of drug loading or target[34].

    Songet al.[35]obtained Janus Fe3O4@PFODBT nanoparticles by wrapping the synthesized IONPs in a fluorescent semiconductor polymer.Each Janus particle contained two or more Fe3O4nanoparticles,but they showed the same MPI signal strength as uncoated Fe3O4nanoparticles at the same iron concentration(Fig.8).Therefore,the Janus nanoparticles developed in this study have MPI,MRI and fluorescence imaging multimode imaging capabilities.

    Fig.8 Synthesis and MPI performance of Janus MNPs[35]

    4 Biomedical Applications of MPI

    To date,MPI research has focused on machine hardware,technical improvements,and the design and development of MPI tracers to improve performance such as temporal and spatial resolution and sensitivity.Now MPI has entered the pre-clinical stage,exploring its application in biomedicine is the focus of future research.This review summarizes the recent research on the biomedical applications of MPI.

    4.1 MPI Tracers for Quantification of Body Fat Uptake

    Lipids are the primary origin of energy for most biological tissues,so their absorption and stockpile are important for the energy balance in cellular tissues.Until now,the imaging quantification of body fat uptake has largely relied on radioisotope labeling,but this radiolabeling method exposes human or laboratory animals to ionization radiation[36].The quantitative detection of MPI by non-radiative high sensitivity method is more concerned.

    Chylous microparticles are the main carriers of dietary fat.Hildebrandet al.[37]used MPI and magnetic particle spectroscopy(MPS)to quantifyin vivouptake of chylous microparticles in metabolically active tissues.They loaded artificial chylomere(ACM)with IONPs to enable fast and highly sensitivein situdetection of lipid uptake by MPS[Fig.9(A)—(C)].They then synthesized ACM with MPI tracer properties by using highly magnetic zinc-doped iron oxide nanoparticles(ZnMNPs),replacing the current standard Resovist,allowing quantitative intake of fat from whole-animal scans.They used acute cold exposure as a means of inducing chylomicron uptakein vivo.MPI signals in the interscapular region were significantly increased in mice injected with ZnMNPs-ACM under cold conditions[Fig.9(D)and(E)].

    Fig.9 MPI tracers for quantification of lipoprotein uptake in vivo[37]

    4.2 MPI Tracers for Cell Tracing

    Cell tracer can help people understand the distribution of transplanted cellsin vivo,which is of great significance to the research of using cells as vectors.There are many imaging methods for cell tracing,such as MRI,SPECT,PET,and optical imaging methods[35].However,PET and SPECT tracers have poor biocompatibility and are not suitable for long-term follow-up[38,39].In addition,radioactive labeling methods may affect cell activity and hinder cell-based studies[40].The optical probe labeling method is limited by the light penetration ability,while the MRI tracking method also has the problem of signal artifact,loss and so on[41—44].Therefore,the application of the emerging MPI technology in cell tracing has attracted much attention.

    The multifunctional Janus MNPs developed by Songet al.[35]has been used to label and imaging HeLa cellsin vivoorin vitro.In this study,the excellent performance of MPI for cell tracing was obtained by comparing Janus MNPs labeled cells in three modes including MPI,MRI and fluorescence.In vivo,MPI can clearly display 250 labeled HeLa cells in mouse model,but fluorescence imaging has low contrast due to the limitation of depth of tissue penetration and high background signal.Magnetic resonance imaging of labeled cancer cells,on the other hand,could not clearly show labeled cells because IONPs produced abscissive signals similar to dark signals at the air-tissue interface.For example,the negative contrast of 2500 labeled cells is difficult to distinguish inT2-weighted MRI[Fig.10(A)—(E)].They also used MPI to track tumor growth in mice after hypodermic implantation of Janus MNPs labeled HeLa cells[Fig.10(F)and(G)].

    Fig.10 MPI tracers for cellular tracking[35]

    4.3 MPI Tracers for Cancer Imaging and Therapy

    High sensitivity tumor imaging is of great significance for early detection and staging of cancer.Generally,MNPs can be retained and enriched at the tumor site through EPR effect.Based on this principle,MPI tracers are widely used in tumor imaging[35].Compared with other imaging methods,MPI has more exciting performance.Concurrently,MNPs-mediated magnetothermal therapy is hopeful to be a new advance in cancer treatment[45].Based on the fundamental by which ferromagnetic/ferromagnetic MFNPs are injected into the tumor site for heating under an alternating magnetic field(AMF),MFNPs-mediated hyperthermia can rapidly and directly kill the local tumor without affecting adjacent healthy tissues[46].

    At present,previous studies show that intratumoral injection is the best route for MNPs-mediated hyperthermia.In this way,high concentration of MNPs can be injected at the objective targets,while avoiding the off-target virulence of general systemic administration to normal tissues[47,48].In order to distribute administered MNPs evenly in tumors and to generate heat equably in the tumor,the usual tactics is to inject multiple doses of MNPs at different locations in the tumor[49].The emergence of MPI provides a new method to accurately quantify the number and distribution of nanoparticles in solid tumors.Unlike MRI,which can detect iron oxide indirectly,MPI can directly image the biological distribution of MNP with special sensitivity and specificity.Owing to MPI immediately detects MNPs,MPI images can be applied to monitoring the absorptivity dose of the target site to assure security and effectiveness of magnetic hyperthermia(MHT).

    Duet al.[50]combined MPI guidance with peptides that target tumors to improve consistency of hyperthermia for solid tumors.They developed CREKA-modified IONPs for dual-mode MRI/MPI precision imaging and guided magnetic hyperthermia in 4T1 breast tumor mouse models.IONPs modified with CREKA polypeptide(IOs-CREKA)can target the highly expressed fibronectin in tumor microenvironment(TME).Data from their study showed that IOs-CREKA showed a higher and more uniform MPI signal across the tumor area 4 h after injection than non-peptide-modified IONPs[Fig.11(A)and(B)].T2-weighted MRI also shows the same trend.However,T2-weighted MRI often leads to imaging artifactsin some situations,such as calcification,bleeding or metal deposition.According to infrared thermography,the temperature of the mice tumor which injected with IOs-CREKA nanoparticles rose toca.43℃when exposed to AMF,effectively killing tumor cells[Fig.11(C)].BLI is used to dynamically and accurately monitor outcomes across treatment groups.In comparison,IOs-mediated hyperthermia had a good therapeutic effect at incipient stage of caner treatment,but some vestigial tumor cells at the tumor margin were gradually rebuilt,while IOs-CREKA NPs mediated hyperthermia almost disappeared the tumor and no bioluminescent light signal was detected.The improved targeting and administration uniformity makes cancer ablationviamagnetothermal therapy more effective than other equivalent untargeted IONPs[Fig.11(D)—(F)].

    Fig.11 MPI tracers for cancer imaging and MHT[50]

    4.4 MPI Tracers for Real-time Monitoring of Intracranial Hemorrhage

    Ludewiget al.[51]demonstrated the feasibility of applying MPI to cerebral perfusion imaging,which can intuitively display the blood flow and tissue irrigation volume during cerebral ischemia.However,no studies have shown whether MPI can be used to detect intracranial hemorrhage and the delay of detection.The application of MPI to detect bleeding will be more challenging than cerebral perfusion imaging,which requires rapid accumulation of MPI tracers at the bleeding site in order to show the difference between the bleeding site and normal tissue on MPI images.MPI will have more clinical significance if it can detect bleeding as early as possible.Exciting is that the rapid development of MPI makes it have high sensitivity and excellent temporal resolution and high spatial resolution.Recent studies have shown the MPI can through the accumulation of tracer in the region of the different viscosity condition to realize visualization blood clotting[52,53],combined with the cerebral perfusion imaging,are likely to determine whether the bleeding has stopped or is still continuing,to realize real-time monitoring of bleeding.

    Szwargulskiet al.[54]investigated the ability of MPI to detect intracranial hemorrhage in a mouse model.Intracranial hemorrhage was induced by injection of collagenase into C57BL/6 mice.Intracranial hemorrhage was detected in less than 3 min after intravenous injection of a long-cycle MPI tracer consisting of SPIONPs,and hematoma enlargement was monitored in real time(Fig.12).

    Fig.12 Rapid detection of intracranial hemorrhage with MPI[54]

    5 Summary and Outlook

    This review introduces the basic principle of MPI and summarizes the research progress of MPI in recent years.According to the relaxation theory and X-space theory of MPI,the magnetic properties and relaxation time of MNPs greatly affect the imaging effect of MPI.The property of MNPs is the key,so recent studies focus on the development of high performance MPI tracers.We summarize the types of MNPs available for MPI,including iron oxide,magnetic heterostructure nanoparticles(iron based alloy,core-shell nanoparticles and Janus nanoparticles).The study of IONPs mainly focused on carbon loading,metal doping,surface modification,size controling and synthesis conditions to enhance IONPs MPI signal,as well as research in and under the action of magnetic field,IONPs assembled into SFMIO nanoparticles with chain to enhance the performance of MPI.The research on magnetic heterostructure nanoparticles has developed a batch of MNPs with good magnetic properties and multi-functional,which makes them a hopeful development platform.MPI has the advantages of non-invasive,high sensitivity and non-radiation,and modified MNPs have good biocompatibility and ability to load drugs,making them widely used in a variety of biomedical applications.MPI has demonstrated superior performance in cell labeling,quantitative detectionin vivo,real-time imaging monitoring,tumor imaging and guided therapy.However,there are still some challenges before it can be translated into the clinic,such as the potential toxicity of high reticuloendothelial system(RES)uptake,the difficulty of developing responsive MPI tracers,and the need for further research on the factors influencing the performance of MPI tracers.

    猜你喜歡
    湖南大學化工學院示蹤劑
    使固態(tài)化學反應100%完成的方法
    湖南中煙聯(lián)合湖南大學揭示植物維持代謝平衡的機制
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    南海東部深水油田水平井產(chǎn)出剖面 示蹤劑監(jiān)測技術(shù)及應用
    井間示蹤劑監(jiān)測在復雜斷塊油藏描述中的應用
    錄井工程(2017年1期)2017-07-31 17:44:42
    A Study on the Cohesion of English and ChineseBlessing Short Messages
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    多示蹤劑成像技術(shù)在腫瘤診斷方面的應用研究
    溴化鉀型示蹤劑檢測的改進方法
    應用化工(2014年1期)2014-08-16 13:34:08
    亚洲成人中文字幕在线播放| 一本久久精品| 少妇的逼水好多| 97在线人人人人妻| 中文字幕亚洲精品专区| 久久久久久久大尺度免费视频| 亚洲av综合色区一区| 纯流量卡能插随身wifi吗| 午夜激情福利司机影院| 一本一本综合久久| 亚洲欧洲日产国产| 精品国产乱码久久久久久小说| 精品人妻偷拍中文字幕| 久久久久久久久久人人人人人人| .国产精品久久| 久久女婷五月综合色啪小说| 国产白丝娇喘喷水9色精品| 91狼人影院| 天堂俺去俺来也www色官网| 欧美日韩视频高清一区二区三区二| 国产一区二区在线观看日韩| 成年美女黄网站色视频大全免费 | 一区在线观看完整版| 亚洲熟女精品中文字幕| 久久人妻熟女aⅴ| 中文字幕久久专区| 久久精品国产亚洲av天美| 国产无遮挡羞羞视频在线观看| 午夜福利影视在线免费观看| 久久99热这里只频精品6学生| 亚洲,一卡二卡三卡| 亚洲色图综合在线观看| 六月丁香七月| 18禁在线播放成人免费| 国产精品av视频在线免费观看| 在线看a的网站| 久久久久久久久久人人人人人人| 99精国产麻豆久久婷婷| 免费观看av网站的网址| av在线蜜桃| 免费大片黄手机在线观看| 亚洲国产毛片av蜜桃av| 人妻系列 视频| 性色avwww在线观看| 青青草视频在线视频观看| 亚洲一级一片aⅴ在线观看| 欧美精品一区二区免费开放| 亚洲欧美精品自产自拍| 免费观看av网站的网址| 高清黄色对白视频在线免费看 | 亚洲国产色片| 亚洲精品久久午夜乱码| 国产精品国产三级国产av玫瑰| 日产精品乱码卡一卡2卡三| 国产男女超爽视频在线观看| 美女中出高潮动态图| 国内精品宾馆在线| 欧美国产精品一级二级三级 | 午夜福利在线观看免费完整高清在| 亚洲精华国产精华液的使用体验| 国产深夜福利视频在线观看| 天天躁日日操中文字幕| 亚洲国产欧美人成| 亚洲国产毛片av蜜桃av| 国产久久久一区二区三区| 日韩成人av中文字幕在线观看| 看非洲黑人一级黄片| 国产成人精品一,二区| 少妇熟女欧美另类| 精品久久国产蜜桃| 欧美精品一区二区免费开放| 亚洲精品乱码久久久久久按摩| 老司机影院毛片| 欧美变态另类bdsm刘玥| 成人高潮视频无遮挡免费网站| 国产精品不卡视频一区二区| 久久精品国产鲁丝片午夜精品| 久久久久国产精品人妻一区二区| 国产亚洲一区二区精品| 狂野欧美白嫩少妇大欣赏| 在线观看免费高清a一片| 色婷婷av一区二区三区视频| 亚洲欧美精品专区久久| 婷婷色综合大香蕉| 日韩一本色道免费dvd| 寂寞人妻少妇视频99o| 久久久久久久久久成人| 精品一品国产午夜福利视频| 久久午夜福利片| 3wmmmm亚洲av在线观看| 久久99精品国语久久久| 日韩一本色道免费dvd| 精品熟女少妇av免费看| 纵有疾风起免费观看全集完整版| 亚洲精品一二三| 亚洲欧美日韩另类电影网站 | 日本vs欧美在线观看视频 | 特大巨黑吊av在线直播| 亚洲人成网站在线播| 如何舔出高潮| 国产亚洲一区二区精品| 性色avwww在线观看| 国产精品精品国产色婷婷| 一边亲一边摸免费视频| 99热国产这里只有精品6| 3wmmmm亚洲av在线观看| 亚洲熟女精品中文字幕| 黄片wwwwww| 亚洲精品日韩在线中文字幕| 少妇丰满av| 国产成人91sexporn| 国产永久视频网站| 欧美精品人与动牲交sv欧美| 人人妻人人澡人人爽人人夜夜| 久久毛片免费看一区二区三区| 大又大粗又爽又黄少妇毛片口| 在线播放无遮挡| 精品亚洲乱码少妇综合久久| 亚洲精品日本国产第一区| a级毛片免费高清观看在线播放| 少妇人妻一区二区三区视频| 国产精品久久久久久久电影| 在线观看一区二区三区激情| 18禁在线播放成人免费| 天天躁夜夜躁狠狠久久av| 久久女婷五月综合色啪小说| 女的被弄到高潮叫床怎么办| 男人爽女人下面视频在线观看| 色哟哟·www| 国产精品偷伦视频观看了| 亚洲美女搞黄在线观看| 国内精品宾馆在线| 深爱激情五月婷婷| 最新中文字幕久久久久| 九九在线视频观看精品| 人妻 亚洲 视频| 18禁裸乳无遮挡免费网站照片| 少妇猛男粗大的猛烈进出视频| 女性被躁到高潮视频| 欧美成人一区二区免费高清观看| 日本一二三区视频观看| 久久久色成人| 久久久久人妻精品一区果冻| 在线观看一区二区三区| 国产一区有黄有色的免费视频| 伊人久久国产一区二区| 不卡视频在线观看欧美| 80岁老熟妇乱子伦牲交| 一个人免费看片子| 国产又色又爽无遮挡免| 精品一区二区三卡| 亚洲不卡免费看| 国产精品久久久久久久久免| 欧美xxxx性猛交bbbb| 中文字幕免费在线视频6| videos熟女内射| 午夜精品国产一区二区电影| 久久6这里有精品| 男女边吃奶边做爰视频| 蜜臀久久99精品久久宅男| 国产精品一区二区在线观看99| 大香蕉久久网| 成人亚洲精品一区在线观看 | 在线观看人妻少妇| 晚上一个人看的免费电影| av卡一久久| 插阴视频在线观看视频| 欧美成人一区二区免费高清观看| 黄色怎么调成土黄色| 在线观看美女被高潮喷水网站| 国产高清国产精品国产三级 | a级毛色黄片| 亚洲欧美清纯卡通| 一区二区三区免费毛片| 99久久综合免费| 国产片特级美女逼逼视频| 美女cb高潮喷水在线观看| 国产精品熟女久久久久浪| 国产精品久久久久久精品电影小说 | 99九九线精品视频在线观看视频| 激情五月婷婷亚洲| 少妇的逼好多水| 欧美日韩视频精品一区| 日韩av不卡免费在线播放| 26uuu在线亚洲综合色| 精品国产三级普通话版| 国产精品国产三级国产av玫瑰| 欧美亚洲 丝袜 人妻 在线| 亚洲av日韩在线播放| 岛国毛片在线播放| 欧美最新免费一区二区三区| 国产成人freesex在线| 秋霞伦理黄片| 精品视频人人做人人爽| 波野结衣二区三区在线| 日韩一本色道免费dvd| 免费人妻精品一区二区三区视频| 亚洲熟女精品中文字幕| 国产精品人妻久久久影院| 搡女人真爽免费视频火全软件| 少妇被粗大猛烈的视频| 欧美精品人与动牲交sv欧美| 国产精品久久久久久久电影| 身体一侧抽搐| 精品酒店卫生间| 国产精品不卡视频一区二区| 青春草视频在线免费观看| 成年女人在线观看亚洲视频| 高清在线视频一区二区三区| 美女高潮的动态| 女的被弄到高潮叫床怎么办| 最近的中文字幕免费完整| 国产精品熟女久久久久浪| 乱系列少妇在线播放| 国语对白做爰xxxⅹ性视频网站| 亚洲精品久久午夜乱码| 午夜激情久久久久久久| 国产真实伦视频高清在线观看| 亚洲天堂av无毛| 日韩欧美 国产精品| 一级爰片在线观看| 新久久久久国产一级毛片| a 毛片基地| 最近中文字幕高清免费大全6| 成人影院久久| 久久人人爽人人爽人人片va| 一本一本综合久久| 国产精品久久久久久精品电影小说 | 午夜福利网站1000一区二区三区| 亚洲第一区二区三区不卡| 久久久亚洲精品成人影院| 丰满人妻一区二区三区视频av| 有码 亚洲区| 国产视频首页在线观看| 麻豆乱淫一区二区| 日韩免费高清中文字幕av| 国产精品一区www在线观看| 天堂俺去俺来也www色官网| 欧美极品一区二区三区四区| 成人一区二区视频在线观看| 日本欧美国产在线视频| 国产亚洲午夜精品一区二区久久| 国产精品秋霞免费鲁丝片| 亚洲精品色激情综合| 国产亚洲午夜精品一区二区久久| 国产黄片视频在线免费观看| 国产v大片淫在线免费观看| tube8黄色片| 久久精品国产a三级三级三级| 欧美成人精品欧美一级黄| 久久久久久久大尺度免费视频| 老师上课跳d突然被开到最大视频| 国产人妻一区二区三区在| 精品亚洲乱码少妇综合久久| 新久久久久国产一级毛片| 亚洲av中文字字幕乱码综合| 80岁老熟妇乱子伦牲交| 亚洲国产精品国产精品| 九草在线视频观看| 老司机影院毛片| 欧美精品一区二区大全| 18禁裸乳无遮挡动漫免费视频| 国产国拍精品亚洲av在线观看| av免费在线看不卡| 97在线视频观看| 亚洲色图综合在线观看| 色视频www国产| 国产大屁股一区二区在线视频| 蜜桃在线观看..| 中文资源天堂在线| h日本视频在线播放| 精品国产一区二区三区久久久樱花 | 最近中文字幕高清免费大全6| 午夜老司机福利剧场| 王馨瑶露胸无遮挡在线观看| av国产久精品久网站免费入址| 午夜老司机福利剧场| 美女cb高潮喷水在线观看| 日本欧美国产在线视频| 特大巨黑吊av在线直播| 国产欧美日韩一区二区三区在线 | 国产深夜福利视频在线观看| 久久精品国产a三级三级三级| 内地一区二区视频在线| 午夜精品国产一区二区电影| 精品久久久噜噜| 久久国产精品男人的天堂亚洲 | 免费不卡的大黄色大毛片视频在线观看| 国产伦精品一区二区三区视频9| 99热国产这里只有精品6| 亚洲国产av新网站| 亚洲怡红院男人天堂| 十分钟在线观看高清视频www | 极品教师在线视频| 国产视频内射| 亚洲精品456在线播放app| 成人二区视频| 国产精品久久久久久精品电影小说 | 午夜激情福利司机影院| 亚洲精品456在线播放app| 亚洲精品456在线播放app| 国产高清三级在线| 蜜桃在线观看..| 欧美亚洲 丝袜 人妻 在线| 大片电影免费在线观看免费| 最近中文字幕高清免费大全6| 黑人猛操日本美女一级片| 久久久久人妻精品一区果冻| 国产黄片视频在线免费观看| 亚洲va在线va天堂va国产| 亚洲成人一二三区av| 国产一区二区三区综合在线观看 | 日韩欧美精品免费久久| 韩国av在线不卡| 最近最新中文字幕大全电影3| 亚洲性久久影院| 交换朋友夫妻互换小说| 日韩中文字幕视频在线看片 | xxx大片免费视频| 免费播放大片免费观看视频在线观看| 一区二区av电影网| 天天躁日日操中文字幕| 久久99热6这里只有精品| 精品少妇黑人巨大在线播放| 国产爱豆传媒在线观看| 人人妻人人爽人人添夜夜欢视频 | 国产久久久一区二区三区| av黄色大香蕉| 成人一区二区视频在线观看| 国产精品国产av在线观看| 三级国产精品欧美在线观看| 只有这里有精品99| 爱豆传媒免费全集在线观看| 国产精品久久久久久精品电影小说 | 麻豆乱淫一区二区| 一级爰片在线观看| 色5月婷婷丁香| 亚洲第一区二区三区不卡| 日本色播在线视频| 在线观看三级黄色| 久久综合国产亚洲精品| 亚洲欧美清纯卡通| 人妻系列 视频| 欧美高清性xxxxhd video| 国产淫语在线视频| 亚洲av欧美aⅴ国产| 亚洲伊人久久精品综合| 日韩成人av中文字幕在线观看| 免费观看的影片在线观看| 麻豆乱淫一区二区| 久久6这里有精品| 国产人妻一区二区三区在| 国产无遮挡羞羞视频在线观看| av在线老鸭窝| 国产成人精品福利久久| 午夜福利高清视频| 欧美亚洲 丝袜 人妻 在线| 亚洲欧洲国产日韩| av免费在线看不卡| 亚洲欧美日韩无卡精品| 自拍欧美九色日韩亚洲蝌蚪91 | 久久精品久久久久久久性| 国产伦精品一区二区三区四那| 亚洲国产精品999| 边亲边吃奶的免费视频| 街头女战士在线观看网站| 精品久久久久久电影网| xxx大片免费视频| 亚洲一级一片aⅴ在线观看| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩卡通动漫| 插阴视频在线观看视频| 久久人人爽人人片av| 国产美女午夜福利| 精品视频人人做人人爽| 九草在线视频观看| 中文天堂在线官网| 免费av中文字幕在线| 97热精品久久久久久| 国产精品麻豆人妻色哟哟久久| 女性生殖器流出的白浆| 美女主播在线视频| av卡一久久| 免费黄色在线免费观看| 热re99久久精品国产66热6| 国产乱人偷精品视频| 麻豆成人av视频| 亚洲美女视频黄频| 免费观看性生交大片5| 免费观看无遮挡的男女| 亚洲国产毛片av蜜桃av| www.av在线官网国产| 欧美bdsm另类| 日本av手机在线免费观看| 亚洲精品第二区| 在线观看免费视频网站a站| 91aial.com中文字幕在线观看| 亚洲国产欧美人成| 黄色视频在线播放观看不卡| 在线观看免费视频网站a站| 大陆偷拍与自拍| 日韩不卡一区二区三区视频在线| 国产国拍精品亚洲av在线观看| 久久 成人 亚洲| 热re99久久精品国产66热6| 黑丝袜美女国产一区| 国产精品av视频在线免费观看| 免费观看无遮挡的男女| 伊人久久国产一区二区| av福利片在线观看| 国产一区亚洲一区在线观看| 综合色丁香网| 国产 精品1| 国产日韩欧美亚洲二区| 性高湖久久久久久久久免费观看| 欧美亚洲 丝袜 人妻 在线| 亚州av有码| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美精品人与动牲交sv欧美| 91aial.com中文字幕在线观看| 高清黄色对白视频在线免费看 | av女优亚洲男人天堂| 91精品伊人久久大香线蕉| 99热这里只有是精品在线观看| 亚洲精品一二三| 精品国产一区二区三区久久久樱花 | 麻豆乱淫一区二区| 成年av动漫网址| h视频一区二区三区| .国产精品久久| 亚洲欧美成人综合另类久久久| 一级毛片久久久久久久久女| 国产美女午夜福利| 熟妇人妻不卡中文字幕| 精品国产露脸久久av麻豆| 青春草亚洲视频在线观看| 国产日韩欧美亚洲二区| 日韩av在线免费看完整版不卡| 各种免费的搞黄视频| 麻豆乱淫一区二区| 熟女电影av网| 久久久精品94久久精品| 国产一级毛片在线| av天堂中文字幕网| 亚洲美女视频黄频| 国产精品久久久久成人av| 国产淫语在线视频| 国产亚洲5aaaaa淫片| 啦啦啦视频在线资源免费观看| 新久久久久国产一级毛片| 精品人妻偷拍中文字幕| 欧美成人一区二区免费高清观看| 日韩在线高清观看一区二区三区| 大码成人一级视频| 九九爱精品视频在线观看| 只有这里有精品99| 下体分泌物呈黄色| 国产男女超爽视频在线观看| 亚洲欧美日韩卡通动漫| 亚洲婷婷狠狠爱综合网| 国产乱人偷精品视频| 日日撸夜夜添| av在线app专区| 大话2 男鬼变身卡| 一二三四中文在线观看免费高清| 人人妻人人爽人人添夜夜欢视频 | 久久亚洲国产成人精品v| 男女边吃奶边做爰视频| 国产淫语在线视频| 国产一区亚洲一区在线观看| 国产大屁股一区二区在线视频| 久久久成人免费电影| 美女视频免费永久观看网站| 国产精品国产三级专区第一集| 欧美xxxx性猛交bbbb| 欧美精品一区二区大全| 亚洲国产色片| 精品熟女少妇av免费看| 午夜老司机福利剧场| 岛国毛片在线播放| 人人妻人人澡人人爽人人夜夜| 国产精品av视频在线免费观看| 免费看av在线观看网站| 亚洲一区二区三区欧美精品| 夜夜骑夜夜射夜夜干| 2018国产大陆天天弄谢| 人妻系列 视频| 插逼视频在线观看| 高清av免费在线| 久久久久久久久久久丰满| 男女免费视频国产| 成人特级av手机在线观看| 精品亚洲成a人片在线观看 | 国产亚洲91精品色在线| 少妇熟女欧美另类| av在线蜜桃| 免费观看无遮挡的男女| 国产中年淑女户外野战色| 亚洲第一区二区三区不卡| 国产亚洲最大av| 新久久久久国产一级毛片| 一区二区三区精品91| 国产亚洲精品久久久com| 亚洲经典国产精华液单| 久久人人爽人人爽人人片va| 久热久热在线精品观看| 亚洲精品乱码久久久久久按摩| 91在线精品国自产拍蜜月| 国产在线男女| 搡女人真爽免费视频火全软件| 成年免费大片在线观看| av天堂中文字幕网| 噜噜噜噜噜久久久久久91| 精品一区二区三卡| 欧美日韩视频精品一区| 丝袜脚勾引网站| 国产成人freesex在线| 中文精品一卡2卡3卡4更新| 精品亚洲成a人片在线观看 | 日韩三级伦理在线观看| 精品亚洲乱码少妇综合久久| 自拍偷自拍亚洲精品老妇| 乱系列少妇在线播放| 亚洲中文av在线| 色视频在线一区二区三区| av在线老鸭窝| 亚洲av国产av综合av卡| 免费观看性生交大片5| 男女无遮挡免费网站观看| 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品电影小说 | 久久久久久久久久人人人人人人| 精品一区在线观看国产| 丝瓜视频免费看黄片| 最黄视频免费看| 久久人人爽人人片av| 日日啪夜夜撸| 国产精品久久久久成人av| 欧美日韩一区二区视频在线观看视频在线| 我要看日韩黄色一级片| 久久这里有精品视频免费| 男女下面进入的视频免费午夜| av女优亚洲男人天堂| 身体一侧抽搐| 亚洲欧美日韩卡通动漫| 国产伦在线观看视频一区| 国产精品国产三级国产av玫瑰| 麻豆乱淫一区二区| 男女边摸边吃奶| 大香蕉97超碰在线| 国产熟女欧美一区二区| 91在线精品国自产拍蜜月| 中文字幕久久专区| 男女下面进入的视频免费午夜| 嘟嘟电影网在线观看| 交换朋友夫妻互换小说| 国产精品久久久久久av不卡| 国产伦在线观看视频一区| 各种免费的搞黄视频| 国产 一区 欧美 日韩| 日本色播在线视频| 免费看日本二区| 国产黄频视频在线观看| 久久鲁丝午夜福利片| 国国产精品蜜臀av免费| 日韩电影二区| 国产精品一及| 成年av动漫网址| 亚洲精品,欧美精品| 国产中年淑女户外野战色| 在线天堂最新版资源| 久久韩国三级中文字幕| 日韩在线高清观看一区二区三区| 亚洲真实伦在线观看| 秋霞在线观看毛片| 国产成人精品久久久久久| 美女内射精品一级片tv| 18+在线观看网站| 国产精品爽爽va在线观看网站| 国产成人a区在线观看| 精品午夜福利在线看| 精品亚洲乱码少妇综合久久| 少妇人妻久久综合中文| 特大巨黑吊av在线直播| 亚洲熟女精品中文字幕| 下体分泌物呈黄色| 国产亚洲av片在线观看秒播厂| 自拍偷自拍亚洲精品老妇| 色婷婷久久久亚洲欧美| 久久人妻熟女aⅴ| 毛片一级片免费看久久久久| 精品少妇黑人巨大在线播放| 国产精品三级大全| a级一级毛片免费在线观看| 国产精品免费大片| 男女无遮挡免费网站观看| 少妇的逼好多水| 国产精品不卡视频一区二区| av一本久久久久| 久久久久久久久久久丰满| 亚洲成人av在线免费| 18禁在线无遮挡免费观看视频| 51国产日韩欧美| 国精品久久久久久国模美| 蜜桃在线观看..| 国产精品欧美亚洲77777| 国产日韩欧美在线精品| 岛国毛片在线播放| 一本—道久久a久久精品蜜桃钙片| 中文字幕久久专区| 啦啦啦在线观看免费高清www| 在线观看免费视频网站a站| 欧美日韩视频精品一区| 18禁裸乳无遮挡免费网站照片| 两个人的视频大全免费|