肖金,翟倩,周艷瓊,李武初,陳基松,王超超
基于銅銦微納米層常溫超聲輔助瞬態(tài)固相鍵合技術
肖金,翟倩,周艷瓊,李武初,陳基松,王超超
(廣州華立學院,廣州 511300)
采用針狀形貌銅銦微納米層和超聲能量,在常溫下實現(xiàn)鍵合互連,保證互連的可靠性,從而解決傳統(tǒng)回流焊工藝因高溫引發(fā)的高熱應力、信號延遲加劇等問題。將鍍有銅銦微納米層的基板表面作為鍵合偶,對鍵合接觸區(qū)域施加超聲能量和一定壓力,實現(xiàn)2塊銅銦基板的瞬態(tài)固相鍵合。用掃描電子顯微鏡、透射電子顯微鏡、X射線衍射(XRD)、焊接強度測試儀等分析鍵合界面處的顯微組織、金屬間化合物及剪切強度,并對鍵合界面進行熱處理。在超聲作用和較小的壓力下,銅銦微錐陣列結構相互插入,形成了穩(wěn)定的物理阻擋結構。鍵合界面處的薄銦層在超聲能量作用下,其原子快速擴散轉(zhuǎn)變?yōu)榻饘匍g化合物Cu2In。Cu2In是一種優(yōu)質(zhì)相,具有良好的塑性,有利于提高互連強度。當鍵合界面銦層的厚度為250 nm,鍵合壓力為7 MPa,鍵合時間為1 s時,獲得了相對最佳的鍵合質(zhì)量,同時鍵合界面孔洞消失。熱處理實驗結果表明,這種固相鍵合技術無需額外進行熱處理,就能獲得良好的鍵合強度。銅銦微納米針錐的特殊形貌及超聲波能量的引入,使鍵合在室溫條件下即可瞬間完成,鍵合質(zhì)量良好,可以獲得較小的鍵合尺寸。
金屬材料;固相鍵合;銅?銦微納米;鍵合強度;擴散
低溫鍵合技術是3D封裝中的研究熱點,對于一些溫度敏感的電子元件尤為重要。在銅?銅鍵合中,將各種金屬納米結構用于中間填充料[1-2]。Alarifi等[3]制備了銀納米顆粒填充料,在160 ℃的低溫下將銅線鍵合至銅箔上。Peng等[4]引入Ag納米線,并將鍵合溫度降至60 ℃。Ishizaki等[5]合成了銅納米顆粒,并在300 ℃下實現(xiàn)了Cu?Cu板鍵合。然而,納米粒子的制備過程較復雜。近年來報道了一種基于Ni/Cu微納米錐陣列的低溫鍵合方法[6-9],其鍵合溫度低至160 ℃,在焊料熔點溫度以下實現(xiàn)了有效鍵合。由于界面上存在的孔洞將影響材料的性能,而且這種鍵合技術需要較長的鍵合時間(長達幾十分鐘)才能實現(xiàn)完全擴散,這將會在鍵合界面處形成額外的熱應力[10-11],因此實現(xiàn)鍵合界面處金屬間化合物的快速形成是很有必要的。
超聲波輔助鍵合技術指在超聲波和壓力作用下使兩側(cè)金屬實現(xiàn)鍵合,這種鍵合技術可以在很短的鍵合時間內(nèi)實現(xiàn)芯片間的低溫鍵合,鍵合壓強小,與傳統(tǒng)的熱壓鍵合相比,減少了熱壓對芯片的損傷,提高了封裝體的可靠性[12-14]。Ni、Al、Cu等多種基底和中間層材料被用于超聲鍵合中[15-19]。JI等[20]用純鋁作為中間層,氧化鋁和陶瓷在超聲作用下實現(xiàn)了直接鍵合,鍵合時間為90 s,在鍵合界面獲得了氧化鋁納米顆粒,其斷裂強度較高,但在鍵合后需要進行高溫熱處理。WANG等[21]研究了一種Ni微錐陣列結構薄膜與無鉛焊料間的超聲鍵合技術,在鍵合壓強為7 MPa、鍵合時間為1 s時實現(xiàn)了無空洞鍵合界面,但是焊球尺寸過大會影響該工藝的應用。特別是在高密度、小尺寸互連中的應用,在芯片三維疊層封裝中散熱性顯得很重要,但Ni的導電性能較差。LI等[22]將錫作為填充層,在20 kHz超聲作用、0.6 MPa壓強下,在室溫大氣環(huán)境中鍵合4 s,實現(xiàn)了高熔點鍵合界面。在超聲摩擦能量下,Sn瞬時融化,并與Cu基板發(fā)生反應,通過控制鍵合時間和中間錫層的厚度實現(xiàn)了鍵合界面產(chǎn)生金屬間化合物成分的不同,隨著Sn的消耗,鍵合界面形成了Cu3Sn和Cu6Sn5金屬間化合物,同時界面形成了不同類型的孔洞,這些界面空隙對互連有不良影響。Roshanghias等[23-24]提出了一種銅柱芯片直接超聲鍵合方法,超聲能量顯著降低了鍵合壓力、溫度和時間,但必須引入甲酸蒸氣保護鍵合區(qū)域,避免氧化。文中提出一種超聲輔助瞬態(tài)固相鍵合技術,這種技術以Cu?In微納米針錐陣列結構為基礎,鍵合界面兩側(cè)均為鍍銦薄層的銅微納米針錐陣列,使得鍵合過程的準備更加容易,在超聲作用下實現(xiàn)界面無缺陷鍵合。由于銅銦微納米針錐的特殊形貌及超聲波能量的引入,鍵合在室溫條件下瞬間完成。與以往所需高真空、高溫、高表面平整度等苛刻條件的鍵合技術相比,文中提出的鍵合技術條件較寬松,可以獲得較小的鍵合尺寸,效率高,能耗少,符合綠色封裝的發(fā)展趨勢。
銅微納米針錐結構由化學鍍方法獲得,其針錐形貌尺寸可由結晶改性劑型號控制[10]。如圖1a所示,銅微納米針層的高度為1~3 μm,針根部直徑為500 nm~2 μm,銅針尖端相對鋒利,呈典型的圓錐狀,銅錐的生長方向不同。使用商業(yè)解決方案將銦納米層電鍍于銅微納米針錐結構上,銦納米層的厚度由電鍍時間來控制。將銦納米層(電鍍時間為10 s)電鍍于銅微納米陣列結構上,其圖像如圖1b所示,銅銦微納米層保持相對鋒利的尖端結構。取不同區(qū)域3次測量值的平均值,銅微納米陣列結構的銦層厚度約為250 nm。表面銅銦微納米層結構示意圖如圖2所示。
圖1 微納米層的形貌
圖2 表面銅銦微納米層結構
常溫超聲輔助瞬態(tài)固相鍵合示意圖如圖3所示。固相鍵合在定制的超聲鍵合儀(RHESCA,PTR? 1102)上進行,將固定頻率設置為20 kHz。具體步驟:首先將2塊相同的鍍有銦微米層的銅基板(型號C194,規(guī)格20 mm×20 mm×0.15 mm)疊層放置于超聲鍵合儀的底板上,可以看出,鍵合接頭上下兩側(cè)相同,將超聲波能量加載于鍵合接頭的上方,加載機的加載速度設置為2.0 mm/min,鍵合壓力設置為5~7 MPa,鍵合時間為1~1.5 s。整個鍵合過程在室溫下完成,無需真空環(huán)境或者惰性氣體的保護。在鍵合后,用超聲鍵合儀的推球破壞性剪切模式測量剪切強度,定位距離為30 μm,測量速度設置為0.3 mm/s。對于每種鍵合條件,采集10個鍵合樣品用于測試剪切強度,取其平均值,以減少實驗誤差。采用掃描電子顯微鏡(SU8220,Hitachi,Japan)、透射電子顯微鏡(FEI Tecnai G2 F20S)對鍵合后的界面形貌進行分析,采用能量色散光譜法(EDS,加速電壓為200 keV)在電子顯微鏡下分析元素信息。
圖3 超聲鍵合示意圖
選擇電鍍銦10 s的銅銦微納米針錐陣列為對象,研究壓力和鍵合時間對鍵合質(zhì)量的影響。金屬銅在封裝過程中容易發(fā)生氧化反應,在銅針錐陣列結構上鍍覆銦納米層可以避免氧化。銦具有良好的冷焊接性能,而且還可以將其作為緩沖層,以減少鍵合界面孔洞的產(chǎn)生??梢酝ㄟ^觀察鍍層表面、鍵合界面的微觀形貌來分析鍵合的質(zhì)量。
鍵合界面的橫截面圖像如圖4所示,研究銅微錐結構與銦中間層在鍵合截面處的形貌。如圖4a所示,在鍵合壓力為5 MPa、鍵合時間為1 s時,部分銅銦針錐結構互相插入彼此,一些針尖結構發(fā)生了斷裂。在橫向超聲振動的作用下,鍵合界面相互摩擦。銦具有良好的冷焊接性能,在摩擦條件下,鍵合界面處的銦納米層與銅針陣列結構附著在一起,一些斷裂的銅錐尖會分散在內(nèi)部銦界面上。由于銅銦針錐結構尚未完全插入,在鍵合界面處銅銦微錐之間形成了明顯的孔洞。如圖4b所示,在鍵合壓力為6 MPa、鍵合時間增至1.5 s時,在鍵合界面處未發(fā)現(xiàn)明顯的凹面孔洞。由于鍵合時間過長,橫向摩擦導致鍵合界面區(qū)域出現(xiàn)了線性裂紋孔洞,這些孔洞的形成機制與熱壓鍵合引起孔洞的機制不同。由此得出結論,超聲振動對界面形貌有著重要影響,加速了銅銦微針錐凹面區(qū)域之間孔洞的收縮和充填,在銅銦針尖頂部形成了線性孔洞,這些孔洞由銦層與銅層之間的橫向移動所致。
孔洞的存在嚴重影響了鍵合質(zhì)量,尤其是線性孔洞很容易延伸擴張,易形成裂紋。為了獲得滿意的鍵合質(zhì)量,將鍵合壓力調(diào)整為7 MPa,鍵合時間設定為1 s,如圖4c所示。由于銅錐方向的不同,銅微納米錐陣列結構相互嵌入良好,在鍵合界面形成了穩(wěn)定的物理分隔層,鍵合界面基本未觀察到孔洞或裂紋。結果表明,銅微納米針錐陣列結構的變形是多方向的。這是由于超聲振動方向隨機,銅錐結構基本上保持圓錐形,隨著壓力的增加,針尖部分變形為弓形結構。由此,在實驗中將這個重要的鍵合參數(shù)(即鍵合壓力)設定為7 MPa。
通過EDS點掃描和線掃描得到了鍵合界面的銅銦原子數(shù)分數(shù),并對鍵合界面的成分進行了分析。圖4d為圖4c中掃描線處的線掃描分析結果,根據(jù)平均原子比例可知,Cu存在于In的內(nèi)部,說明Cu在鍵合界面擴散,銅存在于整個鍵合界面中,故界面中的物質(zhì)都是金屬間化合物。從線掃描結果(圖4d)發(fā)現(xiàn),靠左邊曲線平坦部分的平均定量原子比例(均用原子數(shù)分數(shù)表示)為Cu 67.8%、In 32.2%,較符合Cu2In的原子數(shù)比值。根據(jù)Point 1的點掃描分析結果(圖4e)可知,Cu的原子數(shù)分數(shù)為67.14% ,In的原子數(shù)分數(shù)為32.86% ,依然比較符合Cu2In的原子數(shù)分數(shù)比值(2∶1)。由于界面層很薄,超聲波產(chǎn)生的熱量加速了Cu的擴散,在一定的鍵合條件下可完全轉(zhuǎn)變?yōu)镃u2In。故在后續(xù)的時效處理中不會發(fā)生相變,也不會形成柯肯爾空洞[25]。由此可見,界面中厚度適中的金屬間化合物對界面的鍵合強度無不良影響,相反地,它提高了鍵合強度。
圖4 不同鍵合條件下銅銦銅鍵合界面的形貌
試樣在鍵合壓力為5 MPa、鍵合時間為1 s條件下的透射電鏡觀察和分析的結果如圖5所示,通過研究該鍵合技術的鍵合機理發(fā)現(xiàn),在這種鍵合條件下銅銦微納米層之間插入不緊,存在明顯的孔洞。鍵合界面的低倍圖像如圖5a所示,顯示了幾個鍍銦層的銅錐,顯然銅微納米針錐陣列結構被鍍在銅板上。觀察到銅銦微納米針錐合金發(fā)生了變形,從錐形轉(zhuǎn)變?yōu)樘菪?,但未實現(xiàn)固態(tài)連接。銅銦微納米錐上部的裂紋表明,空隙會進一步增大,導致鍵合接頭處的失效。如圖5b所示,一個銅錐被插入另一邊的銅錐中,銅錐上的鍍銦層相互連接擠壓在一起,在圖5b中用線條標明了銅銦界限。在超聲作用下,銅針錐發(fā)生了變形,界面下側(cè)分布在銅針內(nèi)部的銦層經(jīng)過擠壓變形后結合緊密,無空洞產(chǎn)生。在銅錐中選取、2個銦層區(qū)域進一步進行研究(如圖5b所示)。、區(qū)域的高分辨率圖像如圖5c—d所示,在機械插入和超聲摩擦的雙重作用下,銦與銦、銦與銅之間快速擴散,通過測量晶面間距,在鍵合界面處可以識別到Cu2In的晶格條紋(圖5c)。由于銦層受到摩擦擠壓作用,因而銦原子形成了各種排列方向,如圖5d所示。在靠近銅錐區(qū)域共存Cu2In和Cu,它們的躍遷相隔數(shù)納米。由圖5d可見一些無定形區(qū)域,這些非晶區(qū)域意味著原子級鍵合的存在,保證了鍵合界面的強度。由于壓力太小,因而插入不完全。在銅錐區(qū)域上可以識別到Cu7In3的晶格條紋,在1 s的超聲鍵合時間里,銦沒有完全轉(zhuǎn)換成Cu2In。如圖5c、d所示,選區(qū)電子衍射圖樣分別標至銦的[011]晶帶軸和銅的[001]晶帶軸,說明鍵合后的銅針錐仍然具有原有結構。
在鍍銦時間為10 s、鍵合壓力為7 MPa、鍵合時間為1 s的最優(yōu)工藝參數(shù)下,超聲鍵合得到了高質(zhì)量的互連樣品。通過對鍵合后的樣品進行時效處理,分析熱處理工藝對銅?銦?銅鍵合界面平均剪切強度的影響。將在鍵合互連參數(shù)設置為壓力7 MPa、鍵合持續(xù)時間1 s的條件下獲得的樣品放置在160 ℃的烘箱中進行時效熱處理,時間分別設置為60、360 min。
圖5 銅?銦鍵合界面的TEM形貌
在160 ℃下,樣品經(jīng)不同時間熱處理后獲得的鍵合界面XRD圖譜如圖6所示,當熱處理時間為 60 min時,Cu、Cu2In存在較強的衍射峰。這是由于鍍銦10 s的銦層較薄,厚度約為250 nm,在垂直壓力及橫向超聲能量的雙重作用下,銅原子的擴散速度較快,銦層與銅完全反應,生成了Cu2In。經(jīng)60 min短時間熱處理后,金屬間化合物Cu2In未發(fā)生相變,鍵合界面無多余的銦與銅原子進一步發(fā)生反應,界面成分較穩(wěn)定。當熱處理時間為 360 min時,Cu7In3衍射峰的強度較強,通過長時間熱處理,銅銦繼續(xù)發(fā)生界面反應,Cu2In轉(zhuǎn)變?yōu)镃u7In3??梢酝茰y經(jīng)較長時間熱處理后,鍵合界面的金屬間化合物將全部轉(zhuǎn)化成Cu7In3。
圖6 在160 ℃下經(jīng)不同時間熱處理后鍵合界面的XRD圖譜
將熱處理溫度設置為160 ℃,經(jīng)不同時間熱處理后對鍵合界面進行了剪切測試(鍵合時間均為1 s),如圖7所示。由圖7可以發(fā)現(xiàn),原本平均剪切強度低的界面(鍵合壓力為6 MPa)經(jīng)過熱處理后,其剪切強度呈明顯上升的趨勢。隨著熱處理時間的增加,在超過120 min后剪切強度增加速度變慢,當熱處理時間達到600 min時,平均剪切強度約為22 MPa,這與回流焊所能達到的剪切強度(40 MPa)相比尚有一段距離。在熱處理前,剪切強度較高的鍵合界面(鍵合壓力為7 MPa)的平均剪切強度高達33 MPa,這與回流焊所能達到的剪切強度接近。經(jīng)過熱處理后,雖然界面的剪切強度有所增加,但增加得較緩慢。在熱處理時間超過300 min后,剪切強度反而呈下降的趨勢。由此可見,熱處理工藝并未明顯提高剪切強度,長時間的熱處理反而使剪切強度下降,可以認為這種超聲輔助鍵合技術不需要額外的熱處理即可獲得較為理想的剪切強度。
圖7 鍵合界面剪切強度與熱處理時間的關系
剪切實驗后的斷裂面如圖8所示。經(jīng)160 ℃熱處理60 min后,試樣具有韌窩斷裂面(如圖8a所示),表明鍵合界面具有良好的韌性,表現(xiàn)出優(yōu)良的塑性,銅?銦?銅界面處部分地方維持完整,斷裂處主要為Cu2In斷面。這是由于平均剪切強度低的銅銦銅互連鍵合界面,雖然熱處理時間短,但鍵合截面處原子的擴散速度較快,鍵合界面充分嵌入,形成的金屬間化合物Cu2In具有優(yōu)良的塑性、韌性。隨著熱處理時間的延長,原子進一步擴散,Cu2In金屬間化合物發(fā)生了轉(zhuǎn)變,形成了Cu7In3金屬間化合物。Cu7In3具有較大的脆性,塑性較差,因而影響了互連鍵合的質(zhì)量。如圖8b所示,經(jīng)160 ℃熱處理300 min后,剪切面較平坦、均勻,以準解理斷裂為主。隨著裂紋的延伸和擴張,主解理面發(fā)生了二次解理和局部撕裂現(xiàn)象,存在大量的沿晶斷口(如圖8b所示),斷裂面主要發(fā)生在銅?銦結合層,在斷面位置發(fā)現(xiàn)了含銦斷面Cu7In3。熱處理實驗結果表明,超聲輔助銅銦微納米層瞬態(tài)固相鍵合技術的鍵合結構具有很高的可靠性,在鍵合壓力為7 MPa、鍵合時間為1 s的條件下可獲得相對最優(yōu)的鍵合質(zhì)量,不需要額外提高熱處理溫度來增大鍵合的互連強度,在以后的使用過程中也可保持較高的可靠性。
圖8 不同參數(shù)下鍵合界面斷面
1)研究了一種固相鍵合技術,在銅微錐結構上電鍍納米銦層。銦具有良好的冷焊性能,在超聲輔助下,銅銦微米納米層在合適的壓力(7 MPa)和合適的鍵合時間(1 s)下,在室溫下瞬時獲得了無空隙黏結接頭,鍵合質(zhì)量良好。與傳統(tǒng)回流焊工藝溫度(350 ℃)相比,該技術大大減少了電子元器件的熱應力變形,降低了能耗,提高了鍵合的可靠性。
2)基于銅微錐陣列的特殊形貌,在超聲波能量下銦層填充了斷裂Cu微錐之間的孔洞。在鍵合界面處,基于銅的快速擴散,生成了Cu2In金屬間化合物。Cu2In是優(yōu)質(zhì)相,其力學性能良好,在使用中有利于提高黏結強度。適當提高鍵合壓力有利于銅微錐相互緊密刺穿,并且可形成物理遮擋。
3) 超聲波振動、機械插入、快速擴散是鍵合過程中的主要機制。通過二級銅銦微納米層,在室溫條件下,無需真空環(huán)境或者惰性氣體的保護,就能獲得成功的鍵合接頭,且無需額外進行熱處理。這些結果表明,該固相鍵合技術是一種很有前途的三維封裝鍵合方法。
[1] LIN S K, CHANG Hao-miao, CHO C L, et al. Formation of Solid-Solution Cu-to-Cu Joints Using Ga Solder and Pt under Bump Metallurgy for Three-Dimensional Integrated Circuits[J]. Electronic Materials Letters, 2015, 11(4): 687-694.
[2] MAEDA T, KOBAYASHI Y, YASUDA Y, et al. Metal- Metal Bonding Properties of Copper Oxide Nanopa-rticles[J]. E-Journal of Surface Science and Nanotec-hnology, 2014, 12: 105-108.
[3] ALARIFI H, HU An-ming, YAVUZ M, et al. Silver Nanoparticle Paste for Low-Temperature Bonding of Copper[J]. Journal of Electronic Materials, 2011, 40(6): 1394-1402.
[4] PENG Peng, HU An-ming, HUANG Hong, et al. Room- Temperature Pressureless Bonding with Silver Nanowire Paste: Towards Organic Electronic and Heat-Sensitive Functional Devices Packaging[J]. Journal of Materials Chemistry, 2012, 22(26): 12997-13001.
[5] ISHIZAKI T, WATANABE R. A New One-Pot Method for the Synthesis of Cu Nanoparticles for Low Temper-ature Bonding[J]. Journal of Materials Chemistry, 2012, 22(48): 25198-25206.
[6] GENG Wen-yan, CHEN Zhuo, HU An-min, et al. Interfa-cial Morphologies and Possible Mechanisms of a Novel Low Temperature Insertion Bonding Technology Based on Micro-Nano Cones Array[J]. Materials Letters, 2012, 78: 72-74.
[7] HU Feng-tian, YANG Shan, WANG Hao-zhe, et al. Elect-roless Silver Coating on Copper Microcones[J]. Journal of Electronic Materials, 2015, 44(11): 4516-4524.
[8] LU Qin, CHEN Zhuo, ZHANG Wen-jing, et al. Low- Temperature Solid State Bonding Method Based on Surface Cu-Ni Alloying Microcones[J]. Applied Surface Science, 2013, 268: 368-372.
[9] HU Feng-tian, WANG Hao-zhe, YANG Shan, et al. Effects of Ni-W(Au) Coated Cu Microcones on the Bonding Interfaces[J]. Applied Surface Science, 2015, 353: 774-780.
[10] ZHANG Wen-jing, CAO Hai-yong, FENG Xue, et al. Structure and Wettability Control of Cu-Ni-P Alloy Synth-esized by Electroless Deposition[J]. Journal of Alloys and Compounds, 2012, 538: 144-152.
[11] CHEN Z, LUO T, HANG T, et al. Low-Temperature Solid State Bonding of Sn and Nickel Micro Cones for Micro Interconnection[J]. ECS Solid State Letters, 2012, 1(1): 7-10.
[12] MASUMOTO M, ARAI Y, TOMOKAGE H. Effect of Direction of Ultrasonic Vibration on Flip-Chip Bonding[J]. Transactions of the Japan Institute of Electronics Packa-ging, 2013, 6(1): 38-42.
[13] CHEN Zhuo, LUO Ting-bi, HANG Tao, et al. Enhanced Ni3Sn4Nucleation and Suppression of Metastable NiSn3in the Solid State Interfacial Reactions between Sn and Cone-Structured Ni[J]. CrystEngComm, 2013, 15(48): 10490-10494.
[14] HU Xiao-wu, XU Han, CHEN Wen-jing, et al. Effects of Ultrasonic Treatment on Mechanical Properties and Micr-ostructure Evolution of the Cu/SAC305 Solder Joints[J]. Journal of Manufacturing Processes, 2021, 64: 648-654.
[15] WARD A A, ZHANG Yi-bing, CORDERO Z C. Junction Growth in Ultrasonic Spot Welding and Ultrasonic Additive Manufacturing[J]. Acta Materialia, 2018, 158: 393-406.
[16] ZHAO H Y, LIU J H, LI Z L, et al. Non-Interfacial Growth of Cu3Sn in Cu/Sn/Cu Joints during Ultrasonic- Assisted Transient Liquid Phase Soldering Process[J]. Materials Letters, 2017, 186: 283-288.
[17] SUN Lei, CHEN Ming-he, ZHANG Liang, et al. Recent Progress in SLID Bonding in Novel 3D-IC Techno-logies[J]. Journal of Alloys and Compounds, 2020, 818: 152825.
[18] CHEN Zhuo, CAI Mei-li, LIU Zhen, et al. Amorphization and Intermetallic Nucleation in Early-Stage Interfacial Diffusion during Sn-Solder/Ni Solid-State Bonding[J]. Journal of Alloys and Compounds, 2021, 859: 158399.
[19] SATOH T, ISHIZAKI T, AKEDO K. Silver Adhesive Layer for Enhanced Pressure-Free Bonding Using Copper Nanoparticles[J]. Journal of Electronic Materials, 2017, 46(2): 1279-1286.
[20] JI Hong-jun, CHENG Xiao, LI Ming-yu. Ultrafast Ultrasonic-Assisted Joining of Bare Α-Alumina Ceramics through Reaction Wetting by Aluminum Filler in Air[J]. Journal of the European Ceramic Society, 2016, 36(16): 4339-4344.
[21] WANG Hao-zhe, JU Long-long, GUO Yu-kun, et al. Interfacial Morphology Evolution of a Novel Room- Temperature Ultrasonic Bonding Method Based on Nanocone Arrays[J]. Applied Surface Science, 2015, 324: 849-853.
[22] LI Ming-yu, LI Zhuo-lin, XIAO Yong, et al. Rapid Formation of Cu/Cu3Sn/Cu Joints Using Ultrasonic Bonding Process at Ambient Temperature[J]. Applied Physics Letters, 2013, 102(9):094104.
[23] ROSHANGHIAS A, RODRIGUES A, SCHWARZ S, et al. Thermosonic Direct Cu Pillar Bonding for 3D Die Stacking[J]. SN Applied Sciences, 2020, 2(6): 1091.
[24] ROSHANGHIAS A, RODRIGUES A D, HOLZMANN D. Thermosonic Fine-Pitch Flipchip Bonding of Silicon Chips on Screen Printed Paper and PET Substrates[J]. Microelectronic Engineering, 2020, 228: 111330.
[25] GUO Meng-jiao, SUN F, YIN Zuo-zhu. Microstructure Evolution and Growth Behavior of Cu/SAC105/Cu Joints Soldered by Thermo-Compression Bonding[J]. Soldering & Surface Mount Technology, 2019, 31(4): 227-232.
Ultrasonic Assisted Transient Solid Phase Bonding Technology Based on Copper-indium Micro Nano Layer at Room Temperature
,,,,,
(Guangzhou Huali College, Guangzhou 511300, China)
High density three-dimensional lamination technology is the development trend of electronic packaging technology. With the thickness and spacing of chips becoming smaller and smaller, in order to solve the problem of high thermal stress caused by high temperature and aggravating signal delay in traditional reflow soldering process, the work aims to adopt the needle shaped copper-indium micro nano layer and ultrasonic assistance to realize bonding and interconnection at room temperature to ensure the reliability of interconnection. Ultrasonic assisted bonding technology refers to the bonding of metals on both sides under the action of ultrasonic and pressure, which can realize the low-temperature bonding between chips in a very short bonding time. The bonding pressure is small. Compared with the traditional hot pressing bonding, it reduces the damage of hot pressing to the chip and improves the reliability of the package.
The transient solid phase bonding of two copper indium substrates could be realized by applying ultrasonic energy and a certain pressure to the bonding contact area. The microstructure, intermetallic compounds and shear strength at the bonding interface were analyzed by scanning electron microscope, transmission electron microscope, X-ray diffraction (XRD), and the bonding interface was heat-treated.
The copper cone structure was stable under the interaction of small ultrasonic insertion pressure and copper cone structure. Both sides of the bonding interface were copper micro nano needle cone arrays coated with indium, which made the preparation of the bonding process easier. Indium had good cold solderability. Under the action of ultrasonic energy, the thin indium layer at the bonding interface diffused rapidly and transformed into intermetallic compound Cu2In. Cu2In was a high-quality phase with good plasticity, which was conducive to improving the interconnection strength. The thermal stress caused by high temperature of the chip was avoided and the packaging reliability was improved. When the thickness of indium layer at the bonding interface was 250 nm, the bonding pressure was 7 MPa and the bonding time was 1 s, the best bonding quality was obtained, and the holes at the bonding interface disappeared. Heat treatment experiments showed that this solid phase bonding technology could obtain good bonding strength without additional heat treatment.
Due to the special shape of Cu-In micro nano needle cone and the introduction of ultrasonic energy, the bonding can be completed in an instant and at room temperature. The bonding quality is good, and the smaller bonding size can be obtained. Compared with the previous bonding technology requiring harsh conditions such as high vacuum, high temperature and high surface flatness, this bonding technology has loose conditions, can obtain smaller bonding size, high efficiency and less energy consumption, which is in line with the trend of green packaging.
metal material; solid phase bonding; Cu-In micro nano;bonding strength; diffusion
TB31
A
1001-3660(2022)12-0312-08
10.16490/j.cnki.issn.1001-3660.2022.12.032
2021?11?30;
2022?03?29
2021-11-30;
2022-03-29
廣州市科技計劃基礎與應用基礎研究項目(202102080571);增城區(qū)科技計劃(2021ZCMS11)
Guangzhou Science and Technology Plan Basic and Applied Basic Research Project (202102080571); Zengcheng District Science and Technology Plan Project (2021ZCMS11)
肖金(1982—)女,碩士,副教授,主要研究方向為納米材料。
XIAO Jin (1991-), Female, Master, Assistant professor, Research focus: nano material.
肖金, 翟倩, 周艷瓊, 等.基于銅銦微納米層常溫超聲輔助瞬態(tài)固相鍵合技術[J]. 表面技術, 2022, 51(12): 312-319.
XIAO Jin, ZHAI Qian, ZHOU Yan-qiong, et al. Ultrasonic Assisted Transient Solid Phase Bonding Technology Based on Copper-indium Micro Nano Layer at Room Temperature[J]. Surface Technology, 2022, 51(12): 312-319.
責任編輯:彭颋