摘要:【目的】Na2SO4脅迫作為新疆棉田主要的鹽脅迫類型,嚴(yán)重制約新疆棉花生產(chǎn)。本研究旨在探究Na2SO4脅迫對(duì)棉花代謝的影響,研究棉花耐受Na2SO4脅迫的代謝機(jī)制?!痉椒ā吭O(shè)置對(duì)照(CK)和硫酸鹽脅迫(SS)2個(gè)處理,通過代謝組學(xué)分析硫酸鹽脅迫下棉花根和葉中代謝物含量的變化并鑒定相應(yīng)的代謝通路?!窘Y(jié)果】中度硫酸鹽脅迫顯著抑制棉花生長,與CK相比,SS處理的葉、莖、根生物量和總生物量分別降低46.9%、50.9%、43.0%和47.9%。硫酸鹽脅迫下根中有機(jī)酸42種上調(diào)、10種下調(diào),氨基酸及其衍生物32種上調(diào)、16種下調(diào),糖類有23種上調(diào)、1種下調(diào);葉中有機(jī)酸有37種上調(diào)、7種下調(diào);氨基酸及其衍生物16種上調(diào)、17種下調(diào);糖類16種上調(diào)、4種下調(diào)。在根中共篩選出30條差異代謝通路,主要包括9條氨基酸代謝通路、7條有機(jī)酸代謝通路和7條糖類代謝通路;在葉中共篩選出17條差異代謝通路,主要包括7條氨基酸代謝通路、4條有機(jī)酸代謝通路和3條糖類代謝通路。【結(jié)論】在鹽脅迫下,棉花的根和葉中積累有機(jī)酸、糖類和醇類等小分子有機(jī)物;同時(shí),葉片中的檸檬酸、琥珀酸、丙酮酸和亞油酸等上調(diào)說明三羧酸循環(huán)和β-氧化途徑代謝增強(qiáng),根中檸檬酸、琥珀酸和丙酮酸等上調(diào)說明三羧酸循環(huán)增強(qiáng)。研究揭示了棉花對(duì)Na2SO4脅迫的反應(yīng)機(jī)制,為提高新疆棉花在鹽脅迫條件下的栽培技術(shù)提供一定的理論基礎(chǔ)。
關(guān)鍵詞:棉花;Na2SO4脅迫;代謝組;氨基酸;有機(jī)酸
Abstract: [Objective] Na2SO4 stress is a major type of salt stress in Xinjiang and has seriously restricted the cotton production in Xinjiang. This study aims to explore the effect of Na2SO4 stress on cotton metabolism and to investigate the key metabolites and metabolic pathways in the stress response of cotton. [Method] The metabolic analysis was applied in cotton roots and leaves under two treatment settings, including control (CK) and sulfate stress (Na2SO4, SS), to explore the changes of metabolite content and metabolic pathways in cotton under Na2SO4 stress. [Result] Sulfate stress significantly inhibited the growth of cotton. Compared with CK, the dry mass of leaves, stems, and roots, and total mass of plant under SS treatment decreased by 46.9%, 50.9%, 43.0% and 47.9%, respectively. Under sulfate stress, there were 42 up-regulated and 10 down-regulated organic acids, 32 up-regulated and 16 down-regulated amino acids and amino acid derivatives, 23 up-regulated and 1 down-regulated carbohydrate in root. There were 37 up-regulated organic acids and 7 down-regulated organic acids, 16 up-regulated and 17 down-regulated amino acids and amino acids derivatives, 16 up-regulated and 4 down-regulated carbohydrate in leaves. A total of 30 differential metabolic pathways were selected in roots, including 9 pathways related to amino acid metabolism, 7 pathways related to organic acid metabolism, and 7 pathways related to carbohydrate metabolism. A total of 17 differential metabolic pathways were selected in leaves, including 7 pathways related to amino acid metabolism, 4 pathways related to organic acid metabolism, and 3 pathways related to carbohydrate metabolism. [Conclusion] Cotton responded to sulfate stress by accumulating organic acids, carbohydrate and alcohols in roots and leaves. The up-regulation of citric acid, succinic acid, pyruvic acid and linoleic acid in leaves suggested the enhanced tricarboxylic acid (TCA) cycle and β-enhanced oxidation. And up-regulation of citric acid, succinic acid and pyruvic acid in roots indicated the enhanced TCA cycle. This study explored the mechanism of Na2SO4 stress response in cotton and provided a theoretical basis for cotton cultivation in Xinjiang.
Keywords: cotton; Na2SO4 stress; metabolomics; amino acid; organic acid
鹽堿脅迫作為重要的非生物脅迫之一,主要發(fā)生在我國沿海以及干旱和半干旱地區(qū),影響植物的生長發(fā)育,限制了農(nóng)業(yè)生產(chǎn)產(chǎn)能[1-2]。全世界約有1.13×109 hm2土地受鹽堿脅迫影響,占總耕地面積的20%以上[3]。中國鹽堿地面積約為9.91×107 hm2 [4],而新疆是中國受鹽堿影響最大的地區(qū),新疆灌區(qū)鹽堿化土地占其總耕地面積的37.72%[5]。土壤鹽漬化的類型多種多樣,氯化鈉(NaCl)、硫酸鈉(Na2SO4)和碳酸氫鈉(NaHCO3)等是干旱和半干旱地區(qū)土壤中最常見的鹽脅迫來源,其中Na2SO4鹽漬土面積在我國位居第二位[6]。因此研究Na2SO4脅迫對(duì)植物的影響對(duì)加深理解植物的耐鹽機(jī)制和指導(dǎo)Na2SO4脅迫下的棉花栽培具有重要作用。
通常認(rèn)為中性鹽脅迫與堿性鹽脅迫不同,堿性鹽脅迫對(duì)植物的傷害更大[7],最近的研究表明,不同中性鹽脅迫對(duì)植物的影響也不同,Na2SO4脅迫影響植物的硫(Sulfur, S)代謝。與NaCl相比,Na2SO4處理導(dǎo)致植物對(duì)鈣(Ca)、鎂(Mg)和錳(Mn)的吸收減少,對(duì)植物的傷害更大[8-9]。植物遭受鹽脅迫后會(huì)通過調(diào)節(jié)相應(yīng)的代謝物的合成、降解通路,提高其適應(yīng)能力,如調(diào)節(jié)氨基酸代謝、三羧酸(tricarboxylic acid, TCA)循環(huán)(或稱為檸檬酸循環(huán))、糖酵解、信號(hào)轉(zhuǎn)導(dǎo)通路和糖類代謝等[10],植物細(xì)胞中會(huì)合成并積累大量的有機(jī)酸、氨基酸、甜菜堿、糖和醇等小分子可溶性物質(zhì)[11-12]。但不同于NaCl脅迫,Na2SO4鹽土中含有大量的S元素,導(dǎo)致植物組織中積累過量的S元素[13],影響植物體內(nèi)的S代謝,導(dǎo)致半胱氨酸含量急劇增加,在某些情況下還會(huì)導(dǎo)致碳代謝紊亂[14]。同時(shí)S是高等植物生長的必需營養(yǎng)元素,存在于蛋氨酸、半胱氨酸、膜硫脂、細(xì)胞壁、維生素和輔助因子以及具有不同生物功能的各種代謝物中[15-17]。前人對(duì)棉花耐受NaCl脅迫的機(jī)制給予了很大關(guān)注,但很少關(guān)注同屬于中性鹽脅迫的Na2SO4脅迫,尤其是棉花耐受Na2SO4脅迫的代謝機(jī)制尚不明確。
本研究以棉花為試驗(yàn)作物,采用液相色譜質(zhì)譜(liquid chromatography-mass spectrometry, LC-
MS)技術(shù)測定Na2SO4脅迫下棉花根和葉中相關(guān)代謝物的含量,探究Na2SO4脅迫對(duì)棉花代謝的影響,闡明棉花耐受Na2SO4脅迫的代謝機(jī)制,為探究作物在不同中性鹽脅迫下的耐受機(jī)制和Na2SO4鹽土棉花栽培提供新的見解。
1 材料與方法
1.1 試驗(yàn)材料
試驗(yàn)于2022年在石河子大學(xué)農(nóng)學(xué)院試驗(yàn)站玻璃溫室(44°18′44″N,86°3′20″E)進(jìn)行。試驗(yàn)期間,溫室的最高溫度和最低溫度分別為35.6 ℃和15.8 ℃。供試土壤類型為灌耕灰漠土,質(zhì)地為壤土。土壤基礎(chǔ)養(yǎng)分含量如下:有機(jī)質(zhì)14.9 g·kg-1,全氮1.1 g·kg-1,堿解氮41.2 mg·kg-1,速效磷10.6 mg·kg-1,速效鉀244 mg·kg-1。供試棉花品種魯棉研24號(hào)由新疆生產(chǎn)建設(shè)兵團(tuán)第七師農(nóng)業(yè)科學(xué)研究所提供。
1.2 試驗(yàn)設(shè)計(jì)
本試驗(yàn)采用高20 cm、直徑15 cm的花盆;每盆裝土4 kg。設(shè)置2個(gè)處理:對(duì)照-非鹽堿土壤(CK),硫酸鹽土(SS);每個(gè)處理重復(fù)3次,共6盆。依據(jù)全國第二次土壤普查規(guī)定的鹽漬土鹽堿類型分類和分級(jí)標(biāo)準(zhǔn)以及鮑士旦主編的第三版《土壤農(nóng)化分析》[18],硫酸鹽處理將24 g Na2SO4溶解后按照6 g·kg-1的土壤含鹽量灌入土壤中,對(duì)照加入同體積去離子水。處理后的土壤鹽堿類型及鹽堿化程度見表1。2022年4月1日每盆播種20粒種子,出苗后,每盆定植4株棉花。試驗(yàn)期間定期補(bǔ)充去離子水,保證土壤維持60%~80%的持水量。
1.3 樣品采集
苗期(棉花長至8片真葉時(shí))采集樣本,從每個(gè)處理中選取9株有代表性的棉花植株,其中3株用于測定生物量以及S2-和Na+含量,另外6株用于測定生理指標(biāo)以及代謝組。以子葉節(jié)作為根和莖的分界點(diǎn),將植株分為3部分:根、莖和葉,分別將棉株的根和除倒3葉以外的葉片取樣用于代謝組分析,每個(gè)處理設(shè)6個(gè)生物學(xué)重復(fù),在液氮中冷凍干燥,使用植物研磨機(jī)(Scientz-48,北京同元聚物科技有限公司)研磨成粉末,并儲(chǔ)存在-80 ℃?zhèn)溆谩?/p>
1.4 表型和生理生化指標(biāo)測定
1.4.1 生物量測定。將3株棉花的根、莖、葉在105 ℃下殺青30 min,之后在70 ℃下烘干至質(zhì)量恒定,稱量各器官的干物質(zhì)質(zhì)量。
1.4.2 S2-和Na+的測定。采用電感耦合等離子體質(zhì)譜(inductively coupled plasma-mass spectrometry, ICP-MS)測定。具體操作如下:將烘干的植株樣品粉碎,定量稱取100 mg樣品放置于消解罐,加入10 mL濃硝酸,在195 ℃下消解12 h,消解蒸干后,加入0.5 mL濃硝酸、0.5 mL內(nèi)標(biāo)[多元素標(biāo)準(zhǔn)液,GBW(E)083549,鋼研納克檢測技術(shù)有限公司]和3 mL去離子水,溶解均勻后,最后取2 mL溶解液用18 MΩ超純水稀釋至10 mL,采用ICP-MS進(jìn)行檢測。
1.4.3 倒3葉生理指標(biāo)的測定。采用電導(dǎo)儀法測定相對(duì)電導(dǎo)率(relative electric conductivity, REC);丙二醛(malondialdehyde, MDA)含量檢測采用硫代巴比妥酸(thiobarbituric acid, TBA)法[19];超氧化物歧化酶(superoxide dismutase, SOD)活性檢測采用氮藍(lán)四唑還原法[20];過氧化物酶(peroxidase, POD)活性檢測采用愈創(chuàng)木酚法[21];過氧化氫酶(catalase, CAT)活性檢測采用紫外吸收法[22];脯氨酸(proline, PRO)含量檢測采用茚三酮法[23]。
1.5 代謝組分析
代謝組分析由上海百趣生物醫(yī)學(xué)科技有限公司完成。使用Agilent 1290(Agilent Technologies)超高效液相色譜儀測定,主要參數(shù)如下:流動(dòng)相A為25 mmol·L-1乙酸銨和25 mmol·L-1氨水,B相為乙腈。梯度洗脫程序?yàn)椋?~0.5 min,95%乙腈;0.5~7.0 min,65%~95%乙腈;7.0~8.0 min,40%~65%乙腈;8.0~9.0 min,40%乙腈;9.0~9.1 min,40%~95%乙腈;9.1~12.0 min,95%乙腈。進(jìn)樣體積為2 mL,流速為0.5 mL·min-1,柱溫25 ℃。使用Triple TOF 6600高分辨質(zhì)譜,通過信息依賴采集(information-dependent acquisition, IDA)模式進(jìn)行高分辨質(zhì)譜數(shù)據(jù)采集。正負(fù)離子模式電壓分別為5 000 V和4 000 V。所有樣品另取10 μL上清混合成質(zhì)控樣本(3個(gè)處理的樣品均勻混合得到的樣本,用以評(píng)判檢測是否準(zhǔn)確)進(jìn)行上機(jī)檢測。
1.6 數(shù)據(jù)處理
生理數(shù)據(jù)采用Microsoft Excel 2016軟件處理,使用SPSS 17.0軟件進(jìn)行統(tǒng)計(jì)分析,差異顯著性檢驗(yàn)采用鄧肯(Duncan's)多重比較法。代謝組數(shù)據(jù)分析中,采用正交偏最小二乘判別分析(orthogonal partial least squares-discrimination analysis, OPLS-DA)模型,以第一主成分的VIP(variable importance in the projection,變量投影重要性)>1與P<0.05為閾值,篩選豐度增加或減少的代謝物。本研究基于京都基因和基因組百科全書(Kyoto Encyclopedia of Genes and Genomes, KEGG)中的代謝途徑數(shù)據(jù)庫,使用在線MetaboAnalyst 5.0軟件(https://www.metaboanalyst.ca)對(duì)不同樣本的所有代謝物進(jìn)行主成分分析(principle component analysis, PCA)并注釋差異代謝物富集的代謝途徑。
2 結(jié)果與分析
2.1 硫酸鹽脅迫對(duì)棉花生物量的影響
硫酸鹽脅迫顯著降低棉花生物量(表2)。與CK相比,SS處理下棉花葉、莖、根的生物量和單株總生物量分別降低46.9%、50.9%、43.0%和47.9%。
2.2 硫酸鹽脅迫對(duì)棉花不同器官Na+和S2-含量的影響
硫酸鹽脅迫顯著增加棉花葉、莖和根中Na+和S2-的含量(圖1)。與CK相比,SS處理葉、莖和根中的Na+含量分別顯著增加1 287%、1 188%和570%;SS處理葉、莖和根中的S2-含量分別顯著增加32.39%、17.98%和20.22%。
2.3 硫酸鹽脅迫對(duì)棉花葉片REC和MDA含量的影響
硫酸鹽脅迫顯著增加棉花葉片的REC(圖2A)和MDA含量(圖2B)。與CK相比,SS處理下葉片的REC和MDA含量分別顯著增加114.5%和99.8%。
2.4 硫酸鹽脅迫對(duì)棉花葉片抗氧化酶活性和脯氨酸含量的影響
硫酸鹽脅迫顯著增加棉花葉片中SOD、POD和CAT的活性以及脯氨酸含量(圖3)。與CK相比,SS處理下葉片中SOD、POD和CAT活性分別顯著增加160%、16.8%和117%,PRO含量顯著增加77.9%。
2.5 硫酸鹽脅迫下代謝組數(shù)據(jù)有效性和可靠性檢測
將每個(gè)分組所檢測到的所有代謝物進(jìn)行主成分分析,結(jié)果如圖4所示,前2個(gè)主成分在根和葉中分別反映了99.8%和89.2%的差異。根中第一主成分主要貢獻(xiàn)物為蔗糖、油酸、L-蘋果酸、D-果糖和1-棕櫚酰-2-油酰基-磷脂酰甘油,第二主成分主要貢獻(xiàn)物為:油酸、L-蘋果酸、甘油磷酸膽堿、2-苯基丁酸和哈爾滿堿。葉中第一主成分主要貢獻(xiàn)代謝物為蔗糖、檸檬酸、奎寧酸、L-蘇氨酸和D-葡萄糖二酸,第二主成分主要貢獻(xiàn)代謝物為:檸檬酸、蔗糖、亞油酸、奎寧酸和舒尼替尼。
2.6 硫酸鹽脅迫對(duì)棉花根和葉中代謝物的影響
從硫酸鹽脅迫下棉花的根中共檢測出461種代謝物,其中205種代謝物上調(diào)表達(dá),占比44.5%;184種代謝物的豐度無變化,占比39.9%;72種代謝物下調(diào)表達(dá),占比15.6%。葉中檢測到597種代謝物,其中157種代謝物上調(diào)表達(dá),占比26.3%;366種代謝物的豐度無變化,占比61.3%;74種代謝物下調(diào)表達(dá),占比12.4%(圖5)。
基于KEGG公共數(shù)據(jù)庫對(duì)差異代謝物進(jìn)行注釋,利用PLS-DA模型篩選差異代謝物。根中共篩選出229種差異代謝物,其中171種差異代謝物上調(diào),58種差異代謝物下調(diào)(附表1);葉中共篩選出183種差異代謝物,其中128種差異代謝物上調(diào),55種差異代謝物下調(diào)(附表2)。
差異代謝物的類別如圖6所示,與CK相比,SS處理下根中有52種有機(jī)酸(L-蘋果酸和琥珀酸等42種上調(diào),己二酸和齊墩果酸等10種下調(diào)),48種氨基酸及其衍生物(L-丙氨酸和L-谷氨酸等32種上調(diào),L-異亮氨酸和L-蘇氨酸等16種下調(diào)),24種糖類(D-果糖和糖原等23種上調(diào),僅D-核糖5-磷酸下調(diào)),24種脂質(zhì)及類脂質(zhì)(甘油和乙酸苯酯等14種上調(diào),鄰苯二甲酸二辛酯和4-乙酰氨基丁酸酯等10種下調(diào)),22種核苷、核苷酸及其衍生物(脫氧鳥苷和5,2'-鄰二甲基尿苷等21種上調(diào),僅5-羥甲基胞苷下調(diào)),10種胺類(亞油酸乙醇酰胺和煙酰胺等9種上調(diào),僅N-乙酰甘露糖胺下調(diào)),9種酮類(依諾酮和吡格列酮等5種上調(diào),萘丁美酮和羅格列酮等4種下調(diào)),7種醇類(吡哆醇和肌醇等均上調(diào)),3種香豆素類及其衍生物(弗雷克汀和異東莨菪堿上調(diào),香豆素下調(diào)),2種維生素(維生素H和L-抗壞血酸均上調(diào))的豐度發(fā)生顯著變化(圖6A)。葉中有44種有機(jī)酸(檸檬酸和亞油酸等37種上調(diào),三乳酸和吲哚乙酸等7種下調(diào)),33種氨基酸及其衍生物(L-天冬氨酸和L-蘇氨酸等16種上調(diào),L-谷氨酰胺和L-色氨酸等17種下調(diào),20種糖類(棉子糖和蔗糖等16種上調(diào),水蘇糖和景天庚酮糖等4種下調(diào)),16種核苷、核苷酸及其衍生物(脫氧鳥苷和5-甲基-2-硫尿苷等13種上調(diào),二氫尿嘧啶和5-甲基-5,6-二氫尿嘧啶等3種下調(diào)),12種胺類(磺胺甲氧基噠嗪和二乙醇胺等6種上調(diào),N-甲基酪胺和植物鞘氨醇等6種下調(diào)),11種醇類(鄰苯二酚和紫蘇醇等8種上調(diào),松油醇和英仙醇等3種下調(diào)),7種酮類(普里米酮和依普黃酮等6種上調(diào),僅萘丁美酮下調(diào)),7種脂質(zhì)及類脂質(zhì)(棕櫚醛和苯酞酸芐丁酯等4種上調(diào),羊毛甾醇和醋酸氫化可的松21等3種下調(diào)),4種維生素(L-抗壞血酸和諾米林上調(diào),氧化維生素C和維生素H下調(diào))、3種香豆素類及其衍生物(東莨菪堿和七葉皂苷等3種均上調(diào))的豐度發(fā)生顯著變化(圖6B)。
2.7 硫酸鹽脅迫對(duì)棉花根和葉中代謝通路的影響
將差異代謝物ID輸入到KEGG代謝通路數(shù)據(jù)庫,進(jìn)行富集分析,篩選P小于0.05、影響值大于等于0.1的差異代謝通路。硫酸鹽脅迫下差異代謝通路如表3所示,根中共篩選出30條差異代謝通路,主要包括9條氨基酸代謝通路(丙氨酸、天冬氨酸和谷氨酸代謝,苯丙氨酸代謝,精氨酸生物合成,甘氨酸、絲氨酸和蘇氨酸代謝,谷胱甘肽代謝,精氨酸和脯氨酸代謝,纈氨酸、亮氨酸和異亮氨酸的生物合成,酪氨酸代謝和苯丙氨酸、酪氨酸和色氨酸的生物合成),7條有機(jī)酸代謝通路(?;撬岷蛠喤;撬岽x,C5-支鏈二元酸代謝,丙酮酸代謝,乙醛酸和二羧酸代謝,丁酸代謝,檸檬酸循環(huán)以及泛酸和輔酶A生物合成),7條糖類代謝通路(淀粉和蔗糖代謝,半乳糖代謝,磷酸戊糖途徑,光合生物中的碳固定,氨基糖和核苷酸糖代謝,戊糖和葡萄糖醛酸的相互轉(zhuǎn)化以及糖酵解/糖異生);葉中共篩選出17條差異代謝通路,包括7條氨基酸代謝通路(丙氨酸、天冬氨酸和谷氨酸代謝,色氨酸代謝,賴氨酸降解,苯丙氨酸代謝,精氨酸生物合成,甘氨酸、絲氨酸和蘇氨酸代謝以及纈氨酸、亮氨酸和異亮氨酸的生物合成),4條有機(jī)酸代謝通路(亞油酸代謝,檸檬酸循環(huán),乙醛酸和二羧酸代謝以及丙酮酸代謝),3條糖代謝通路(磷酸戊糖途徑,半乳糖代謝以及糖酵解/糖異生)。
2.8 硫酸鹽脅迫下棉花根和葉代謝通路中差異代謝物的變化
為更好地了解硫酸鹽脅迫對(duì)棉花代謝的影響,結(jié)合KEGG代謝途徑數(shù)據(jù)庫的相關(guān)信息,繪制了棉花根和葉中所有的差異代謝途徑,并用箭頭表征了各差異代謝物的變化情況(圖7)。結(jié)果顯示,硫酸鹽脅迫顯著影響TCA循環(huán)、糖酵解、天冬氨酸和谷氨酸家族類的生物合成和代謝過程;在棉花根和葉中棉子糖、蔗糖、丙酮酸、順烏頭酸、檸檬酸、琥珀酸和谷氨酸等代謝物均顯著上調(diào)。
3 討論
鹽脅迫是限制農(nóng)業(yè)生產(chǎn)的主要非生物逆境之一,嚴(yán)重抑制作物生長。在本研究中,硫酸鹽脅迫顯著降低棉花生物量,抑制其生長,同時(shí)葉片的相對(duì)電導(dǎo)率和丙二醛含量顯著增加,這可能是因?yàn)榱蛩猁}脅迫抑制植物體內(nèi)的酶、蛋白質(zhì)的活性,破壞細(xì)胞膜結(jié)構(gòu),從而抑制了棉花生長[24-25]。土壤中中高濃度的鹽離子會(huì)導(dǎo)致植物根部水勢降低,影響植物吸水,從而造成滲透脅迫,而植物能夠通過積累無機(jī)離子和相容性溶質(zhì)來調(diào)節(jié)組織中的水勢,使根系從土壤順利吸水,導(dǎo)致NaSO4脅迫下棉花地上部和地下部的Na+含量顯著增加,但過量Na+進(jìn)入細(xì)胞會(huì)引起Na+毒害,抑制棉花生長[26]。硫酸鹽脅迫導(dǎo)致大量S元素在棉花體內(nèi)積累,S雖然是必需元素,但過量的S元素在植物體內(nèi)易形成游離硫化物,與細(xì)胞色素結(jié)合,抑制線粒體呼吸,對(duì)葉片發(fā)育和根莖伸長造成有害影響[27]。為了應(yīng)對(duì)鹽脅迫,棉花體內(nèi)的抗氧化酶,如SOD、POD和CAT活性顯著增加,大量研究表明這些酶活性的增加能顯著提高作物的耐鹽堿能力[28-30]。
植物除了積累無機(jī)離子外,積累小分子有機(jī)物也是應(yīng)對(duì)滲透脅迫的常用策略[31-33]。在硫酸鹽脅迫下,棉花根中有機(jī)酸、氨基酸、糖、醇、脯氨酸和胺等大量小分子代謝物顯著積累,但葉中氨基酸和胺類的上調(diào)和下調(diào)數(shù)量基本持平,其中大部分代謝物作為相容性溶質(zhì)在棉花的耐鹽性中起到重要作用[34-37]。除此之外,它們還參與能量代謝、次級(jí)代謝物的合成和信號(hào)傳導(dǎo)等過程[38-39]。硫酸鹽脅迫下根和葉中氨基酸代謝發(fā)生明顯改變,根中L-丙氨酸、L-谷氨酸、L-絲氨酸、L-酪氨酸、L-瓜氨酸和D-天冬氨酸等32種氨基酸顯著積累,葉中L-谷氨酸、L-蘇氨酸、L-天冬氨酸等16種氨基酸顯著積累,這可能是根、葉中S元素含量增加引起的。葉片是進(jìn)行光合作用、為棉花提供能量的重要器官,S元素對(duì)于穩(wěn)定蛋白質(zhì)的結(jié)構(gòu)十分重要[40],蛋白質(zhì)是生命代謝活動(dòng)的主要承擔(dān)者,因此推測葉片中S元素的積累有利于增強(qiáng)葉片的代謝活動(dòng)。氨基酸也是重要的相容性溶質(zhì),在滲透調(diào)節(jié)和維持細(xì)胞膜穩(wěn)定性方面起著重要作用[41]。在鹽脅迫下,氨基酸可作為抗氧化劑清除植物細(xì)胞中的自由基,從而提高植物的耐鹽性能[42-43]。雖然在本試驗(yàn)條件下氨基酸并未在硫酸鹽脅迫處理的葉中明顯積累,但是發(fā)現(xiàn)氨基酸參與的代謝合成通路明顯富集。氨基酸作為某些代謝途徑的最終產(chǎn)物或者中間產(chǎn)物,參與各種生化途徑的調(diào)節(jié),從而影響植物中的許多生理過程[44-45]。KEGG通路表明(圖7),L-色氨酸、L-蘇氨酸、L-谷氨酸、L-亮氨酸、L-天冬氨酸、L-丙氨酸和L-異亮氨酸等氨基酸起樞紐作用,將不同代謝途徑聯(lián)系起來[46-47]。天冬氨酸在天冬酰胺的生物合成以及氮素在各器官的循環(huán)、儲(chǔ)存和運(yùn)輸中起到重要作用[46]。天冬氨酸和天冬酰胺與許多代謝物的分解代謝密切相關(guān),天冬氨酸合成為天冬酰胺對(duì)于氮的供應(yīng)至關(guān)重要[47];另一方面,天冬酰胺酶可以將天冬酰胺水解為天冬氨酸,進(jìn)而參與氨基酸生物合成[46]。天冬氨酸和谷氨酸是氨基酸代謝與TCA循環(huán)以及糖酵解途徑的樞紐[47],通過提高糖酵解(蔗糖、己糖和丙酮酸等)和檸檬酸循環(huán)(2-酮戊二酸和琥珀酸等)的代謝強(qiáng)度,可以促進(jìn)細(xì)胞的擴(kuò)增[49-51]。與前期研究[52]相比,硫酸鈉脅迫對(duì)棉花代謝的影響與氯化鈉脅迫和堿脅迫之間存在明顯差異。從代謝物積累的情況來看,氯化鈉脅迫下棉花葉片和根中的差異代謝物絕對(duì)上調(diào),堿脅迫下上調(diào)和下調(diào)差異代謝物的數(shù)量基本持平;而硫酸鈉脅迫下差異代謝物整體上顯著積累,但上調(diào)比例沒有氯化鈉脅迫下的高。從代謝通路來看,硫酸鈉脅迫下,棉花的差異代謝通路數(shù)量更多,且大部分是氨基酸的代謝途徑,這一點(diǎn)與堿脅迫下存在一定的相似性[52]。綜上,硫酸鈉脅迫在給棉花帶來滲透脅迫的同時(shí),也因S元素含量的增加加強(qiáng)了棉花的氨基酸代謝。
分析KEGG通路發(fā)現(xiàn)(圖7),在硫酸鹽脅迫下與有機(jī)酸代謝相關(guān)的代謝物普遍上調(diào),包括有機(jī)酸以及能轉(zhuǎn)化為有機(jī)酸的糖和氨基酸。有機(jī)酸是植物細(xì)胞碳代謝的重要中間產(chǎn)物,并在控制整個(gè)植物細(xì)胞生理過程中發(fā)揮重要作用,包括信號(hào)信使、跨生物膜運(yùn)輸?shù)恼{(diào)節(jié)劑、乙酰化或琥珀?;牡鞍踪|(zhì)修飾以及從土壤中攝取營養(yǎng)元素等,因此積累有機(jī)酸可以在一定程度上提高植物對(duì)鹽堿脅迫的耐受性[53-56]。有機(jī)酸代謝在硫酸鹽脅迫下顯著改變,導(dǎo)致葉片中檸檬酸、亞油酸、水楊酸、琥珀酸和順烏頭酸等顯著積累,根中L-蘋果酸、琥珀酸、順烏頭酸、檸檬酸和丙酮酸等顯著積累。研究表明,在鹽堿脅迫下,虎尾草(Chloris virgata)、葡萄和小麥積累大量有機(jī)酸,以保持細(xì)胞內(nèi)pH穩(wěn)定和離子平衡[57-59]。蘋果酸、琥珀酸、順烏頭酸、檸檬酸和丙酮酸是TCA循環(huán)中重要的中間物質(zhì),它們的積累可以增強(qiáng)TCA循環(huán),為棉花生理代謝提供更多能量。有研究表明TCA循環(huán)代謝通路的改變可能是增強(qiáng)作物耐鹽性的重要原因之一[60]。此外,硫酸鹽脅迫下葉片中積累大量亞油酸,這可能促進(jìn)β-氧化,而β-氧化是脂肪酸分解的主要方式,它提供了生命活動(dòng)所需的大量能量[61],因此在植物應(yīng)激反應(yīng)中可能起著重要作用。另外,氨基酸類代謝和能量代謝的增強(qiáng),可能為抗氧化酶的合成提供更多的底物和能量,增強(qiáng)棉花的耐鹽性??箟难?谷胱甘肽循環(huán)對(duì)生物膜系統(tǒng)結(jié)構(gòu)的完整及防御膜脂過氧化起重要作用[62]。本研究發(fā)現(xiàn),硫酸鹽脅迫下,棉花葉片中抗壞血酸積累并且根中谷胱甘肽代謝增強(qiáng),相關(guān)代謝通路可能是棉花應(yīng)對(duì)氧化脅迫的重要手段。
糖類不僅能夠緩解滲透脅迫,還是重要的能量來源。硫酸鹽脅迫下棉花葉片中棉子糖和蔗糖等糖類顯著積累,根中D-果糖、水蘇糖、棉子糖和蔗糖等顯著積累。研究表明,在硫酸鹽脅迫下淀粉和蔗糖代謝增強(qiáng)[63],蔗糖在滲透調(diào)節(jié)和解毒作用中起著相容滲透劑的作用[64-65]。糖是細(xì)胞的結(jié)構(gòu)組分同時(shí)為細(xì)胞代謝提供能量,植物主要將多糖作為儲(chǔ)存碳源,為細(xì)胞的滲透平衡提供能量[66-68]。棉子糖和水蘇糖同屬于棉子糖家族低聚糖,它們?cè)诘钟巧锩{迫方面發(fā)揮著重要的作用[69]。同時(shí)蔗糖和棉子糖是糖代謝的底物,其代謝產(chǎn)物作為底物參與氨基酸以及有機(jī)酸代謝途徑。
4 結(jié)論
中等程度的硫酸鹽脅迫顯著抑制棉花生長。棉花通過增強(qiáng)氨基酸、有機(jī)酸和糖類代謝適應(yīng)硫酸鹽脅迫,但是根和葉的耐受機(jī)制不同。根通過積累有機(jī)酸、氨基酸、糖類和醇類等小分子有機(jī)物,強(qiáng)化TCA循環(huán)以適應(yīng)硫酸鹽脅迫;葉片通過積累有機(jī)酸、糖類和醇類等小分子有機(jī)物來適應(yīng)硫酸鹽脅迫,而氨基酸作為有機(jī)物轉(zhuǎn)化樞紐,將各代謝途徑聯(lián)系起來,通過強(qiáng)化葉片中的TCA循環(huán)和脂肪酸β-氧化等能量代謝適應(yīng)硫酸鹽脅迫。
附表:
詳見本刊網(wǎng)站(https://journal.cricaas.com.cn/)本文網(wǎng)頁版。
參考文獻(xiàn):
[1] Munns R, Gilliham M. Salinity tolerance of crops-what is the cost[J/OL]. New Phytologist, 2015, 208(3): 668-673[2022-06-10]. https://doi.org/10.1111/nph.13519.
[2] Rolly N K, Imran Q M, Lee I, et al. Salinity stress-mediated suppression of expression of salt overly sensitive signaling pathway genes suggests negative regulation by AtbZIP62 transcription factor in Arabidopsis thaliana[J/OL]. International Journal of Molecular Sciences, 2020, 21(5): 1726-1742[2022-06-10]. https://doi.org/10.3390/ijms21051726.
[3] Morton M J, Awlia M, Al-Tamimi N, et al. Salt stress under the scalpel-dissecting the genetics of salt tolerance[J/OL]. The Plant Journal, 2019, 97(1): 148-63[2022-06-10]. https://doi.org/10.1111/tpj.14189.
[4] 楊勁松, 姚榮江, 王相平, 等. 防止土壤鹽漬化, 提高土壤生產(chǎn)力[J/OL]. 科學(xué), 2021, 73(6): 30-34[2022-06-10]. https://doi.org/10.3969/j.issn.0368-6396.2021.06.007.
Yang Jinsong, Yao Rongjiang, Wang Xiangping, et al. Halt soil salinization, boot soil productivity[J/OL]. Science, 2021, 73(6): 30-34[2022-06-10]. https://doi.org/10.3969/j.issn.0368-6396.2021.06.007.
[5] 田長彥, 買文選, 趙振勇. 新疆干旱區(qū)鹽堿地生態(tài)治理關(guān)鍵技術(shù)研究[J/OL]. 生態(tài)學(xué)報(bào), 2016, 36(22): 7064-7068[2022-06-10]. https://doi.org/10.5846/stxb201610172098.
Tian Changyan, Mai Wenxuan, Zhao Zhenyong. Study on key technologies of ecological management of saline alkaline land in arid area of Xinjiang[J/OL]. Acta Ecologica Sinica, 2016, 36(22): 7064-7068[2022-06-10]. https://doi.org/10.5846/stxb201610172098.
[6] 郭慧娟. 不同鹽堿脅迫下棉花離子組響應(yīng)特征及離子穩(wěn)態(tài)機(jī)制研究[D]. 石河子: 石河子大學(xué), 2019.
Guo Huijuan. Ionome response characteristics and ion homeostatic mechanism of cotton under different salt stress[D]. Shihezi: Shihezi University, 2019.
[7] Wang X S, Ren H L, Wei Z W, et al. Effects of neutral salt and alkali on ion distributions in the roots, shoots, and leaves of two alfalfa cultivars with differing degrees of salt tolerance[J/OL]. Journal of Integrative Agriculture, 2017, 16(8): 1800-1807[2022-06-10]. https://doi.org/10.1016/S2095-3119(16)61522-8.
[8] Reich M, Aghajanzadeh T, Parmar S, et al. Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa[J/OL]. Plant Soil, 2017, 411(1): 319-332[2022-06-10]. https://doi.org/10.1007/s11104-016-3026-7.
[9] Reich M, Aghajanzadeh T, Parmar S, et al. Calcium ameliorates the toxicity of sulfate salinity in Brassica rapa[J/OL]. Journal of Plant Physiology, 2018, 231: 1-8[2022-06-10]. https://doi.org/10.1016/j.jplph.2018.08.014.
[10] Asha K, Paromita D, Kumar P A, et al. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes[J/OL]. Frontiers in Plant Science, 2015, 6: 537-556[2022-06-10]. https://doi.org/10.3389/fpls.2015.00537.
[11] Sun J, He L, Li T. Response of seedling growth and physiology of Sorghum bicolor(L.) Moench to saline-alkali stress[J/OL]. PLoS One, 2019, 14: e0220340[2022-06-10]. https://doi.org/10.1371/journal.pone.0220340.
[12] Munns R, Tester M. Mechanisms of salinity tolerance[J/OL]. Annual Review Plant Biology, 2008, 59: 651-681[2022-06-10]. https://doi.org/10.1146/annurev.arplant.59.032607.092911.
[13] Moreno-Izaguirre E, Ojeda-Barrios D, Avila-Quezada G, et al. Sodium sulfate exposure slows growth of native pecan seedlings[J]. Phyton-international Journal of Experimental Botany, 2015, 84(1): 80-86.
[14] Aghajanzadeh T A, Reich M, Kopriva S, et al. Impact of chloride (NaCl, KCl) and sulphate (Na2SO4, K2SO4) salinity on glucosinolate metabolism in Brassica rapa[J/OL]. Journal of Agronomy and Crop Science, 2018, 204(2): 137-146[2022-06-10]. https://doi.org/10.1111/jac.12243.
[15] Davidian J C, Kopriva S. Regulation of sulfate uptake and assimilation—the same or not the same?[J/OL]. Molecular Plant, 2010, 3(2): 314-325[2022-06-10]. https://doi.org/10.1093/mp/ssq001.
[16] Takahashi H, Kopriva S, Giordano M, et al. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes[J/OL]. Annual Review of Plant Biology, 2011, 62: 157-184[2022-06-10]. https://doi.org/10.1146/annurev-arplant-042110-103921.
[17] Zhang Z, Shrager J, Jain M, et al. Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression[J/OL]. Eukaryotic Cell, 2004, 3(5): 1331-1348[2022-06-10]. https://doi.org/10.1128/EC.3.5.1331-1348.2004.
[18] 鮑士旦. 土壤農(nóng)化分析. 第三版[M]. 北京: 中國農(nóng)業(yè)出版社, 2008: 178-179.
Bao Shidan. Soil Agricultural Chemical Analysis. 3rd ed[M]. Beijing: China Agricultural Press, 2008: 178-179.
[19] Hodges M D, Delong M J, Charles F F. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J/OL]. Planta, 1999, 207(4): 604-611[2022-06-10]. https://doi.org/10.1007/s004250050524.
[20] 李合生. 植物生理生化試驗(yàn)原理和技術(shù)[M]. 北京: 高等教育出版社, 2000: 167-169.
Li Hesheng. Principles and Techniques of Plant Physiology and Biochemistry Experiments[M]. Beijing: Higher Education Press, 2000: 167-169.
[21] 高俊鳳. 植物生理學(xué)試驗(yàn)指導(dǎo)[M]. 北京: 高等教育出版社, 2006: 217-218.
Gao Junfeng. Plant Physiology Experiment Guide[M]. Beijing: Higher Education Press, 2006: 217-218
[22] Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J/OL]. Journal of Experimental Botany, 1981, 32(1): 93-101[2022-06-10]. https://doi.org/10.1093/jxb/32.1.93.
[23] 張殿忠, 汪沛洪, 趙會(huì)賢. 測定小麥葉片游離脯氨酸含量的方法[J]. 植物生理學(xué)通訊, 1990, 4(4): 62-65.
Zhang Dianzhong, Wang Peihong, Zhao Huixian. Method for determining the content of free proline in wheat leaves[J]. Plant Physiology Communications, 1990, 4(4): 62-65.
[24] 王寧, 楊杰, 黃群, 等. 鹽脅迫下棉花K+和Na+離子轉(zhuǎn)運(yùn)的耐鹽性生理機(jī)制[J/OL]. 棉花學(xué)報(bào), 2015, 27(3): 208-215[2022-06-10]. https://doi.org/10.11963/issn.1002-7807.201503003.
Wang Ning, Yang Jie, Huang Qun, et al. Physiological salinity tolerance mechanism for transport of Na+ and K+ ions in cotton(Gossypium hirsutum L.) seedlings under salt stress[J/OL]. Cotton Science, 2015, 27(3): 208-215[2022-06-10]. https://doi.org/10.11963/issn.1002-7807.201503003.
[25] Dinneny J R. Traversing organizational scales in plant salt-stress responses[J/OL]. Current Opinion in Plant Biology, 2015, 23: 70-75[2022-06-10]. https://doi.org/10.1016/j.pbi.2014.10.009.
[26] Lokhande V H, Nikam T D, Patade V Y, et al. Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L.[J/OL]. Plant Cell, Tissue and Organ Culture, 2011, 104(1): 41-49[2022-06-10]. https://doi.org/10.1007/s11240-010-9802-9.
[27] Schmidt A. Metabolic background of H2S release from plants[J]. Landbauforschung Volkenrode, 2005, 283(S1): 121-129.
[28] Ahmad S, Cui W, Kamran M, et al. Exogenous application of melatonin induces tolerance to salt stress by improving the photosynthetic efficiency and antioxidant defense system of maize seedling[J/OL]. Journal of Plant Growth Regulation, 2021, 40(3): 1270-1283[2022-06-10]. https://doi.org/10.1007/s00344-020-10187-0.
[29] 陳莉, 劉連濤, 馬彤彤, 等. 褪黑素對(duì)鹽脅迫下棉花種子抗氧化酶活性及萌發(fā)的影響[J/OL]. 棉花學(xué)報(bào), 2019, 31(5): 438-447[2022-06-10]. https://doi.org/10.11963/1002-7807.cllcd.20190905.
Chen Li, Liu Liantao, Ma Tongtong, et al. Effects of melatonin on the antioxidant enzyme activities and seed germination of cotton (Gossypium hirsutum L.) under salt-stress conditions[J/OL]. Cotton Science, 2019, 31(5): 438-447[2022-06-10]. https://doi.org/10.11963/1002-7807.cllcd.20190905.
[30] Yu W, Yu Y, Wang C, et al. Mechanism by which salt stress induces physiological responses and regulates tanshinone synthesis[J/OL]. Plant Physiology and Biochemistry, 2021, 164: 10-20[2022-06-10]. https://doi.org/10.1016/J.PLAPHY.2021.04.011.
[31] Flowers T J, Colmer T D. Plant salt tolerance: adaptations in halophytes[J/OL]. Annals of Botany, 2015, 115: 327-331[2022-06-10]. https://doi.org/10.1093/aob/mcu267.
[32] Slama I, Abdelly C, Bouchereau A, et al. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress[J/OL]. Annals of Botany, 2015, 115(3): 433-447[2022-06-10]. https://doi.org/10.1093/aob/mcu239.
[33] Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt stress responses[J/OL]. New Phytologist, 2018, 217(2): 523-539[2022-06-10]. https://doi.org/10.1111/nph.14920.
[34] Li H, Tang X, Yang X, et al. Comprehensive transcriptome and metabolome profiling reveal metabolic mechanisms of Nitraria sibirica Pall. to salt stress[J/OL]. Scientific Reports, 2021, 11(1): 1-19[2022-06-10]. https://doi.org/10.1038/S41598-021-92317-6.
[35] Zhang Y, Li D, Zhou R, et al. Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress[J/OL]. BMC Plant Biology, 2019, 19(1): 1-14[2022-06-10]. https://doi.org/10.1186/s12870-019-1665-6.
[36] Zhang L, Zhang Z, Fang S, et al. Metabolome and transcriptome analyses unravel the molecular regulatory mechanisms involved in photosynthesis of Cyclocarya paliurus under salt stress[J/OL]. International Journal of Molecular Sciences, 2022, 23(3): 1161-1176[2022-06-10]. https://doi.org/10.3390/IJMS23031161.
[37] Chen C H, Liu H M, Wang C C, et al. Metabolomics characterizes metabolic changes of Apocyni Veneti Folium in response to salt stress[J/OL]. Plant Physiology and Biochemistry, 2019, 144: 187-196[2022-06-10]. https://doi.org/10.1016/j.plaphy.2019.09.043.
[38] Zhu J K. Abiotic stress signaling and responses in plants[J/OL]. Cell, 2016, 167(2): 313-324[2022-06-10]. https://doi.org/10.1016/j.cell.2016.08.029.
[39] Kumari A, Das P, Parida A K, et al. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes[J/OL]. Frontiers in Plant Science, 2015, 6: 537-556[2022-06-10]. https://doi.org/10.3389/fpls.2015.00537.
[40] Hawkesford M S, De Kok L J. Managing sulphur metabolism in plants[J/OL]. Plant Cell Environment, 2006, 29(3): 382-395[2022-06-10]. https://doi.org/10.1111/J.1365-3040.2005.01470.X.
[41] Widodo H, Patterson J H, Newbigin E, et al. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance[J/OL]. Journal of Experimental Botany, 2009, 60(14): 4089-4103[2022-06-10]. https://doi.org/10.1093/jxb/erp243.
[42] Caldana C, Degenkolbe T, Cuadros-Inostroza A, et al. High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions[J/OL]. Plant Journal, 2011, 67(5): 869-884[2022-06-10]. https://doi.org/10.1111/J.1365-313X.2011.04640.X.
[43] Yang D S, Zhang J, Li M X, et al. Metabolomics analysis reveals the salt tolerant mechanism in Glycine soja[J/OL]. Journal of Plant Growth Regulation, 2017, 36(2): 460-471[2022-06-10]. https://doi.org/10.1007/s00344-016-9654-6.
[44] Amir R, Galili G, Cohen H. The metabolic roles of free amino acids during seed development[J/OL]. Plant Science, 2018, 275: 11-18[2022-06-10]. https://doi.org/10.1016/j.plantsci.2018.06.011.
[45] Yang Q Q, Zhao D S, Zhang C Q, et al. A connection between lysine and serotonin metabolism in rice endosperm[J/OL]. Plant Physiology, 2018, 176(3): 1965-1980[2022-06-10]. https://doi.org/10.1104/pp.17.01283.
[46] Gaufichon L, Rothstein S J, Suzuki A. Asparagine metabolic pathways in Arabidopsis[J/OL]. Plant amp; Cell Physiology, 2016, 57(4): 675-689[2022-06-10]. https://doi.org/10.1093/pcp/pcv184.
[47] Han M, Zhang C, Suglo P, et al. L-aspartate: an essential metabolite for plant growth and stress acclimation[J/OL]. Molecules, 2021, 26(7): 1887-1903[2022-06-10]. https://doi.org/10.3390/MOLECULES26071887.
[48] Kirma M, Araujo W L, Fernie A R, et al. The multifaceted role of aspartate-family amino acids in plant metabolism[J/OL]. Journal of Experimental Botany, 2012, 63(14): 4995-5001[2022-06-10]. https://doi.org/10.1093/jxb/ers119.
[49] Sullivan L B, Gui D Y, Hosios A M, et al. Supporting aspartate biosynthesis is an essential function of respiration in prolifera-ting cells[J/OL]. Cell, 2015, 162(3): 552-563[2022-06-10]. https://doi.org/10.1016/j.cell.2015.07.017.
[50] Jia X, Sun C, Zuo Y, et al. Integrating transcriptomics and metabolomics to characterise the response of Astragalus membranaceus Bge. var. mongolicus (Bge.) to progressive drought stress[J/OL]. BMC Genomics, 2016, 17(1): 188-203[2022-06-10]. https://doi.org/10.1186/s12864-016-2554-0.
[51] Ullah N, Yuce M, Neslihan ?魻ztürk G?觟k?觭e Z, et al. Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species[J/OL]. BMC Genomics, 2017, 18(1): 1-12[2022-06-10]. https://doi.org/10.1186/s12864-017-4321-2.
[52] Guo J X, Lu X Y, Tao Y F, et al. Comparative ionomics and metabolic responses and adaptive strategies of cotton to salt and alkali stress[J/OL]. Frontiers in Plant Science, 2022, 13[2022-06-10]. https://doi.org/10.3389/FPLS.2022.871387.
[53] Medeiros D B, Martins S C, Cavalcanti J H F, et al. Enhanced photosynthesis and growth in atquac1 knockout mutants are due to altered organic acid accumulation and an increase in both stomatal and mesophyll conductance[J/OL]. Plant Physiology, 2016, 170(1): 86-101[2022-06-10]. https://doi.org/10.1104/pp.15.01053.
[54] Igamberdiev A U, Bykova N V. Role of organic acids in the integration of cellular redox metabolism and mediation of redox signalling in photosynthetic tissues of higher plants[J/OL]. Free Radical Biology and Medicine, 2018, 122: 74-85[2022-06-10]. https://doi.org/10.1016/j.freeradbiomed.2018.01.016.
[55] Yang T Y, Qi Y P, Huang H Y, et al. Interactive effects of pH and aluminum on the secretion of organic acid anions by roots and related metabolic factors in Citrus sinensis roots and leaves[J/OL]. Environmental Pollution, 2020, 262: 114303-114312[2022-06-10]. https://doi.org/10.1016/j.envpol.2020.114303.
[56] Drincovich M F, Voll L M, Maurino V G. Editorial: on the diversity of roles of organic acids[J/OL]. Frontiers in Plant Science, 2016, 7: 1592-1594.
[57] Yang C, Guo W, Shi D. Physiological roles of organic acids in alkali-tolerance of the alkali tolerant halophyte Chloris virgata[J/OL]. Agronomy Journal, 2010, 102(4): 1081-1089[2022-06-10]. https://doi.org/https://doi.org/10.2134/agronj2009.0471.
[58] Xiang G, Ma W, Gao S, et al. Transcriptomic and phosphoproteomic profiling and metabolite analyses reveal the mechanism of NaHCO3- induced organic acid secretion in grapevine roots[J/OL]. BMC Plant Biology, 2019, 19(1): 1-15[2022-06-10]. https://doi.org/10.1186/s12870-019-1990-9.
[59] Guo H Y. Alkali stress induced the accumulation and secretion of organic acids in wheat[J/OL]. African Journal of Agricultural Research, 2012, 7(18): 2844-2852[2022-06-10]. https://doi.org/10.5897/ajar11.2086.
[60] 張桂云, 朱靜雯, 孫明法, 等. 鹽脅迫條件下長白10號(hào)水稻籽粒中差異代謝物的分析[J/OL]. 中國農(nóng)業(yè)科學(xué), 2021, 54(4): 675-683[2022-06-10]. https://doi.org/10.3864/j.issn.0578-1752.2021.04.001.
Zhang Guiyun, Zhu Jingwen, Sun Mingfa, et al. Analysis of differential metabolites in grains of rice cultivar Changbai 10 under salt stress[J/OL]. Scientia Agricultura Sinica, 2021, 54(4): 675-683[2022-06-10]. https://doi.org/10.3864/j.issn.0578-1752.2021.04.001.
[61]徐靖, 李輝亮, 朱家紅, 等. 植物脂肪酸β-氧化的研究進(jìn)展[J/OL]. 生物技術(shù)通訊, 2008(1): 141-144[2022-06-10]. https://doi.org/10.3969/j.issn.1009-0002.2008.01.039.
Xu Jing, Li Huiliang, Zhu Jiahong, et al. Insights into fatty acids β-oxidation in plant[J/OL]. Letters in Biotechnology, 2008(1): 141-144[2022-06-10]. https://doi.org/10.3969/j.issn.1009-0002.2008.01.039.
[62] Ding H, Ma D, Huang X, et al. Exogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlings[J/OL]. Acta Physiologiae Plantarum, 2019, 41(7): 1-11[2022-06-10]. https://
doi.org/10.1007/s11738-019-2918-6.
[63] Wang Q, Lu X, Chen X, et al. Transcriptome analysis of upland cotton revealed novel pathways to scavenge reactive oxygen species (ROS) responding to Na2SO4 tolerance[J/OL]. Scientific Reports, 2021, 11(1): 1-15[2022-06-10]. https://doi.org/10.1038/s41598-021-87999-x.
[64] Yang Y. Guo Y. Elucidating the molecular mechanisms mediating plant salt stress responses[J/OL]. New Phytologist, 2018, 217(2): 523-539[2022-06-10]. https://doi.org/10.1111/nph.14920.
[65] Singh M, Kumar J, Singh S, et al. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review[J/OL]. Reviews in Environmental Science and Bio/Technology, 2015, 14(3): 407-426[2022-06-10]. https://doi.org/10.1007/s11157-015-9372-8.
[66] Fougère F, Rudulier D L, Streeter J G. Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.)[J/OL]. Plant Physiology, 1991, 964: 1228-1236[2022-06-10]. https://doi.org/10.1104/PP.96.4.1228.
[67] Kaplan F, Kopka J, Haskell D W, et al. Exploring the temperature-stress metabolome of Arabidopsis[J/OL]. Plant Physiology, 2004, 136(4): 4159-4168[2022-06-10]. https://doi.org/10.1104/pp.104.052142.
[68] Rosa M, Prado C, Podazza G, et al. Soluble sugars-metabolism, sensing and abiotic stress: a complex network in the life of plants[J/OL]. Plant Signaling and Behavior, 2009, 4(5): 383-393[2022-06-10]. https://doi.org/10.4161/psb.4.5.8294.
[69] Elsayed A I, Rafudeen M S, Golldack D. Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress[J/OL]. Plant Biology, 2014, 16(1): 1-8[2022-06-10]. https://doi.org/10.1111/plb.12053.
(責(zé)任編輯:付毓" " 責(zé)任校對(duì):秦凡)