• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The role of tangential velocity in explosive initiation by fragment impact

    2022-12-23 04:30:24VitlyLeusRoyCederVlentinOgnevMeirMyseless
    Defence Technology 2022年12期

    Vitly Leus ,Roy Ceder ,*,Vlentin Ognev ,Meir Myseless

    a RAFAEL Ballistic Center,P.O.Box 2250,Haifa,Israel

    b Faculty of Engineering Sciences,Ben-Gurion University of the Negev,Beer-Sheva,84105,Israel

    Keywords:High explosive initiation Lee-tarver Jacobs-roslund Fragment

    ABSTRACT An initiation study is presented in which we examine the effect of the normal and the tangential velocity components of a fragment that impacts a covered and a bare Comp-B explosive.The study is based on calibrated numerical Lagrangian simulations using the LS-Dyna hydrocode.A special procedure was developed to present the estimated initiation point and the shock wave transition into detonation for various impact angles.The influence of the fragment strength and the steel cover thickness on the detonation threshold were also examined.The velocity threshold results are presented and used to modify the Jacobs-Roslund initiation model.

    1.Introduction

    The topic of initiation of covered and uncovered explosives was largely studied in the open literature.Many of these studies deal with initiation as a result of normal impact.Some studies address the subject on oblique impact initiation.In these works,the impact angle is mainly studied indirectly,by shooting a projectile against a cylindrical target[1,2].Frequently,these types of experiments combine changes both in obliquity and shell thickness,obscuring the effect of obliquity by itself.

    Known initiation empirical models,like the Held v2d criterion[3]or the original Jacobs-Roslund(JR)model[4],also assume that the initiation process depends mainly on the normal impact velocity.Later on the JR model was modified by considering the fragment's orientation[5,6],and not by modifying the impact velocity angle.

    The effect of the cover material strength and projectile's shape on the initiation of Comp-B was studied earlier in Refs.[7-13].In our study,we chose to focus on initiation of covered Comp-B by spherical fragment hitting the target at different angles,by keeping the tangential velocity constant and changing the normal velocity component.In this way,we examine the question whether the normal impact velocity component is the one that dominates the initiation process.The process of penetration into the explosive was studied by employing the Ignition and Growth initiation model[9]in LS-Dyna Hydrocode simulations.A special procedure was set to capture the moment the explosive started to experience the detonation pressure and a normal detonation wave begins to propagate.

    2.Empirical initiation models

    The first model that Held developed was for initiation of bare explosive by shaped-charge jets[3].He noticed that the energy fluency criterion by Walker and Wasley[15]did not provide any information about the minimum required impact area which is necessary for an initiation.Using his empirical results,Held assumed that the impact energy per unit area should overcome a given threshold in order to start initiation.Hence,according to Held,to start detonation,v2d should be greater than a given value that depends on the specific type of explosive,where v is the projectile impact velocity and d is the projectile diameter.Later on[16,17],Held changed his model,taking into account indirectly a possible cover plate.By assuming that the penetration velocity of the projectile into the explosive,u,is the important parameter to determine the kinetic energy transferred to the explosive,Held modified the criterion to a critical value of u2d needed for initiation of the explosive.In Held's research,the shape of the projectile was not accounted for,since the model was developed mainly for shaped-charge jet initiation(the effect of the projectile shape was studied later by James and Hewitt[18]).Held also incorporated the projectile density ρ through the equation:

    It should be noted that Mader estimated that the density effect is stronger and one should use ρ in the power of one instead of half in this equation[19].Held addressed only the impact and penetration velocity components normal to the target,while disregarding the impact angle.

    The Jacobs-Roslund(JR)equation,on the other hand,was developed for initiation by steel fragment impact,having a rounded or a flat nose shape.JR found that the critical velocity for initiation for a cover plate thickness T is as follows:

    where A is an explosive sensitivity parameter,B is the projectile shape coefficient(B=0 for flat ended projectile and B=1 for spherical ended one),D is the projectile diameter and C is a cover plate protection coefficient.Originally,the JR model was developed for normal impact by steel projectiles,when the diameter is greater than a critical one.The cos(φ)term that was added later by Batayte[5,6],took into account the projectile orientation angle,φ(note that φ is not the impact angle).

    The original JR model for bare explosive impacted by a flat nose projectile has the same expression as the Held’s one,even though,the critical values of these two models do not match.For example,for Comp-B,the Held’s threshold value is 16 mm3/μs[3]while the JR value is about 9.4 or 37 mm3/μs,for a flat and a round nose projectile,respectively.

    3.Hydrocode simulation setup

    Simulations were performed using the LS-Dyna Hydrocode,employing the Ignition and Growth(IG)model for the Comp-B explosive.The values for the IG model parameters were taken from the work performed by Schwer[20],in which the values were compared to experimental data.

    For both the unreactive explosive and the reaction products we use the JWL equation of state(EOS)

    where P is the pressure,V is the relative volume,T is the temperature,ω is the Gruneisen coefficient and A,B,R1,R2are the JWL constants.The unreactive explosive was also modeled using an elastic-plastic strength model(see Table 1 below).

    Table 1 EOS and strength model parameters for Comp-B[20].

    The Ignition and Growth(IG)models'main feature is the rate equation governing the dynamics of the fraction of unreacted explosive,F,which transformed into detonation products(but not necessarily through a detonation process)

    where I,b,a,x,G1,c,d,y,G2,e,g,z are calibration constants and the first,second and third terms,on the right hand side of Eq.(4)are switched on within the intervalsrespectively.The IG parameter values we used in our work are listed in Table 2 below.

    The simulations included a steel spherical fragment of 22 mm in diameter and a mass of 44 g,impacting a block of Comp-B with a length,width and height of 200 mm,120 mm and 92 mm,respectively.Both bare and steel covered explosives scenarios were simulated for different cover thickness.As the impact occurs along a symmetry plane as shown in Fig.1(a),the two components of the fragment velocity can be defined at impact,Vtis a tangential component and Vnis a normal component,as described in Fig.1(b).

    The steel cover was stainless steel 304 which was modeled using the Steinberg-Guinan strength model and the Mie-Gruneisen EOS[21],while for the steel fragment we used an elastic-plastic strength model,varying the yield strength,as shown in Table 3.All simulations where performed using the LS-Dyna Lagrangian solver with 1 mm sized hexagonal element.

    Table 2 IG reaction rate model parameters for Comp-B[20].

    Table 3 Cover plate and fragment material properties.

    As a first step,a comparison to experiments was needed in order to check the numerical setup(cell size,erosion and so forth).Aurich and Sattler[7]performed experiments,in which the STANAG 4496 mild steel fragment(roughly a cylinder with diameter and length of 14.3 mm)impinged a target that consisted of Comp-B cylinder with a length and diameter of 120 mm with or without a 10 mm thick steel cover.The fragment velocity direction was perpendicular to the target face,while its magnitude was increased until reaching a critical velocity in which the explosive reached full detonation.For the bare and covered explosives,the critical velocities where 1300 m/s and 2100 m/s,respectively.In our simulations,the critical velocities for the bare and covered case were 1250 m/s and 2200 m/s(see,for example,Fig.2),which showed a sufficient consistency with the experimental results.

    In addition to the comparison between calculation and experiment presented above we wish to also explore qualitatively the results for a lower density Comp-B explosive.In Ref.[8]Murphyet al.also conducted impact experiments where tungsten spherical fragments with different diameters and velocities impacted Comp-B explosive targets with 3 mm thick tantalum covers.In these experiments the fragment velocity direction was also perpendicular to the target face.It is important to note here the Comp-B density in the experiments was 1.63 g/cm3,while in the simulations it was 1.717 g/cm3making the explosive less sensitive.Fig.3 shows the comparison between the experiments from Ref.[8]and the simulations performed with the parameters calibrated in Ref.[20].One can see that aside from the explosive being more sensitive in the experiments,the calculated results exhibit similar qualitative behavior.

    Fig.1.Description of the simulation setup.

    Fig.2.A simulation of a STANAG 4496 mild steel fragment(roughly a cylinder with diameter and length of 14.3 mm),impacting a Comp-B high explosive with a 10 mm thick SS304 cover plate.(a)The fragment impact velocity is perpendicular to the cover plate with a velocity of 1200 m/s;(b)Pressure contours inside the explosive are shown,10 μs after impact,indicating detonation.

    Let us now return to the simulation presented in Fig.2,in which the STANAG fragment impacts a steel plate with a velocity which is perpendicular velocity,on which the run to detonation distance can be well defined and can be measured(Fig.2(b)).Fig.4 below depicts the pressure profiles,at different times,of the entering shock wave and its transition into a detonation wave after traversing to the targets'face,i.e.with both obliquity and impact angles equal to zero.In such a case,one can create an axis,in the direction of the fragment's the run to detonation distance.

    When the impact angle deviates from the normal to the target surface,the situation becomes more complex and presents a difficulty in defining the run distance and other quantitative parameters associated with the onset of the detonation.We will examine this difficulty in what follows.

    Fig.3.Experimental and calculated results of tungsten spherical fragments with different diameters and velocities impacting Comp-B explosive targets with 3 mm thick tantalum covers.The fragment velocity direction is perpendicular to the target face.Note here that the Comp-B density in the experiments was 1.63 g/cm3,while in the simulations it was 1.717 g/cm3 making the explosive less sensitive.

    Fig.4.Pressure profiles,at different times,of the simulation shown in Fig.1.The profiles are taken along the axis shown in Fig.1(a),when the wave travels from left to right.One can see the entering shock wave and its transition into a detonation wave after traversing the run to detonation distance.

    4.Ellipses model

    The definition of the detonation point in a one dimension model(or test)is generally based on searching for a point where the shock velocity changes rapidly from the reactants shock velocity value to a detonation velocity value.An example of such calculations may be found in smear tests[22].A similar method may be used in a numerical calculation of one-dimensional model as described in Ref.[23].

    We present in this study a possible method to determine a virtual initial detonation point in two-dimensional space(cross section)that can be also extended to a three-dimensional setup.Note,a two-dimensional analysis is applied to the symmetry plane of the three-dimensional setup.

    As a first stage,the detonation front is defined as a barrier which separates the detonation products from the undetonated reactants and is characterized by a pressure jump along it.We approximate this front as an ellipse.Fig.5 presents a typical ellipse and its points.

    Fig.5.Ellipse description.

    The following example presents an impact scenario of a steel spherical fragment impacting an 8 mm thick steel covered Comp-B.The fragment's velocity tangential component is 4000 m/s and its normal component is 1200 m/s.Fig.6(a)presents the pressure field after impact in a contour plot at times of 14,16,and 18 μs.The red color area which indicates high-pressures,describes the detonation fronts'position.Fig.6(b)presents the detonation front position(marked by"x")at times in accordance with Fig.6(a).The blue line describes the ellipse approximation of the detonation front.The ellipse functions parameters are determined using a Taubin algorithm[24],and include minor and major axis lengths and center(marked by red circle),vertex(marked by cyan triangle)and covertex(marked by red triangle)points.All these parameters change in time.The most important parameters for our work are the center and co-vertex points.These points are used to define a general line vector of the detonation front progress.Both types:center and co-vertex points should be used to determine the detonation path.The reason for using both groups is to reduce the error in line definition and prevent situations in which a single type of points may produce undefined line direction.For example,in case of a circle(for normal impact scenarios)a position of co-vertex point may be hard to detect and may produce errors,and the direction of the line relies mostly on the center points.

    The evolution of ellipse approximation with time and the calculated line path(thick red straight line)are presented in Fig.7.The line path is based on center points and co-vertex points and is calculated using a“Robust minimal square algorithm”which described in Ref.[25].The blue points in Fig.7 represent the position of numerical pressure gauges.

    The calculated line path(red line in Fig.7 above)is used to examine a temporal and spatial pressure evolution and to produce a series of plots similar to a single dimensional problem.Fig.8(a)shows the pressure change in time as measured at gauge points from Fig.7.Fig.8(a)describes the pressure profiles,as a function of time,for the gauges positioned on the line path.The rise time of the pressure profile at each gauge is marked with a circle,and represents the arrival of the shock wave at the corresponding gauge.All the arrival times for gauges are transferred to the blue line in Fig.8(b)and are presented as a blue curve.Abscissa axis of Fig.8(b)describes a coordinate along the line path.Fig.8(b)also marks a point(red cross)of slope change which may be defined as a virtual initiation point of detonation and is calculated from the intersection of two lines described by a least square approximation,before and after the slope change point.The red line is calculated by linear fit of the pre-detonation points and its'slope is the shock velocity in reactants.The purple line is the linear curve fit for post detonation points.The slope of the red line(pre-detonated points)is 2658 m/s and for the purple line(post detonated points)is 7330 m/s.Those values correlate to the values observed from the simulation,to be the shock and detonation wave's velocities,respectively.

    Fig.6.(a)Pressure map time evolution,detonation front time evolution and(b)its ellipse approximation.

    Fig.7.Line path of detonation as calculated from ellipse evolution data.

    Fig.9 presents a pressure map with the virtual initiation point.The point is marked as cyan"x"in Fig.9(a)and orange"x"in Fig.9(b).

    Fig.10 presents a set of virtual initiation points for different values of normal velocity component for tangential component of 4000 m/s.The plot shows that increasing the normal component(and the total velocity value)results in a virtual initiation point that is closer to the impact point,as expected.

    5.Numerical simulation results

    In order to identify the fragment impact velocity,the tangential velocity component Vtof the fragment was defined by constant intervals of 0 m/s,250 m/s,500 m/s,1000 m/s,3000 m/s and 4000 m/s.For every value of Vtthe normal velocity component Vn,was iteratively changed in 25 m/s jumps,until the threshold detonation pressure was achieved for the first time in the symmetry plane elements.Fig.11 presents the curves of Vnas function of Vtat which the detonation condition is achieved,for three different thicknesses of the steel cover,and for the bare explosive.

    One would expect that as the tangential velocity component is increased the critical normal component decreases,since additional energy is exerted onto the target.However,increasing the tangential component,relative to the normal one,also increases the impact angle.Since no detonation can occur at 90?,one may expect a local extremum in the critical vertical velocity component as the tangential is increased.This however is not evident in Fig.10.In order to better understand,we plotted in Fig.12 the relative decrease in the normal velocity component ΔVn/Vn0=(Vn0-Vn)/Vn0,compared to the case of perpendicular impact,Vn0,as a function of the tangential component Vt.It can be seen that for Vt>1000 m/s there is a large decrease in the critical normal velocity,of order of tens of percent.It can be also seen that there is no local maxima,but rather there seems to be a saturation towards some critical decrease value associated with 90?impact angle(we will return to this point later).

    In Fig.13 the effect of the fragment strength on the detonation threshold is presented for the steel cover thickness of 8 mm.It can be seen that the fragment strength has negligible effect on the detonation threshold.This result is consistent with the results presented in Ref.[26].

    Fig.8.(a)Pressure history at gauge points,(b)times of shock arrival to gauge points.

    Fig.9.(a)Virtual initiation point position on the pressure map and(b)front evolution map.

    Fig.10.Virtual initiation points for different normal velocity components.

    6.Modified JR model

    Returning to the Jacobs-Roslund empirical model in Eq.(2),the coefficients of the JR model were first fitted according to the simulation threshold results at normal impact,when the absolute threshold velocity of the fragment,Vcr,was calculated based on the results shown in Fig.11.The fitted JR model coefficients are presented in Fig.14.

    Fig.11.Normal component Vn versus tangential component Vt of the fragment velocity,at which the detonation condition is achieved,for bare explosive and three different thicknesses of the steel cover.

    To compare our results(shown in Fig.11)to the JR model,we present them in terms of the absolute threshold velocity of the fragment Vcr,and the fragment impact angle θ.As a first step,we tried replacing ? in Eq.(2)with the impact angle θ to examine the fitting potential.

    The simulation results(markers)for the detonation threshold velocity and the modified JR-Batayte model results(solid lines)versus impact angle for bare and covered explosive are presented in Fig.15.It can be seen that the JR-Batayte model can fit the simulation results only for the limited range of impact angle θ of 0-45?.

    In this work we suggest an improved modification of the JR model which can appropriately handle the detonation threshold for the whole range of impact angles considered in this work

    Fig.12.The relative decrease in the normal component versus the tangential component of the fragment velocity.

    Fig.13.Fragment strength effect on the detonation threshold for steel cover thickness of 8 mm.

    Fig.14.Fitting JR coefficients based on simulation threshold results at normal impact.

    Fig.15.JR-Batayte model,with impact instead of orientation angle,compared to simulation results.

    Fig.16.Suggested JR model modification versus simulation results.

    where VJRcris the threshold velocity at normal impact as defined by JR model(Eq.(2)),T is the cover thickness,D is the projectile diameter,θ is the impact angle in radians(note that θ is not the projectile orientation angle),and the a,b and c are the fitting coefficients.

    The simulation results(markers)for the detonation threshold velocity and the fitted results(solid lines)by the proposed JR model modification as function of an impact angle for bare and covered explosive are presented in Fig.16.It is shown that for the specific set of fitting coefficients,specifically a=1.3 m/s,b=4.8 and c=5 rad-1,the detonation threshold can be fitted for the whole range of impact angles,that were used in the simulations.However,at this point we wish to clarify that since there can be no detonation at an impact value of 90?,the modified JR model in Eq.(3)is should be viewed as an empirical correction that should be considered only in a limited range of impact angles.Above a certain angle an asymptotic increase in the critical velocity Vcrshould be witnessed up to a divergence in θ=90?.The behavior of Vcrits relation to the ricochet effect needs more study.Moreover,we expect a more precise JR modification to include such asymptotic behavior.We leave this research for future work.

    7.Conclusions

    The critical velocities for initiation of a bare and covered Comp-B explosive were presented.These velocities were calculated within the Lee-Tarver Ignition and growth initiation model framework using Lagrangian simulations in the LS-Dyna Hydrocode.The numerical setup was tested by simulating the normal impact of a STANAG 4496 fragment into bare and covered Comp-B,that showed consistency with published experimental results[7].

    A special method was presented to identify the onset of detonation in case of oblique fragment impact where the twodimensional wave propagation is developed.Within this method we can identify a virtual initiation situated within the twodimensional symmetry impact plane.The results show that increasing the tangential velocity component,decreases the critical normal velocity component needed for initiation.The effect of changing the fragment material strength was shown to be quantitatively marginal,in accordance with the previous published results[26].

    Based on our results,the JR model was modified empirically to account for the general case of spherical fragment impact initiation.This modification,however,pertains to a large range of impact angle values.Nevertheless above a certain impact angle one expects to see an asymptotic divergence,in the critical initiation velocity,towards the physical limit of ninety degrees.Our model is limited in this respect.We plan to address this topic,of large impact angles,in our future work.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    午夜福利视频精品| 人人妻人人澡人人爽人人夜夜| 性色av一级| 日本爱情动作片www.在线观看| av免费观看日本| 亚洲精品美女久久久久99蜜臀 | 欧美精品一区二区大全| 亚洲国产日韩一区二区| 国产淫语在线视频| 99久久99久久久精品蜜桃| 国产男女内射视频| 日韩人妻精品一区2区三区| 香蕉丝袜av| 亚洲成色77777| 亚洲精品久久成人aⅴ小说| 妹子高潮喷水视频| 国产 精品1| 日韩免费高清中文字幕av| av在线播放精品| 亚洲伊人久久精品综合| 热re99久久国产66热| 一本色道久久久久久精品综合| 哪个播放器可以免费观看大片| 亚洲av日韩在线播放| 精品酒店卫生间| 亚洲精品一区蜜桃| 国产黄色视频一区二区在线观看| 欧美另类一区| av免费观看日本| 午夜福利在线免费观看网站| 久久精品aⅴ一区二区三区四区| 久久久久久人妻| 如何舔出高潮| 韩国高清视频一区二区三区| 丝袜美足系列| av又黄又爽大尺度在线免费看| 免费高清在线观看日韩| 日韩电影二区| 国产日韩欧美亚洲二区| 99热全是精品| 黄色怎么调成土黄色| 免费不卡黄色视频| 一级,二级,三级黄色视频| 久久精品人人爽人人爽视色| 午夜免费观看性视频| 日韩制服丝袜自拍偷拍| 精品少妇一区二区三区视频日本电影 | 新久久久久国产一级毛片| 国产97色在线日韩免费| 久久久久久久久久久免费av| 美女视频免费永久观看网站| 亚洲欧美一区二区三区久久| 爱豆传媒免费全集在线观看| 男女下面插进去视频免费观看| 国产成人午夜福利电影在线观看| 国产欧美日韩一区二区三区在线| 亚洲自偷自拍图片 自拍| svipshipincom国产片| 一区在线观看完整版| 色网站视频免费| 国产精品久久久人人做人人爽| 九九爱精品视频在线观看| 啦啦啦啦在线视频资源| av不卡在线播放| 亚洲国产欧美在线一区| 丝袜人妻中文字幕| 欧美在线一区亚洲| 国产成人精品久久久久久| 国产成人精品福利久久| 国产又爽黄色视频| tube8黄色片| 天天影视国产精品| 国产日韩欧美在线精品| 伊人久久大香线蕉亚洲五| 久久97久久精品| 黄片无遮挡物在线观看| 欧美日韩一区二区视频在线观看视频在线| 99国产综合亚洲精品| 99国产综合亚洲精品| 最近中文字幕2019免费版| 国产精品久久久人人做人人爽| 成年av动漫网址| 777久久人妻少妇嫩草av网站| 国产激情久久老熟女| 极品人妻少妇av视频| 亚洲精品日韩在线中文字幕| 国产免费福利视频在线观看| 国产成人精品久久久久久| 男女之事视频高清在线观看 | 多毛熟女@视频| 精品一区二区免费观看| 少妇被粗大猛烈的视频| 免费女性裸体啪啪无遮挡网站| 高清视频免费观看一区二区| avwww免费| 涩涩av久久男人的天堂| 丝袜在线中文字幕| 少妇人妻精品综合一区二区| 国产在视频线精品| av在线播放精品| 久久影院123| 国产亚洲最大av| 亚洲国产av新网站| 国产福利在线免费观看视频| 在线天堂中文资源库| 欧美97在线视频| 欧美日韩福利视频一区二区| 51午夜福利影视在线观看| 中文字幕人妻丝袜一区二区 | 日韩大码丰满熟妇| 狠狠婷婷综合久久久久久88av| 黄片小视频在线播放| 搡老岳熟女国产| 无遮挡黄片免费观看| 欧美 日韩 精品 国产| 欧美精品亚洲一区二区| 欧美日韩av久久| 亚洲精品第二区| 日韩 亚洲 欧美在线| 麻豆乱淫一区二区| 免费日韩欧美在线观看| 我的亚洲天堂| av天堂久久9| 久久ye,这里只有精品| 天美传媒精品一区二区| 国产一区二区 视频在线| 一边亲一边摸免费视频| 中文字幕色久视频| 男女高潮啪啪啪动态图| 丰满迷人的少妇在线观看| 中国国产av一级| 看非洲黑人一级黄片| 久久久亚洲精品成人影院| 国产女主播在线喷水免费视频网站| 国产精品 国内视频| 欧美日韩成人在线一区二区| 日韩伦理黄色片| 一级,二级,三级黄色视频| 精品国产乱码久久久久久男人| 51午夜福利影视在线观看| 啦啦啦 在线观看视频| 另类亚洲欧美激情| 国产又爽黄色视频| 天天躁狠狠躁夜夜躁狠狠躁| 日韩一区二区视频免费看| 亚洲第一青青草原| 亚洲人成77777在线视频| 亚洲精品美女久久av网站| 欧美黑人欧美精品刺激| 国产精品香港三级国产av潘金莲 | 国产精品熟女久久久久浪| 久久热在线av| 午夜久久久在线观看| 国产成人欧美在线观看 | 亚洲欧美一区二区三区久久| 美女福利国产在线| 99九九在线精品视频| 青春草亚洲视频在线观看| 国产亚洲欧美精品永久| 久久久精品国产亚洲av高清涩受| 如日韩欧美国产精品一区二区三区| 亚洲国产欧美一区二区综合| 中文字幕人妻丝袜制服| 国产精品一区二区在线观看99| 在线精品无人区一区二区三| 国产不卡av网站在线观看| 国产 精品1| 黄色毛片三级朝国网站| 99热网站在线观看| 在线观看免费午夜福利视频| 少妇被粗大猛烈的视频| 日韩制服骚丝袜av| 一区二区av电影网| 亚洲伊人久久精品综合| 欧美中文综合在线视频| 日日爽夜夜爽网站| 久久精品久久精品一区二区三区| 天堂8中文在线网| 久久精品久久精品一区二区三区| 中文字幕av电影在线播放| 在线 av 中文字幕| 久久人人97超碰香蕉20202| 精品亚洲成a人片在线观看| 伊人久久国产一区二区| 美女中出高潮动态图| 性高湖久久久久久久久免费观看| 色精品久久人妻99蜜桃| 国产麻豆69| 国产一区亚洲一区在线观看| 成年女人毛片免费观看观看9 | 亚洲婷婷狠狠爱综合网| 韩国av在线不卡| 看免费av毛片| 国产高清国产精品国产三级| 亚洲成人国产一区在线观看 | 夜夜骑夜夜射夜夜干| 日韩成人av中文字幕在线观看| 最近最新中文字幕免费大全7| 亚洲国产欧美一区二区综合| 亚洲人成77777在线视频| avwww免费| 黑人巨大精品欧美一区二区蜜桃| 亚洲熟女毛片儿| 麻豆乱淫一区二区| 99九九在线精品视频| 欧美日韩视频高清一区二区三区二| 高清av免费在线| 欧美精品av麻豆av| 在线观看三级黄色| 久久久久精品久久久久真实原创| 日韩av在线免费看完整版不卡| 久久久久久久久久久免费av| 大香蕉久久网| 嫩草影视91久久| 亚洲国产成人一精品久久久| 大片免费播放器 马上看| 青青草视频在线视频观看| 可以免费在线观看a视频的电影网站 | 国产欧美亚洲国产| 日韩精品免费视频一区二区三区| 国产乱人偷精品视频| 国产精品久久久久久精品古装| av卡一久久| 亚洲欧洲精品一区二区精品久久久 | 久久人人爽人人片av| 水蜜桃什么品种好| 亚洲自偷自拍图片 自拍| 美女国产高潮福利片在线看| 毛片一级片免费看久久久久| 啦啦啦视频在线资源免费观看| 中文字幕最新亚洲高清| 久久久久精品国产欧美久久久 | 日本av免费视频播放| 久久综合国产亚洲精品| 黑人猛操日本美女一级片| 欧美精品一区二区大全| 中文字幕人妻丝袜一区二区 | 国产男人的电影天堂91| 亚洲激情五月婷婷啪啪| 免费黄频网站在线观看国产| 成年人午夜在线观看视频| 久久精品亚洲熟妇少妇任你| 亚洲 欧美一区二区三区| 欧美精品av麻豆av| 中国国产av一级| 日韩中文字幕视频在线看片| 大片电影免费在线观看免费| 午夜久久久在线观看| 亚洲国产精品一区三区| 国产男女内射视频| 日本wwww免费看| 欧美日韩一级在线毛片| 欧美精品一区二区免费开放| 制服诱惑二区| 男女免费视频国产| 免费女性裸体啪啪无遮挡网站| 国产男女超爽视频在线观看| 日韩一区二区视频免费看| 丝袜脚勾引网站| 国产深夜福利视频在线观看| 操出白浆在线播放| 搡老乐熟女国产| 国产又色又爽无遮挡免| 一级爰片在线观看| 99香蕉大伊视频| 在线天堂最新版资源| 一边摸一边做爽爽视频免费| 男人爽女人下面视频在线观看| 一二三四中文在线观看免费高清| 免费人妻精品一区二区三区视频| 中文字幕制服av| 欧美 日韩 精品 国产| 男人添女人高潮全过程视频| 亚洲精品国产区一区二| 国产精品嫩草影院av在线观看| 国产极品天堂在线| 亚洲精品,欧美精品| 亚洲av成人精品一二三区| 丝袜人妻中文字幕| 亚洲欧洲精品一区二区精品久久久 | 悠悠久久av| 无遮挡黄片免费观看| 国产精品久久久久久精品电影小说| av国产久精品久网站免费入址| 一本—道久久a久久精品蜜桃钙片| 欧美少妇被猛烈插入视频| 校园人妻丝袜中文字幕| 欧美 亚洲 国产 日韩一| 秋霞在线观看毛片| 日日摸夜夜添夜夜爱| 日本vs欧美在线观看视频| 亚洲欧美精品自产自拍| 日韩人妻精品一区2区三区| 久久精品亚洲av国产电影网| 亚洲欧美精品自产自拍| 亚洲激情五月婷婷啪啪| 汤姆久久久久久久影院中文字幕| 哪个播放器可以免费观看大片| 午夜老司机福利片| 国产男人的电影天堂91| 国产亚洲最大av| 国产亚洲精品第一综合不卡| 国产 一区精品| 亚洲av日韩在线播放| 90打野战视频偷拍视频| 久久国产精品大桥未久av| 1024香蕉在线观看| 中文字幕最新亚洲高清| 一级毛片 在线播放| 国产精品一区二区在线不卡| 午夜福利网站1000一区二区三区| 看非洲黑人一级黄片| 日韩熟女老妇一区二区性免费视频| 亚洲成人av在线免费| 9热在线视频观看99| 午夜激情av网站| 国产成人a∨麻豆精品| 在线亚洲精品国产二区图片欧美| 午夜免费观看性视频| 啦啦啦 在线观看视频| 久久精品国产亚洲av高清一级| 男女免费视频国产| 免费观看a级毛片全部| 中文精品一卡2卡3卡4更新| 精品少妇久久久久久888优播| 老司机亚洲免费影院| 国产欧美日韩一区二区三区在线| 国产成人系列免费观看| 18禁国产床啪视频网站| 大陆偷拍与自拍| 香蕉国产在线看| 啦啦啦中文免费视频观看日本| 少妇 在线观看| 国产爽快片一区二区三区| 国产亚洲精品第一综合不卡| 久久狼人影院| 日韩熟女老妇一区二区性免费视频| 免费观看a级毛片全部| www.精华液| 国产精品久久久久成人av| 男人爽女人下面视频在线观看| 亚洲欧美激情在线| 999久久久国产精品视频| 成年人免费黄色播放视频| 91精品三级在线观看| 岛国毛片在线播放| 男女边摸边吃奶| 汤姆久久久久久久影院中文字幕| 精品免费久久久久久久清纯 | 在线观看人妻少妇| 精品人妻在线不人妻| 国产精品 国内视频| av又黄又爽大尺度在线免费看| 国精品久久久久久国模美| 大片免费播放器 马上看| 老司机影院成人| 丝袜在线中文字幕| 欧美av亚洲av综合av国产av | 香蕉国产在线看| 各种免费的搞黄视频| 精品一区在线观看国产| 大片免费播放器 马上看| 黄色 视频免费看| 国产男女超爽视频在线观看| 免费高清在线观看日韩| 天天躁夜夜躁狠狠久久av| 精品国产乱码久久久久久小说| 我的亚洲天堂| 中文字幕精品免费在线观看视频| 麻豆乱淫一区二区| 国产精品国产av在线观看| 大陆偷拍与自拍| 久久久久久久久久久久大奶| 日韩一卡2卡3卡4卡2021年| 国产av国产精品国产| 久久久久精品国产欧美久久久 | 69精品国产乱码久久久| 免费不卡黄色视频| 黄色怎么调成土黄色| 在现免费观看毛片| 国产在线一区二区三区精| 啦啦啦 在线观看视频| 色婷婷av一区二区三区视频| 成人影院久久| 在线 av 中文字幕| 免费黄频网站在线观看国产| 国产精品av久久久久免费| 国产黄色免费在线视频| 国产精品三级大全| 久久久久网色| 国产欧美日韩一区二区三区在线| 波野结衣二区三区在线| 日韩精品有码人妻一区| 国产片内射在线| 一本大道久久a久久精品| 青春草国产在线视频| avwww免费| 亚洲国产精品一区二区三区在线| 亚洲一级一片aⅴ在线观看| 国产亚洲欧美精品永久| av不卡在线播放| 中文字幕制服av| 19禁男女啪啪无遮挡网站| 操美女的视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕av电影在线播放| av不卡在线播放| 麻豆精品久久久久久蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产一区二区三区久久久樱花| 操出白浆在线播放| 可以免费在线观看a视频的电影网站 | 男人添女人高潮全过程视频| 精品一品国产午夜福利视频| 亚洲av电影在线进入| 亚洲伊人久久精品综合| 国语对白做爰xxxⅹ性视频网站| 男人舔女人的私密视频| 伊人久久国产一区二区| 国产免费福利视频在线观看| 欧美日韩福利视频一区二区| 两个人看的免费小视频| www日本在线高清视频| 精品人妻一区二区三区麻豆| 久久精品国产亚洲av高清一级| 别揉我奶头~嗯~啊~动态视频 | 久久99精品国语久久久| 午夜激情久久久久久久| www.精华液| 亚洲成人一二三区av| 18禁观看日本| 国产不卡av网站在线观看| 亚洲成人国产一区在线观看 | av福利片在线| 又大又爽又粗| 亚洲欧美一区二区三区黑人| 一级,二级,三级黄色视频| 日本色播在线视频| 免费久久久久久久精品成人欧美视频| 亚洲国产最新在线播放| 亚洲成人一二三区av| 国产乱人偷精品视频| 精品免费久久久久久久清纯 | 亚洲av电影在线观看一区二区三区| 欧美少妇被猛烈插入视频| 大片免费播放器 马上看| 亚洲精品第二区| 亚洲欧美中文字幕日韩二区| 欧美日韩亚洲高清精品| 久久毛片免费看一区二区三区| 国产av一区二区精品久久| av在线观看视频网站免费| 亚洲av综合色区一区| 欧美精品高潮呻吟av久久| 免费女性裸体啪啪无遮挡网站| 亚洲精品自拍成人| 久久久精品94久久精品| 国产在线一区二区三区精| 国产av精品麻豆| 精品国产乱码久久久久久小说| svipshipincom国产片| 亚洲国产av新网站| 国产麻豆69| 久久久久精品国产欧美久久久 | 亚洲欧美精品综合一区二区三区| 男女无遮挡免费网站观看| 亚洲av在线观看美女高潮| tube8黄色片| 国产又色又爽无遮挡免| 亚洲欧美一区二区三区黑人| 国产一区二区在线观看av| 国产精品无大码| 中文精品一卡2卡3卡4更新| 日日爽夜夜爽网站| 国产野战对白在线观看| 久久韩国三级中文字幕| 伊人久久大香线蕉亚洲五| 看十八女毛片水多多多| 男女免费视频国产| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕av电影在线播放| 国产xxxxx性猛交| 国产在线视频一区二区| 最近中文字幕2019免费版| 69精品国产乱码久久久| 亚洲免费av在线视频| 精品久久久久久电影网| 亚洲色图综合在线观看| 久久人人爽人人片av| 亚洲人成网站在线观看播放| 色网站视频免费| 69精品国产乱码久久久| 色网站视频免费| 日韩欧美一区视频在线观看| 观看av在线不卡| 久久精品久久精品一区二区三区| 激情视频va一区二区三区| 成人国产av品久久久| 精品人妻一区二区三区麻豆| avwww免费| 日韩一本色道免费dvd| 观看av在线不卡| 人人妻人人添人人爽欧美一区卜| 亚洲av综合色区一区| 亚洲欧美成人精品一区二区| 国产精品.久久久| 男女高潮啪啪啪动态图| 亚洲精品成人av观看孕妇| 亚洲男人天堂网一区| 日本色播在线视频| av网站在线播放免费| 午夜日韩欧美国产| av线在线观看网站| 亚洲精品视频女| 99热网站在线观看| 午夜福利视频精品| 91精品国产国语对白视频| 亚洲伊人色综图| 欧美xxⅹ黑人| 中国国产av一级| 新久久久久国产一级毛片| 99国产精品免费福利视频| 国产伦人伦偷精品视频| 黄片无遮挡物在线观看| 日韩一卡2卡3卡4卡2021年| 女人爽到高潮嗷嗷叫在线视频| 高清视频免费观看一区二区| 亚洲av中文av极速乱| 大码成人一级视频| 国产老妇伦熟女老妇高清| 久久毛片免费看一区二区三区| av又黄又爽大尺度在线免费看| 亚洲国产欧美网| 丝袜喷水一区| 捣出白浆h1v1| 欧美人与性动交α欧美精品济南到| 国产一区二区 视频在线| 国产免费一区二区三区四区乱码| 在现免费观看毛片| 精品一区二区三卡| 成人手机av| 亚洲av电影在线观看一区二区三区| 国产乱来视频区| 亚洲精品一二三| 色综合欧美亚洲国产小说| 狂野欧美激情性bbbbbb| 男女床上黄色一级片免费看| 日韩不卡一区二区三区视频在线| 亚洲婷婷狠狠爱综合网| 不卡视频在线观看欧美| 亚洲国产av影院在线观看| 美女国产高潮福利片在线看| 欧美激情 高清一区二区三区| 性少妇av在线| 成人漫画全彩无遮挡| 免费在线观看视频国产中文字幕亚洲 | 欧美亚洲 丝袜 人妻 在线| 国产精品一区二区在线不卡| 99久国产av精品国产电影| avwww免费| 男人爽女人下面视频在线观看| 久久久久久久大尺度免费视频| 午夜福利一区二区在线看| 色精品久久人妻99蜜桃| 亚洲成人手机| 欧美日本中文国产一区发布| 亚洲色图 男人天堂 中文字幕| 中文字幕高清在线视频| 国产日韩欧美在线精品| 亚洲第一区二区三区不卡| 美女扒开内裤让男人捅视频| 麻豆精品久久久久久蜜桃| 亚洲国产欧美一区二区综合| 国产1区2区3区精品| 亚洲三区欧美一区| 久久99精品国语久久久| 精品久久久精品久久久| 宅男免费午夜| 丰满乱子伦码专区| 精品少妇内射三级| 一级爰片在线观看| av网站免费在线观看视频| 成年人午夜在线观看视频| 国产在线视频一区二区| 免费不卡黄色视频| 高清欧美精品videossex| 欧美激情高清一区二区三区 | 中文字幕av电影在线播放| 亚洲专区中文字幕在线 | 午夜激情久久久久久久| 国产精品99久久99久久久不卡 | 欧美日韩一区二区视频在线观看视频在线| 99九九在线精品视频| 亚洲,欧美精品.| av片东京热男人的天堂| 午夜福利网站1000一区二区三区| 亚洲一级一片aⅴ在线观看| 天堂俺去俺来也www色官网| 国产xxxxx性猛交| 亚洲av福利一区| 亚洲图色成人| 日本wwww免费看| 国产精品一二三区在线看| 免费观看人在逋| 久久热在线av| 欧美老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 在线观看www视频免费| 91国产中文字幕| av电影中文网址| 亚洲,欧美精品.| 视频区图区小说| 18禁观看日本| 精品少妇黑人巨大在线播放| 国产成人免费观看mmmm|