• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive sliding mode control of modular self-reconfigurable spacecraft with time-delay estimation

    2022-12-23 04:30:06XinhongLiZhiinZhngJipingAnXinZhouGngxunHuGuohuiZhngWnxinMn
    Defence Technology 2022年12期

    Xin-hong Li ,Zhi-in Zhng ,*,Ji-ping An ,Xin Zhou ,Gng-xun Hu ,Guo-hui Zhng ,Wn-xin Mn

    a Department of Aerospace Science and Technology,Space Engineering University,No.1 BaYi Road,HuaiRou District,Beijing,101416,China

    b Beijing Institute of Remote Sensing Information,Beijing,100192,China

    Keywords:Adaptive sliding mode control(ASMC)Time delay control Time delay estimation Modular self-reconfigurable spacecraft Uncertainty Coordinated control

    ABSTRACT The reconstruction control of modular self-reconfigurable spacecraft(MSRS)is addressed using an adaptive sliding mode control(ASMC)scheme based on time-delay estimation(TDE)technology.In contrast to the ground,the base of the MSRS is floating when assembled in orbit,resulting in a strong dynamic coupling effect.A TED-based ASMC technique with exponential reaching law is designed to achieve high-precision coordinated control between the spacecraft base and the robotic arm.TDE technology is used by the controller to compensate for coupling terms and uncertainties,while ASMC can augment and improve TDE’s robustness.To suppress TDE errors and eliminate chattering,a new adaptive law is created to modify gain parameters online,ensuring quick dynamic response and high tracking accuracy.The Lyapunov approach shows that the tracking errors are uniformly ultimately bounded(UUB).Finally,the on-orbit assembly process of MSRS is simulated to validate the efficacy of the proposed control scheme.The simulation results show that the proposed control method can accurately complete the target module’s on-orbit assembly,with minimal perturbations to the spacecraft’s attitude.Meanwhile,it has a high level of robustness and can effectively eliminate chattering.

    1.Introduction

    Modular self-reconfigurable spacecraft(MSRS)is a new type of spacecraft system that can be maintained,repaired,and upgraded in orbit.It provides many advantages,including a low development cost,a short deployment time,and high system flexibility.The world’s space powers have put forward their own MSRS projects,such as Japan’s CellSat[1],HISat[2]of the United States,Germany’s IBOSS[3],and so on.This research group put forward the“Magic’s Cube”intelligent variable-structure spacecraft concept.On the one hand,the modules are linked by robotic arms,allowing the spacecraft to alter the configuration and enhance mission capability.On the other hand,the robotic arms can also be utilized to complete the on-orbit assembly and expansion of MSRS.

    During the self-assembly phase of the spacecraft in orbit,the robotic arms must be precisely controlled to capture the target and complete the assembly task.However,the dynamic coupling between the arm and the spacecraft base,as well as external disturbances and load uncertainties,make coordinated control of the spacecraft base and the robotic arm more complex.To solve the above problems,researchers have proposed control methods such as sliding mode control(SMC)[4],adaptive control[5],fuzzy logic control[6],and neural network control[7,8].Robust control methods such as SMC suppress disturbances and uncertainties by outputting high control gains,but their high-frequency switching actions will lead to chattering.Some adaptive control methods can enhance SMC,but usually need to know the bounds of disturbances and uncertainties[9].Neural networks and fuzzy algorithms require a large amount of computation when estimating external disturbances and uncertainties.Although these schemes are theoretically feasible,they are challenging to implement in practice due to the requirements of system dynamics or sophisticated estimate procedures.

    TDE technology provides a simple and efficient solution to the difficulties mentioned above.TDE is model-free,using previously observed information and control inputs to estimate the current unknown dynamics of continuous variable dynamic systems online,and is often used to eliminate complex dynamic uncertainties and external disturbances.Hisa and Gao[10,11]proposed an effective control method TDC for industrial manipulators based on TDE technology.TDC is simple and easy to implement,and has been successfully applied to a variety of scenarios,such as robots[12],underwater robots[13],and chaotic systems[14].However,due to the inherent measurement noise and limited sampling period in practical applications,the use of time-delay signals will inevitably result in estimation errors,known as TDE errors.When there are hard nonlinearities,such as saturation and coulomb friction,the TDE errors will increase significantly,leading to severe degradation of control performance.To compensate the TDE errors and achieve improved accuracy and robustness,TDE is usually combined with robust control strategies,such as adaptive SMC[15,16],terminal sliding mode control[17,18],etc.TDE is robust to uncertainties in system dynamics and does not require any prior knowledge of uncertainty bounds.Therefore,the control method based on TDE can guarantee high control performance.

    Existing TDE-based adaptive sliding mode controllers are generally designed in three ways,the first being the adaptive design of robust terms[19-21],the second for the gain dynamics[22],and the third for the adaptive design of control gain[23,24].Baek proposed an ASMC scheme based on TDE technology,which adopted an adaptive law and achieved good tracking performance in the case of small jitter[19].However,the singularity will appear when the sliding variable crosses zero,and the tracking accuracy needs to be improved.Bae uses the fuzzy sliding mode control as an auxiliary control scheme,which has smaller chattering[20].The adaptive robust TDC(ARTDC)proposed by Roy does not require complete system knowledge or uncertainties and is robust to TDE errors.The evaluation of switching gains does not depend on any threshold,which alleviates the problem of over-estimation and under-estimation of switching gains[21].Lee proposed an adaptive integral sliding mode control(AISMC)with TDE,and the dynamic injection part uses adaptive gain dynamics to achieve applicable high tracking accuracy[22].

    The above-mentioned TDE-based control schemes all use constant control gain,which will lead to a significant decline in control performance when time-varying complex disturbances occur.For space manipulators with a large load,the constant control gains may not meet the bounded condition of TDE errors.Baek proposed a practical adaptive ATDC scheme and designed adaptive rules for control gains to obtain good tracking performance[23].Wang proposed a new ATDC scheme,which uses the continuous chatter-less automatic setting algorithm to update the control gains.Through this adaptive mechanism,good control performance and effective noise suppression can be guaranteed at the same time[24].Nevertheless,it is difficult to find a fixed diagonal matrix for the control gainfor MSRS.To sum up,both the gain dynamics and the robustness term have a significant impact on the performance of the controller.The gain dynamics affect the steady-state performance of the system,and the robust term increases the robustness.However,only one of these has been examined in the available literature.

    In this study,a new TDE-based ASMC is presented to improve tracking accuracy and reduce chattering.To increase the reaching speed,the sliding variable uses the exponential reaching law.The constant velocity reaching term is also employed as a robust term to compensate for TDE errors.The switching gains are updated by a new adaptive law,which can effectively reduce chattering and has no singularity problem.Adaptive gain dynamics is used to achieve high tracking accuracy and improve convergence performance.The gain dynamics is adjusted according to the thickness of the acceptance layer.The real-time estimation of the inertia matrix H is used as the control gain to ensure the boundedness of the TDE errors under heavy load.The main contributions of this paper are marked as follows:

    (1)A TED-based ASMC scheme with exponential reaching law is proposed for the first time,which integrates the advantages of existing TDE control schemes and still has a fast convergence speed when sliding variables are small.

    (2)The gain dynamics and switching gains can be adjusted adaptively at the same time to reduce chattering and improve tracking performance,and the new adaptive law does not have any singular problems.

    (3)The Lyapunov method is used to prove that the tracking errors are UUB and have arbitrarily small bounds.

    The remainder of the paper is laid out as follows.The dynamic equations of the MSRS are derived in section 2.Section 3 designs the sliding mode controller and adaptive sliding mode controller based on TDE technology and proves the stability of the system.Section 4 proves the effectiveness of the proposed method through comparative simulation.Conclusions are given in Section 5.

    2.Dynamics modeling of MSRS

    2.1.Modeling assumptions

    Before introducing the dynamics model of the MSRS,the basic modeling assumptions are given as follows:(1)The entire system consists of rigid bodies.(2)The MSRS is weightless in space,meaning it is not affected by gravity.(3)The external disturbances and uncertainties acting on the system are bounded.

    2.2.Notation definitions

    As shown in Fig.1,the modular self-reconfigurable spacecraft BSANhas S modules and N arms.A module is selected as the virtual base of the MSRS,which is called the central module(denoted as B).The robotic arm k has nklinks and degrees of freedom,and the system has n1+n2+…+nN=nAlinks in total.The related symbols are defined in Table 1,and all vectors are represented in the inertial frame Σ

    Table 1 Notation definitions.

    Table 3 Inertial parameters of the MSRS.

    I unless otherwise specified.

    2.3.Dynamics modeling based on Lagrange method

    The Lagrange method is used to create a dynamic model in this section[25].Select the generalized coordinates of the spacecraft system as,where,rBand θBare the position and attitude angle of the base,is the joint angle of the robotic arm.

    Due to the weightless environment,the gravitational potential energy of the system is zero.The kinetic energy of Lkirelative to the inertial frame is

    Fig.1.Schematic diagram of MSRS system.

    Then the kinetic energy of the entire system is

    The above formula can be expressed as

    where H is the inertial matrix of the system;HBand HkMare the inertial matrices of base and Ak,respectively;HkBMis the coupling matrix between the base and Ak,the specific form are as follows:

    where E is the identity matrix,is the antisymmetric matrix of r,and the remaining intermediate parameters are expressed as follows:

    According to the Jacobian matrix of the end-effector of the robotic arm,the Jacobian matrix of link Lkican be obtained:

    Substitute Eq.(5)into the Lagrange equation and obtain

    where C is the generalized Coriolis and centrifugal force term of the system;CBand CkMare the Coriolis and centrifugal force terms that correspond to the base and Ak,respectively;τdstands for unknown external disturbances;τ is the generalized driving force and torque of the system,including the driving force and torque when the base is in attitude and orbit control,the driving force and torque when module v is in attitude and orbit control,and the joint driving torque of the Ak.

    where JvBis the Jacobian matrix between the base and the module v,JvMkis the Jacobian matrix between Akand the module v.

    When the spacecraft is self-reconfiguring on orbit,all joints except the service arm are locked,multiple modules form an equivalent unit,and the system degenerates into a single-arm space robot,as shown in Fig.2.The dynamics model can be simplified to the same classical form as[26].

    To facilitate the design of the controller,the dynamic model of Eq.(19)can be rewritten as

    Fig.2.Concept of MSRS.

    3.New adaptive sliding mode controller design

    3.1.SMC with exponential reaching law

    The control objective in this study is to make the generalized coordinate q follow the reference coordinate qdprecisely,which means that the tracking error e=qd-q is suppressed as much as possible.To achieve such a control objective,we shall first define the following sliding variable

    In order to improve the dynamic quality of reaching motion,the exponential reaching law(ERL)is used in sliding mode control[27,28].

    where Ks=diag(Ks1,Ks2,…,Ksn)?Rn×nand G=diag(G1,G2,…,Gn)?Rn×nare positive diagonal gain matrices.Sign function sgns=[sgn(s1(t)),sgn(s2(t)),…,sgn(sn(t))]is defined as

    The speed of the moving point approaching the switching plane is relatively slow in simple exponential approach,and it cannot be guaranteed to arrive in finite time.By adding a term of the equalvelocity reaching law,the velocity can be made non-zero when s approaches zero,which ensures the finite time arrival of the reaching motion[29].In exponential reaching law,to ensure fast approaching and restrain chattering at the same time,Ksshould be increased while G should be appropriately decreased.

    According to Eq.(23),we can get

    Substituting Eqs.(22)and(26)into(24),the sliding mode control with exponential reaching law can be obtained Since N contains unknown terms which cannot be obtained directly,an estimated valueis usually used instead of N.In other words,we have

    Substituting Eq.(28)into Eq.(27)and omitting the time variable t,then the TDE-based SMC is obtained.

    Substituting the control input Eq.(29)into(22),replacing the sliding variable s with Eq.(23),and rearranging terms yield

    for all t≥0,the TDE errors are bounded by constant,i.e.||≤N*,then the stability of the system is guaranteed[30,31].Information such as the system's own nominal mass parameters and the maximum permitted payload is always available in practice,so it is always possible to obtain a matrixthat satisfies the condition Eq.(31).

    In reality,due to the inherent measurement noise and limited sampling period,TDE errors cannot be completely avoided,which means that appropriate parameters should be selected to ensure the stability of the system.If the gain matrices KDand Ksare inappropriately small,the tracking performance will decrease.Conversely,if they become inappropriately high for fast response,it will not only cause system chattering but also may cause system instability.Nevertheless,it takes very time-consuming trial and error to select the appropriate gain matrices.From another point of view,if the fixed gain parameters can be self-tuned online,its performance will be greatly improved.

    3.2.TDE-based ASMC

    3.2.1.Controller design

    To effectively suppress the TDE errors and ensure the system stability while reducing the chattering of TDE-based SMC,we propose a new ASMC based on Eq.(29),which improves the performance of the controller through the adaptive adjustment of the key parameters Ksand G.

    The gain dynamics is updated by the following adaptive law:

    where αiis the adjustable positive gain adapted to the speed,βiis the normalization factor related to the tracking accuracy,satisfying βi/βi,the gain dynamicsincreases,which reduces the TDE errors and tracking errors.If|si|

    The switching gain is updated using the following adaptive law:

    where φiis the adjustable positive gain that adapts to the speed,and ε is a small positive number,which determines the boundary of the increase or decrease of the switching gain.

    The proposed adaptive law Eq.(34)does not require boundary information of uncertainties and is activated when the sliding variable s deviates from zero.To elaborate,for>0,the adaptive law has two different forms according to the output of the sign function:||s||∞≥ε and||s||∞<ε.When||s||∞≥ε,the switching gainincreases until||s||∞<ε.With the increase of switching gain,the sliding variable s approaches the sliding manifold more quickly.Once the sliding variable enters the vicinity of the sliding manifold,i.e.,||s||∞<ε,the switching gaindecreases while the sliding variable stays in the vicinity of the sliding manifold.The parameter ε plays a key role in the trade-off between tracking ability and chattering suppression.If ε is too small,the adaptive speed is slow and there is obvious chattering.On the contrary,if ε is too large,the tracking performance of the ASMC scheme is poor.

    The above description shows that the proposed control scheme Eq.(32)does not require any dynamic parameters of the system,and the adaptive law has relatively high switching gain and relatively fast adaptive speed,which can provide better tracking performance and chattering suppression at the same time.The proposed TDE-based ASMC scheme can be described by block diagram,as shown in Fig.3.This controller can be viewed as an extended and enhanced version of the original TDC.If the gain matrixis constant,i.e.,αi=0,then the controller(32)degenerates into Baek’s formulation[19].If=0,the controller degenerates into Lee’s formulation[22].If bothandare constants,the controller degrades to Eq.(29).Ifis constant and=0,then the controller degrades to Hsia’s formulation[10,11],usually called TDC.

    3.2.2.Stability analysis

    Before showing the UUB property of the proposed control law(32),we introduce a Lemma that will be helpful in the Proof of the main results.

    Lemma 1.For the system(22)controlled by(32),if the TDE errors are bounded,i.e.,

    Proof.According to the definition,the range of parameter βiis βi/βi.

    When|si|

    The stability of the system(22)can be proved by the Lyapunov stability criterion.The range of the sliding variable siis assumed to be in?|si|>max(/βi,ε).Given the proposed method Eq.(32),Lyapunov function is defined as follows:

    with time derivative as

    Substituting the control input Eq.(32)into Eq.(13)yields

    Substituting Eq.(38)into Eq.(37),and using adaptive laws Eqs.(33)and(34),we can get

    Fig.3.Block diagram of the proposed TDE-based ASMC scheme.

    The first time when the sliding variable s enters the region|si|≤max(/βi,ε),there is|si|≤max(N*/βi,ε).It can be proved that the Lyapunov function(36)is bounded

    When the sliding variable s leaves the region|si|≤max(/βi,ε),becomes negative again and V decreases immediately.It follows then that we have quality information are detailed in Tables 2 and 3.It is assumed that the modules and links are homogeneous objects,so that their centroids are located at their geometric centers,which makes the data easy to be determined.

    Table 2 DH parameters of 5-Dof robotic arm.

    We suppose that the initial states of the spacecraft are all zero so that the initial position rB0=[0,0,0]Tm and the initial attitude θB0=[0,0,0]Trad.The initial joint angle of the arm is θM0=[10,20,60,35,-40]Tπ/180 rad.The target attitude of the spacecraft base is set as θBT=[0,0,0]Trad,while the target joint angle of the arm is set as θMT=[-25,65,50,65,-25]Tπ/180 rad.A fifthorder polynomial curve is used for joint trajectory planning and the terminal time is set as tf=20 s.The unknown external disturbances τd=[τdB,τdM]Tin Eq.(19)consist of the disturbances applied on the base of the MSRS τdB=[0.4sin(0.3t),0.3cos(0.1t),0.2sin(0.3t)]Tand applied on the robotic arm

    .

    Eq.(41)implies that the sliding variable s is UUB,and guarantees that the fluctuation of the sliding variable s in the vicinity of the sliding manifold is upper-bounded.

    4.Simulation and results

    To prove the performance of the proposed TDE-based ASMC,the on-orbit assembly process of the MSRS was simulated.The simulation object B9A1is composed of nine identical modules and a 5-DOF crawling robotic arm,as shown in Fig.2.The assembly process is that the robotic arm grabs the target module and moves to the specified position,while the spacecraft base is attitudecontrolled,namely rotation-floating[32].The DH parameters and

    Fig.4.Trajectory planning and trajectory tracking curves.

    Fig.5.Sliding variables generated by the proposed TDE-based ASMC.

    Fig.6.Gain dynamics computed by the proposed TDE-based ASMC.

    Fig.7.Switching gains computed by the proposed TDE-based ASMC.

    To get more information,the scheme Eq.(32)proposed in this paper is compared with the fixed-gain TDE-based SMC in Eq.(29),the existing TDE-based ASMC[19],and the traditional TDC scheme[10].The parameters of the proposed controller are carefully tuned and detailed as follows: KD= diag(1,1,…,1),Ks=diag(10,10,10,30,30,30,30,30)G=5×10-5diag(1,1,1,20,20,20,20,20)α=105diag(20,20,20,1,1,1,1,1),β=5×106diag(20,20,20,1,1,1,1,1)(0)=diag(10,10,10,30,30,30,30,30), G(0)=5×10-5diag(1,1,1,1,1,1,1,1),φ=diag(1,1,1,1,1,1,1,1),ε=5×10-5.To ensure a fair comparison,apply the above parameters to the other controllers entirely.

    To estimate the uncertainties and disturbances more accurately and reduce the TDE errors as much as possible,the sampling time is set as the simulation step L=dt=0.01 s.Assuming that the parameters of the MSRS are known,the estimated mass of the target module is=80 kg,and the estimated moment of inertia is=diag(12,12,12)kg?m2.The inertia matrixcan be obtained by Eqs.6-15.

    The trajectory planning results and the tracking trajectories of the proposed controller are shown in Fig.4.It can be seen that TDE can accurately estimate the uncertainties and disturbances in the system,and the control accuracy is very high.

    Fig.5 shows the change of the sliding variable s.The subscripts 1-3 correspond to the 3?of freedom of the base attitude,and 4-8 correspond to the 5?of freedom of the robot arm.Fig.6 shows the gain dynamics updated by the adaptive law Eq.(33).The gain dynamics increases gradually to speed up convergence,which is consistent with the conclusion in Eq.(39),that is,the greateris in the range of

    Fig.7 shows the switching gains updated by the adaptive law Eq.(34).It can be seen from Figs.5 and 7 that when t<1.5 s,the errors are small,||s||∞<ε,and the switching gaindecreases,then||s||∞>ε,andincreases to compensate for the tracking errors.When t>9 s,the errors enter and maintain in the range of||s||∞<ε again,and the switching gain decreases to avoid unnecessary chattering.Compared with the adaptive law in Ref.[19],as shown in Fig.8,the parameters decline speed of the adaptive scheme proposed in this paper is more stable,especially when the sliding variable is small,it does not produce singularity.

    Fig.8.Switching gains Ks computed by the existing ASMC scheme[19].

    Figs.9 and 10 compare the tracking errors and control inputs of the four control schemes.To begin with,the proposed TDE-based ASMC scheme,TDE-based SMC scheme,and existing TDE-based ASMC scheme all have the potential to suppress TDE errors and outperform traditional TDC methods in error tracking,as shown in Fig.9.The proposed TDE-based ASMC method offers higher tracking accuracy than other controllers because it can achieve larger gain dynamics and switching gains while keeping low chattering.As illustrated in Fig.10,the traditional TDC scheme does not exhibit chattering due to the absence of a robust term;as a result,control accuracy and convergence speed are compromised.The TDE-based SMC scheme with fixed gain has an obvious chattering phenomenon,and both adaptive schemes have an obvious chattering suppression effect.In comparison to the fixed-gain control method,the proposed TDE-based ASMC method can adjust to parameter changes induced by spacecraft configuration modifications,and has superior tracking performance and less chattering.

    Fig.9.The tracking errors of the MSRS:(a),(b)the proposed TDE-based ASMC;(c),(d)the TDE-based SMC;(e),(f)the existing TDE-based ASMC;(g),(h)conventional TDC.

    The integral of time multiplied by the absolute value of the error(ITAE)and the integral of the square value(ISV)of the control input are applied to evaluate the control performance quantificationally.The ITAE is used as a numerical measure of tracking performance for the entire error curve,and the ISV shows the energy consumption[33].These are defined as follows:

    The statistical results of the error indicators and control inputs of the four different controllers are shown in Tables 4 and 5,respectively.The TDE-based ASMC and the fixed-gain TDE-based SMC proposed in this paper have higher accuracy,and the former is more energy-efficient than the latter,which is the result of chattering reduction.The traditional TDC has no robust term and no chattering,so it saves more energy but has lower control accuracy.Simulation results verify the effectiveness of the proposed TDEbased ASMC scheme.

    Table 4 ITAE of the tracking errors.

    Table 5 ISV of the control inputs.

    5.Conclusions

    Fig.10.Comparison of the control inputs:(a),(b)the proposed TDE-based ASMC;(c),(d)the TDE-based SMC;(e),(f)the existing TDE-based ASMC;(g),(h)conventional TDC.

    Aiming at the motion control problem of MSRS under uncertainties and external disturbances,a TDE-based ASMC method is proposed.A new gain dynamics adaptive law and switching gain adaptive law are designed,which can reduce chattering while enhancing convergence performance and tracking accuracy.The proposed TDE-based ASMC scheme does not require any upper bound information of uncertainties,and the tracking errors are uniformly ultimately bounded.The simulation results reveal that the proposed TDE-based ASMC system aggregates the advantages of traditional TDC and ASMC,resulting in reduced steady-state tracking errors,good tracking performance,and less chattering.

    In the future,the free-flying MSRS control problem will be studied to precisely control the end trajectory of the robotic arm in Cartesian space.In addition,TDE technology will be used to design robust controllers under non-smooth and nonlinear conditions such as saturation and dead zones.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors are grateful to the editor and all the anonymous reviewers for their valuable suggestions that helped to improve the quality of the manuscript.This study was supported by the National Defense Science and Technology Innovation Zone of China(Grant No.00205501).

    国产成人精品久久二区二区91| 好看av亚洲va欧美ⅴa在| 久久国产精品人妻蜜桃| 91大片在线观看| 久久人妻av系列| 97人妻天天添夜夜摸| 在线视频色国产色| 精品人妻在线不人妻| 天堂中文最新版在线下载| 69av精品久久久久久| 18禁裸乳无遮挡免费网站照片 | 脱女人内裤的视频| 亚洲欧美激情在线| 高清视频免费观看一区二区| 亚洲熟女精品中文字幕| 99久久精品国产亚洲精品| 国产成人免费无遮挡视频| 亚洲精品在线美女| 亚洲av成人av| 国产极品粉嫩免费观看在线| 夜夜夜夜夜久久久久| 极品人妻少妇av视频| 亚洲欧美日韩高清在线视频| 搡老熟女国产l中国老女人| 伊人久久大香线蕉亚洲五| 国产一区二区三区综合在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久久免费视频了| 欧美日韩亚洲高清精品| 国产精品.久久久| 久9热在线精品视频| 91老司机精品| 精品午夜福利视频在线观看一区| 国产午夜精品久久久久久| 国产一区在线观看成人免费| 飞空精品影院首页| 午夜精品国产一区二区电影| 免费看a级黄色片| 国产在线观看jvid| 亚洲成人国产一区在线观看| 国产免费现黄频在线看| 亚洲精品中文字幕一二三四区| a在线观看视频网站| 久久久国产成人免费| 久久久国产成人精品二区 | 欧美日韩亚洲国产一区二区在线观看 | 中文字幕人妻丝袜制服| 99久久综合精品五月天人人| 午夜激情av网站| 久久精品熟女亚洲av麻豆精品| 亚洲熟妇中文字幕五十中出 | 国产欧美日韩一区二区精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品乱码一区二三区的特点 | 老熟女久久久| 欧美日韩乱码在线| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区精品视频观看| 国产一卡二卡三卡精品| 久久香蕉激情| 中文字幕av电影在线播放| 黄色 视频免费看| 亚洲熟妇中文字幕五十中出 | 窝窝影院91人妻| 成人特级黄色片久久久久久久| 亚洲成人国产一区在线观看| 麻豆国产av国片精品| 一级毛片女人18水好多| 成人av一区二区三区在线看| 国产精品自产拍在线观看55亚洲 | 国产一区二区激情短视频| 午夜久久久在线观看| 久久久国产成人精品二区 | av网站在线播放免费| 亚洲精品国产色婷婷电影| 亚洲欧美日韩高清在线视频| 国产乱人伦免费视频| 成人av一区二区三区在线看| 亚洲全国av大片| 午夜福利一区二区在线看| 美女高潮到喷水免费观看| 男女下面插进去视频免费观看| 99香蕉大伊视频| 色尼玛亚洲综合影院| 国产成人精品久久二区二区免费| 又紧又爽又黄一区二区| 国产精品久久久av美女十八| 交换朋友夫妻互换小说| 久久久久久久久免费视频了| 日本五十路高清| 精品国产一区二区三区久久久樱花| 夜夜夜夜夜久久久久| 不卡av一区二区三区| 午夜福利乱码中文字幕| 香蕉国产在线看| 久久青草综合色| 成人国产一区最新在线观看| 大型av网站在线播放| 欧美另类亚洲清纯唯美| 久久久久久免费高清国产稀缺| 99国产精品免费福利视频| 免费观看a级毛片全部| 国产1区2区3区精品| 女人高潮潮喷娇喘18禁视频| 免费人成视频x8x8入口观看| 亚洲第一欧美日韩一区二区三区| 午夜精品久久久久久毛片777| 日韩欧美一区二区三区在线观看 | 亚洲一区二区三区不卡视频| 天堂俺去俺来也www色官网| www.自偷自拍.com| 久久久精品免费免费高清| 亚洲人成电影免费在线| 99热只有精品国产| 欧美在线一区亚洲| 久久这里只有精品19| 国产成人啪精品午夜网站| 成年版毛片免费区| 十八禁网站免费在线| 99热国产这里只有精品6| 真人做人爱边吃奶动态| 婷婷精品国产亚洲av在线 | 亚洲精品成人av观看孕妇| 在线免费观看的www视频| 国产熟女午夜一区二区三区| 咕卡用的链子| 在线免费观看的www视频| 中文字幕人妻熟女乱码| 天天躁日日躁夜夜躁夜夜| 美女午夜性视频免费| 日韩大码丰满熟妇| 久久精品国产综合久久久| 天天影视国产精品| 在线观看日韩欧美| 757午夜福利合集在线观看| 国产精品久久久人人做人人爽| 大香蕉久久成人网| 91老司机精品| 午夜免费成人在线视频| 国产精品久久视频播放| 丝袜美足系列| 午夜免费观看网址| 性少妇av在线| 手机成人av网站| 在线免费观看的www视频| 国产欧美日韩综合在线一区二区| 亚洲专区字幕在线| 国产主播在线观看一区二区| 黄色片一级片一级黄色片| 一本综合久久免费| 欧美黄色片欧美黄色片| 日本wwww免费看| 免费日韩欧美在线观看| 18禁国产床啪视频网站| 欧美丝袜亚洲另类 | 看黄色毛片网站| 欧美+亚洲+日韩+国产| 天堂中文最新版在线下载| 成人影院久久| 新久久久久国产一级毛片| 天天操日日干夜夜撸| 久久国产精品人妻蜜桃| 搡老岳熟女国产| 亚洲五月天丁香| 黄色a级毛片大全视频| 日本五十路高清| 老鸭窝网址在线观看| 看免费av毛片| 久热这里只有精品99| 欧美人与性动交α欧美精品济南到| 亚洲av成人一区二区三| 久久中文看片网| bbb黄色大片| 久久精品亚洲熟妇少妇任你| 十八禁网站免费在线| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三区视频在线观看免费 | 一区福利在线观看| 精品无人区乱码1区二区| 手机成人av网站| 亚洲熟妇中文字幕五十中出 | 超碰成人久久| 欧美老熟妇乱子伦牲交| 三级毛片av免费| 成年人午夜在线观看视频| 男女床上黄色一级片免费看| 可以免费在线观看a视频的电影网站| 一二三四在线观看免费中文在| 日本黄色日本黄色录像| 亚洲avbb在线观看| 欧美乱妇无乱码| 男女高潮啪啪啪动态图| 天天躁夜夜躁狠狠躁躁| 日韩大码丰满熟妇| 国产精品久久久久成人av| 少妇被粗大的猛进出69影院| 国产97色在线日韩免费| 女人被躁到高潮嗷嗷叫费观| 这个男人来自地球电影免费观看| 亚洲午夜理论影院| 中文字幕人妻丝袜一区二区| 欧美另类亚洲清纯唯美| 国产日韩欧美亚洲二区| 99香蕉大伊视频| 亚洲午夜精品一区,二区,三区| 国产欧美亚洲国产| 伦理电影免费视频| 女人高潮潮喷娇喘18禁视频| 狠狠婷婷综合久久久久久88av| 日本撒尿小便嘘嘘汇集6| 久久久久久亚洲精品国产蜜桃av| 免费久久久久久久精品成人欧美视频| 亚洲成人免费电影在线观看| 亚洲精品粉嫩美女一区| 久久久久久亚洲精品国产蜜桃av| 一级黄色大片毛片| 日本黄色日本黄色录像| 黄色片一级片一级黄色片| 香蕉久久夜色| 无遮挡黄片免费观看| 99国产精品一区二区蜜桃av | 日本黄色视频三级网站网址 | 丝袜美足系列| 久久亚洲精品不卡| 啦啦啦在线免费观看视频4| 国产成人精品久久二区二区免费| 亚洲伊人色综图| 91av网站免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美日韩高清在线视频| 操美女的视频在线观看| 中文字幕高清在线视频| 国产精品久久久久久精品古装| 午夜福利视频在线观看免费| 国产精品一区二区在线观看99| 国产熟女午夜一区二区三区| 国产精品一区二区免费欧美| 亚洲中文字幕日韩| 日本精品一区二区三区蜜桃| 国产色视频综合| 丰满迷人的少妇在线观看| 国产一区二区三区视频了| www.999成人在线观看| 欧美日韩一级在线毛片| 一级毛片精品| 自线自在国产av| 老司机影院毛片| 两人在一起打扑克的视频| 如日韩欧美国产精品一区二区三区| 搡老乐熟女国产| 一区二区三区激情视频| 久久亚洲真实| 超碰成人久久| 国产精品av久久久久免费| 9色porny在线观看| 国产欧美日韩一区二区三| 女人被狂操c到高潮| 老汉色∧v一级毛片| 亚洲精品中文字幕一二三四区| 日日摸夜夜添夜夜添小说| 一区二区日韩欧美中文字幕| 大码成人一级视频| 波多野结衣av一区二区av| 国产不卡一卡二| 久9热在线精品视频| 九色亚洲精品在线播放| 亚洲七黄色美女视频| 在线观看免费高清a一片| 国产不卡av网站在线观看| 少妇的丰满在线观看| 午夜视频精品福利| 两性夫妻黄色片| 国产精品国产高清国产av | 欧美大码av| tube8黄色片| 操出白浆在线播放| 悠悠久久av| 视频在线观看一区二区三区| 老熟妇乱子伦视频在线观看| 天堂中文最新版在线下载| 在线观看免费高清a一片| 日韩欧美三级三区| 国产aⅴ精品一区二区三区波| 自线自在国产av| 欧美精品一区二区免费开放| 亚洲成人免费电影在线观看| 久久久久国内视频| 又紧又爽又黄一区二区| 亚洲av熟女| 亚洲av片天天在线观看| 国产精品.久久久| 精品久久久久久久久久免费视频 | 国产欧美日韩精品亚洲av| 亚洲精品国产一区二区精华液| 老熟女久久久| 一级作爱视频免费观看| 久久婷婷成人综合色麻豆| 亚洲国产欧美一区二区综合| 美国免费a级毛片| 国产午夜精品久久久久久| 丰满迷人的少妇在线观看| 亚洲精品久久成人aⅴ小说| 亚洲成a人片在线一区二区| 国产高清视频在线播放一区| 欧美人与性动交α欧美精品济南到| 女同久久另类99精品国产91| 久久天躁狠狠躁夜夜2o2o| 老司机亚洲免费影院| 亚洲av电影在线进入| 黄色怎么调成土黄色| 另类亚洲欧美激情| 国产精品 欧美亚洲| 天天影视国产精品| 亚洲精品乱久久久久久| 亚洲精品在线观看二区| 极品人妻少妇av视频| 午夜精品国产一区二区电影| 日本一区二区免费在线视频| 老熟妇仑乱视频hdxx| 欧美精品一区二区免费开放| 多毛熟女@视频| 亚洲精品粉嫩美女一区| 黄色a级毛片大全视频| 国产不卡av网站在线观看| 高清av免费在线| 国产一区有黄有色的免费视频| 热99re8久久精品国产| 久久久久久免费高清国产稀缺| 国产精品久久视频播放| 亚洲一区中文字幕在线| 亚洲黑人精品在线| 亚洲午夜精品一区,二区,三区| 天堂中文最新版在线下载| 香蕉久久夜色| 国产伦人伦偷精品视频| 色婷婷久久久亚洲欧美| 在线看a的网站| 国产亚洲精品一区二区www | 亚洲精品一卡2卡三卡4卡5卡| 高清黄色对白视频在线免费看| 久久精品亚洲精品国产色婷小说| 丝袜美腿诱惑在线| 午夜福利影视在线免费观看| 国产有黄有色有爽视频| 超碰成人久久| 亚洲aⅴ乱码一区二区在线播放 | 精品视频人人做人人爽| 午夜成年电影在线免费观看| 两个人免费观看高清视频| 色综合欧美亚洲国产小说| 丁香欧美五月| 亚洲avbb在线观看| av视频免费观看在线观看| 777米奇影视久久| 国产成人系列免费观看| 成熟少妇高潮喷水视频| 久久久精品免费免费高清| www.精华液| 亚洲精品久久成人aⅴ小说| 久久久国产一区二区| 日本欧美视频一区| 熟女少妇亚洲综合色aaa.| 亚洲第一av免费看| 亚洲国产中文字幕在线视频| 国产免费av片在线观看野外av| 国产成人啪精品午夜网站| 在线观看免费视频网站a站| 成人三级做爰电影| 国产主播在线观看一区二区| 国产高清国产精品国产三级| 高清视频免费观看一区二区| 亚洲精品av麻豆狂野| 一二三四社区在线视频社区8| 人妻丰满熟妇av一区二区三区 | 精品一区二区三区四区五区乱码| 好看av亚洲va欧美ⅴa在| 亚洲中文日韩欧美视频| 午夜福利欧美成人| 免费观看a级毛片全部| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品.久久久| 校园春色视频在线观看| 一区二区三区激情视频| 精品国产乱码久久久久久男人| 久久ye,这里只有精品| 99久久人妻综合| 亚洲一区二区三区欧美精品| 国产成人精品久久二区二区免费| 国产亚洲精品第一综合不卡| 中国美女看黄片| 午夜91福利影院| 国产精品久久久人人做人人爽| 天天添夜夜摸| 最新美女视频免费是黄的| 丝瓜视频免费看黄片| 久久精品成人免费网站| 黑人操中国人逼视频| 国产91精品成人一区二区三区| 中出人妻视频一区二区| 国产又色又爽无遮挡免费看| 欧美另类亚洲清纯唯美| a级片在线免费高清观看视频| 欧美久久黑人一区二区| 国产一区二区三区综合在线观看| 亚洲成人手机| 中文字幕人妻丝袜制服| 老司机在亚洲福利影院| 黄片大片在线免费观看| 悠悠久久av| 视频区图区小说| 精品人妻1区二区| av片东京热男人的天堂| 精品国产一区二区三区四区第35| 伦理电影免费视频| 欧美日本中文国产一区发布| 咕卡用的链子| 亚洲av欧美aⅴ国产| 少妇 在线观看| 超色免费av| 亚洲精品中文字幕在线视频| 亚洲人成电影免费在线| tube8黄色片| 国产精品免费大片| 一本一本久久a久久精品综合妖精| 精品国产乱子伦一区二区三区| 夫妻午夜视频| 黄色成人免费大全| 激情在线观看视频在线高清 | 别揉我奶头~嗯~啊~动态视频| 成年人午夜在线观看视频| 国产免费现黄频在线看| 免费久久久久久久精品成人欧美视频| 大型黄色视频在线免费观看| 性色av乱码一区二区三区2| 高潮久久久久久久久久久不卡| 国产一区有黄有色的免费视频| 亚洲中文av在线| 99精国产麻豆久久婷婷| 久久九九热精品免费| 性色av乱码一区二区三区2| 日日爽夜夜爽网站| 高清欧美精品videossex| 亚洲av第一区精品v没综合| 国产成人啪精品午夜网站| 成人av一区二区三区在线看| 亚洲精华国产精华精| 欧美国产精品va在线观看不卡| videosex国产| xxxhd国产人妻xxx| 久久中文看片网| 国产精品欧美亚洲77777| 亚洲国产精品sss在线观看 | 欧美黄色片欧美黄色片| 黑人猛操日本美女一级片| 巨乳人妻的诱惑在线观看| 老司机午夜十八禁免费视频| 纯流量卡能插随身wifi吗| a在线观看视频网站| 九色亚洲精品在线播放| 69av精品久久久久久| 亚洲自偷自拍图片 自拍| 极品教师在线免费播放| 中文字幕高清在线视频| 日韩三级视频一区二区三区| 国产成人av激情在线播放| 国产蜜桃级精品一区二区三区 | 成人亚洲精品一区在线观看| 国产精品久久久久成人av| 麻豆av在线久日| 欧美 日韩 精品 国产| 国产97色在线日韩免费| 国产精品国产av在线观看| 亚洲精品久久午夜乱码| 极品教师在线免费播放| 少妇 在线观看| 欧美日韩一级在线毛片| 免费少妇av软件| 国产精品一区二区在线不卡| 国产成人精品在线电影| 成年人午夜在线观看视频| 久久性视频一级片| 乱人伦中国视频| 老司机福利观看| 亚洲男人天堂网一区| 看黄色毛片网站| cao死你这个sao货| 国产高清视频在线播放一区| 欧美成人免费av一区二区三区 | 夫妻午夜视频| 亚洲中文av在线| 老司机亚洲免费影院| 成人手机av| 久久精品国产a三级三级三级| 国产男女内射视频| 亚洲熟妇熟女久久| 欧美精品啪啪一区二区三区| 久久性视频一级片| 色在线成人网| 国产精品一区二区免费欧美| 欧美日韩亚洲综合一区二区三区_| 久热爱精品视频在线9| 午夜精品久久久久久毛片777| 欧美精品高潮呻吟av久久| 久久影院123| 久久久国产精品麻豆| 激情在线观看视频在线高清 | 亚洲国产毛片av蜜桃av| a级片在线免费高清观看视频| 99香蕉大伊视频| 欧美精品高潮呻吟av久久| 久久人妻av系列| 一个人免费在线观看的高清视频| 又黄又爽又免费观看的视频| 香蕉国产在线看| 天天躁狠狠躁夜夜躁狠狠躁| 久久影院123| 亚洲性夜色夜夜综合| 国产精品99久久99久久久不卡| 久9热在线精品视频| 在线观看一区二区三区激情| 国产aⅴ精品一区二区三区波| 免费高清在线观看日韩| 久热爱精品视频在线9| 午夜老司机福利片| 国产精品香港三级国产av潘金莲| 我的亚洲天堂| 亚洲av第一区精品v没综合| 国产无遮挡羞羞视频在线观看| 国产97色在线日韩免费| 国产精品免费一区二区三区在线 | 人人妻人人爽人人添夜夜欢视频| 9191精品国产免费久久| 在线观看午夜福利视频| 婷婷精品国产亚洲av在线 | 91精品三级在线观看| 超碰成人久久| 成人黄色视频免费在线看| 国产成人系列免费观看| 亚洲欧美日韩高清在线视频| 日本a在线网址| 欧美日韩乱码在线| 欧美国产精品va在线观看不卡| 制服诱惑二区| 免费少妇av软件| av国产精品久久久久影院| 丝袜美腿诱惑在线| 在线观看www视频免费| 国产单亲对白刺激| 99国产精品免费福利视频| 老司机亚洲免费影院| 99香蕉大伊视频| 精品一品国产午夜福利视频| 国产激情欧美一区二区| 高清黄色对白视频在线免费看| 国产高清视频在线播放一区| 国产激情久久老熟女| 国产免费现黄频在线看| 亚洲欧美日韩另类电影网站| 操美女的视频在线观看| 一边摸一边抽搐一进一出视频| 少妇被粗大的猛进出69影院| 王馨瑶露胸无遮挡在线观看| 十八禁人妻一区二区| 国产野战对白在线观看| 精品一区二区三区av网在线观看| 天堂中文最新版在线下载| 丝袜在线中文字幕| 成人三级做爰电影| 女性生殖器流出的白浆| 国产精品98久久久久久宅男小说| 老司机午夜十八禁免费视频| 99热只有精品国产| 热99国产精品久久久久久7| 欧美日韩一级在线毛片| 国产av一区二区精品久久| 欧美日韩国产mv在线观看视频| 18禁裸乳无遮挡免费网站照片 | 久久久国产成人免费| 在线观看免费视频网站a站| 在线国产一区二区在线| 18禁裸乳无遮挡免费网站照片 | a在线观看视频网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图综合在线观看| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品第一综合不卡| 高潮久久久久久久久久久不卡| 亚洲aⅴ乱码一区二区在线播放 | 丝袜美腿诱惑在线| 美女视频免费永久观看网站| 欧美日韩亚洲国产一区二区在线观看 | 一区二区三区精品91| 巨乳人妻的诱惑在线观看| 99国产精品99久久久久| 桃红色精品国产亚洲av| 亚洲国产精品sss在线观看 | 老熟妇乱子伦视频在线观看| 很黄的视频免费| 高清视频免费观看一区二区| 下体分泌物呈黄色| 两人在一起打扑克的视频| www.999成人在线观看| 欧美精品亚洲一区二区| 国产成人av教育| 在线免费观看的www视频| a级毛片黄视频| 免费不卡黄色视频| 久久久久精品人妻al黑| 在线观看66精品国产| 久久草成人影院| 成人亚洲精品一区在线观看| 精品国产超薄肉色丝袜足j| 午夜久久久在线观看| 久久中文字幕一级| 午夜精品国产一区二区电影|