• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of genomic resources for Wenchengia alternifolia(Lamiaceae) based on genome skimming data

    2022-12-20 06:37:58QiYueZhouHuiXiCiZiHnLiuLngXingYunLeiYngTuoYngBoLiPnLi
    植物多樣性 2022年6期

    Qi-Yue Zhou , Hui-Xi Ci , Zi-Hn Liu , Lng-Xing Yun , Lei Yng , Tuo Yng ,d,Bo Li , Pn Li ,*

    a Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China

    b Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China

    c Haikou Duotan Wetlands Institute, Haikou, 570100, China

    d Orchid Conservation & Research Center of Shenzhen, Shenzhen, 518114, China

    e Research Centre of Ecological Sciences, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China

    Keywords:Wenchengia Plastid hotspot Simple sequence repeat (SSR)Single nucleotide polymorphism (SNP)

    A B S T R A C T Wenchengia alternifolia (Lamiaceae), the sole species of the genus Wenchengia is extremely rare and is currently listed as Critically Endangered(CR)on the IUCN Red List.The species had long been considered endemic to Hainan Island, China and was once believed to be extinct until a small remnant population was rediscovered at the type locality in 2010. Four more populations were later found on Hainan and in Vietnam. In order to develop genomic resources for further studies on population genetics and conservation biology of this rare species,we identified infraspecific molecular markers in the present study,using genome skimming data of five individuals collected from two populations on Hainan Island and three populations in Vietnam respectively. The length of plastome of the five individuals varied from 152,961 bp to 150,204 bp,and exhibited a typical angiosperm quadripartite structure.Six plastid hotspot regions with the Pi > 0.01 (trnH-psbA, psbA-trnK, rpl22, ndhE, ndhG-ndhI and rps15-ycf1), 1621 polymorphic gSSRs, as well as 1657 candidate SNPs in 237 variant nuclear genes were identified, thereby providing important information for further genetic studies.

    1. Introduction

    Wenchengia alternifolia C.Y. Wu & S. Chow (Lamiaceae) was described on the basis of two gatherings collected on Hainan Island,southern China, in the 1930s (Wu and Chow, 1965). It is characterized by having alternate leaves, racemose inflorescences, and a unique type of nutlet attachment described as vascular funicles with slender stalks (Wu and Chow,1965; Li et al., 2012). Because these traits are rare or unique in the Lamiaceae, Wu and Chow(1965) established the monotypic genus, Wenchengia C.Y. Wu & S.Chow, and the novel subfamily, Wenchengioideae C.Y. Wu & S.Chow,to accommodate it.W.alternifolia was believed to be extinct(Harley et al., 2004).

    The phylogenetic position of Wenchengia has been controversial due to the unusual morphological traits and the lack of available materials for further studies. In 2010, a small population was rediscovered at the type locality, Shuangximu Valley,Wanning County (Fig.1), Hainan Province, China. Using materials from this population, Li et al. (2012) inferred the phylogenetic position of W. alternifolia using comprehensive evidence from molecular, morphological, anatomical and cytological data to confirm that Wenchengia is the first diverging lineage of the subfamily Scutellarioideae. The finding was further supported by phylogenomic analyses using plastome data (Zhao et al., 2020,2021).

    Li et al. (2014) assessed the conservation status of W. alternifolia based on the rediscovered population and proposed that it be listed as Critically Endangered (CR) under the IUCN Red List Criteria. Fragmentation of habitats and persistent disturbance caused by the rapid development of urbanization, mining, plantations and tourism in Wanning County were thought to be a threat to the survival of W. alternifolia in the wild (Li et al., 2014).In 2017, a second larger population was discovered by Chunlei Xiang in Ding'an County(personal communication;Fig.2),Hainan Province. The individuals in this population differed morphologically from the population in Wanning County, but it was unclear whether the variance was due to genetic or environmental differences.

    Fig.1. Wenchengia alternifolia population at Wanning, Hainan, China. A. habitat, B. plant, C. stem, D. leaves, E. flowers.

    Wenchengia alternifolia has long been considered endemic to Hainan Island (Harley et al., 2004;Li et al., 2012).However,three old gatherings of W. alternifolia from Vietnam were found in the herbarium of the Mus′eum national d'Histoire naturelle in Paris(P) and in the herbarium at the Royal Botanic Gardens, Kew (K)(Paton et al., 2016). In the next year, three extant populations of W. alternifolia were discovered in Vietnam (Fig. 3) by Bo Li and his team. Thus, W. alternifolia probably had a wider distribution in the past. The species should be given high priority for conservation due to its distinct phylogenetic position and the limited number of known populations. Although previous studies have used plastomes to reconstruct phylogenetic relationships within the Scutellarioideae, including Wenchengia(Zhao et al., 2020), more information on the genomes and effective intraspecific molecular markers of W. alternifolia that could be used for population genetics and DNA barcoding were unavailable.

    Fig. 2. Wenchengia alternifolia population at Ding'an, Hainan, China. A. habitat, B. plant, C. stem, D. leaves, E. flowers.

    Fig. 3. Wenchengia alternifolia populations in Vietnam. Plants (A, C, E) and flowers (B, D, F, G). A-B. Hue Province, C-D. Da Nang Province, E-G. Quang Nam Province.

    DNA barcoding and relative approaches can not only provide valuable tools for phylogenetic reconstruction and species identification(Calonje et al.,2009;Qin et al.,2020),but also offer insight into studies below the species level,including recognition of infraspecific variation, patterns of gene flow and habitat differentiation (Bockelmann et al., 2003; Kane et al., 2012;St?hlberg, 2007). Up to now, many fragments of intergenic spacers, coding regions and introns of plastomes have been widely used for DNA barcoding, but whether these regions are useful in closely related species or lower taxonomic levels is unclear(Dong et al., 2012;Hollingsworth et al.,2011;Kress et al.,2005). Therefore, searching for additional plastid hotspots with higher evolutionary rates and divergence is important. Simple sequence repeats (SSRs), containing 1-6 bp repetitive sequences,are widely used in genetic studies. To detect higher levels of polymorphism,genomic SSR(gSSR)markers have recently gained more attention comparing to EST-SSRs because intergenic spacers or intron contain more variations than extron sequences(Bae et al., 2015; Blair et al., 2006; Liu et al., 2021). In addition,targeted sequence capture is an efficient and cost-effective approach for generating phylogenomic data sets after the boost of high-throughput sequencing technology. A set of probes was designed from 353 putative single-copy nuclear genes (SCNGs)over 600 angiosperms to hybridize with template sequences and to capture target genes for subsequent analyses. It would be effective for phylogenetic studies at various taxonomic levels from species to the entire angiosperm clade (Johnson et al.,2019). The polymorphism detected within those genes, in combination with plastid hotspots and gSSR markers, will provide useful molecular tools for further studies on population genetics and evolutionary history.

    In this study, we aim to identify plastid hotspots, polymorphic gSSRs,and SCNGs within Wenchengia alternifolia based on genome skimming data.Our findings will provide powerful tools for future studies on its conservation biology and population genetics.

    2. Materials and methods

    2.1. Plant material, DNA extraction and sequencing

    Fresh leaf materials of five individuals of Wenchengia alternifolia from the two populations in Hainan Province (Pan Li & Langxing Yuan LP197753, Waning, Hainan, China; Pan Li & Langxing Yuan LP197754, Ding'an, Hainan, China) and three populations in Vietnam(Bo Li LB0647,Hue,Vietnam;Bo Li LB0824,Da Nang,Vietnam;Bo Li LB0938, Quang Nam, Vietnam) were dried in silica gel.Voucher specimens were deposited in the herbarium of Zhejiang University (HZU) and the herbarium of Jiangxi Agricultural University (JXAU). Total DNA was extracted from 3 mg of leaf tissue using the DNA Plantzol Reagent (Shanghai, China) and following the manufacturer's protocol. The quality and quantity of the genomic DNA was checked on an Agilent BioAnalyzer 2100(Agilent Technologies). After sample quality check, the genomic DNA was fragmented by ultrasound on a Covaris E220 (Covaris, Brighton,UK). Fragments 300~500 bp long were selected using Pippin Prep(Sage Science,Beverly,MA,USA).The selected DNA fragments were then repaired to obtain a blunt end and modified at the 3′end to obtain a dATP sticky end. The dTTP tailed adaptor was ligated to both ends of the DNA fragments. The ligation product was amplified by PCR and circularized to produce a single stranded circular(ssCir)library.The ssCir library was then amplified through rolling circle amplification(RCA)to obtain a DNA nanoball(DNB).The DNB was then loaded to a flowcell, and sequenced on a DNBSEQ Platform (Drmanac et al., 2010).

    2.2. Genome assembly and annotation

    The quality check of the raw reads was carried out in FastQC,and reads with Phred score <30 (0.001 probability error) were discarded.The resulting clean reads were used for de novo assembly of the plastomes through the GetOrganelle v1.6.2 pipeline (Jin et al.,2020). The complete plastomes were annotated according to reference genome downloaded from NCBI (GenBank accession number: MN128379; MN128378) in Geneious Prime (2020).0.5(Kearse et al.,2012).The putative starts,stops,and intron positions were identified by comparison with homologous genes of the reference genome (Zhao et al., 2020). The graphical map of the annotated circular plastomes was drawn using the OrganellarGenomeDRAW program(OGDRAW, Lohse et al., 2013).

    To improve the efficiency of assembling, the overly large sequencing dataset of Wenchengia alternifolia, 8 Gb of WN and DN were sampled using Seqkit v0.14.0 and assembled into contigs in SPAdes v3.13.0 with default settings (Bankevich et al., 2012). All clean reads of each Vietnam individuals (~8 Gb) were directly processed in the pipeline to generate contigs.Contigs quality were assessed by QUAST v5.0.2 (Gurevich et al., 2013).

    2.3. Genomic resources development based on Wenchengia alternifolia plastomes

    Five plastomes were multiple aligned using Mafft Multiple Alignment plugin v1.4.0 (Katoh and Standley, 2013) in Geneious Prime. Variable regions more than 200 bp long were selected and generated in DnaSP 6 (Rozas et al., 2017) to calculate the total number of mutation (Eta) and average number of nucleotide differences (K), which were used to determine nucleotide diversity(Pi).

    2.4. Genomic resources development based on Wenchengia alternifolia nuclear genomes

    2.4.1. Polymorphic gSSRs identification

    The contigs generated by SPAdes were aligned to the plastome sequence assembled by GetOrganelle and the mitochondrial DNA scaffolds of Scutellaria amoena C.H. Wright (GenBank accession number: MT277281.1, MT277264.1, MT277230.1, MT277181.1)downloaded from NCBI. Using BLAST search (BLAST v2.11.0), we were able to remove the plastome and mitogenome sequences.Then we discarded sequences less than 300 bp long. Candidate polymorphic gSSRs within W. alternifolia were identified based on the remanent multiple assembled sequences using the CandiSSR v20170602 software set at default parameters(Xia et al.,2016).For each target SSR,primers were automatically designed based on the Primer3 package built-in installation to the pipeline(Untergasser et al., 2012).

    2.4.2. Putative single-copy genes and single nucleotide polymorphism identification

    To capture targeted genes and analyze single nucleotide polymorphism(SNP)within them,we searched through the clean reads for each individual using HybPiper v1.3.1(Johnson et al.,2016)with default settings. 353 putative single-copy nuclear genes from 42 angiosperms (Johnson et al., 2019) were used as probes in the pipeline. Sequences captured for the same gene in at least two individuals were multiple aligned using the Mafft plugin in Geneious Prime to identify SNPs.To improve the accuracy and reliability of the results,we discarded sequences with a gene recovery rate of less than 25% and abandoned the polymorphism detected in sequence regions with an alignment identity of less than 80%.

    3. Results

    3.1. Genome assembly and features

    Five complete plastome sequences were successfully constructed with no Ns or gaps in the GetOrganelle pipeline. Genome sizes varied from 150,204 bp in Wenchengia alternifolia DN to 152,961 bp in W.alternifolia DA.The plastome sequences have been submitted to GenBank (accession numbers shown in Table 1). All plastomes exhibited a quadripartite structure similar to other angiosperms(Li et al.,2017;Liu et al.,2017),comprising of two copies of IR regions separated by a LSC region and an SSC region (Fig. 4,Table 1).The GC content overall and in different regions was similar among five individuals.Plastomes of W.alternifolia WN,DA and QN contained 114 unique genes,including 80 protein-coding genes,30 tRNA genes, and 4 rRNA genes with 18 genes duplicated in the IR regions,while plastomes of W.alternifolia H and DN lost the protein coding gene ndhF and contained only 113 unique genes (Table 2).The difference in length of the five plastomes was mainly due to the loss of the ndhF gene in W. alternifolia DN and H.

    A total of 129,404(W.alternifolia WN),126,341(DA),110,315(H)117,076(DN),128,838(QN)contigs with a length of more than 500 bp were generated after whole genome de novo assembly using SPAdes. The assembly results for each individual are shown in Table 3.

    Fig.4. Plastome map of Wenchengia alternifolia.Genes inside circle are transcribed clockwise,gene outside are transcribed counter-clockwise.Light gray inner circle corresponds to AT content; dark gray to GC content. Genes belonging to different functional groups are shown in different colors; see legend for groups.

    3.2. Development of genomic resources for Wenchengia alternifolia

    3.2.1. Divergence hotspots in the plastomes of Wenchengia alternifolia

    The divergence hotspots in the plastomes can provide effective phylogenetic information and serve as DNA barcodes.We screened 127 loci (48 inter-genic spacers, 62 coding genes, and 17 intron regions)with a length greater than 200 bp in the plastomes of five individuals of W.alternifolia(Fig.5).Nucleotide diversity(Pi)values for each locus ranged from 0.000213 (rrn23 gene) to 0.020896(ndhG-ndhI region).Six of the variable loci with Pi>0.01,including four inter-genic spacers (trnH-psbA, psbA-trnK, ndhG-ndhI and rps15-ycf1) and two coding genes (rpl22 and ndhE), showed relatively high nucleotide diversity values. Among the variable region above, Pi value of trnH-psbA and ndhG-ndhI was more than 0.015.All of them can be used as highly informative molecular markers for W. alternifolia.

    Table 1 Summary of five plastomes of Wenchengia alternifolia.

    Fig. 5. Comparative analysis of nucleotide variability (Pi) values within Wenchengia alternifolia plastome. Regions surpassing the threshold (Pi > 0.01) are highlighted in red.

    3.2.2. Genomic SSR (gSSR) markers

    Within Wenchengia alternifolia,20,953 candidate polymorphic gSSRs were identified.After selecting the loci identified in all five individuals and discarding loci with either no available primers or sequence similarity <99%, we obtained 1621 polymorphic gSSRs with a standard deviation between 0.4 and 3.32 (Table S1;Table S2). Among the polymorphic gSSRs, di- (1197), tri- (362),tetra- (52), penta- (9) and hexanucleotides (1) accounted for 73.84%, 22.33%, 3.21%, 0.56% and 0.06%, respectively (Fig. 6). The polymorphism within W. alternifolia for each type of gSSRs is shown in the results of the standard deviation of the repeats(Table S3).

    3.2.3. Putative single-copy genes and SNPs

    Fig. 6. Distribution of polymorphic genomic simple sequence repeats (gSSRs) for Wenchengia alternifolia. (a), (b), (c) and (d) represent di-, tri-, tetra-, penta- and hexanucleotide repeats, respectively.

    Clean reads of five individuals were generated in the HybPiper pipeline to identify putative single-copy genes. Among all the genes recovered in two Hainan individuals (W. alternifolia WN &W. alternifolia DA), 220 and 229 sequences were at least 75% as long as the target gene. Only 9 and 17 sequences were less than 25%as long.In the individuals from Vietnam(W.alternifolia H,W.alternifolia DN and W. alternifolia QN), only 66, 51 and 39 sequences were more than 25% as long (Table S4). 237 genes were recovered in at least two of the five individuals, among which only 23 genes were recovered in all five individuals.Within those 237 genes, 1657 candidate SNPs were identified. Some of the single copy genes were specifically polymorphic, containing more than 35 SNPs (Table S5).

    4. Discussion

    4.1. Development of genomic resources in Wenchengia alternifolia

    Plastid hotspots are plastome regions containing relatively more variations.The average Pi in all variable loci was 0.004.We selected the six most variable loci with a Pi>0.01,including four inter-genicspacers (trnH-psbA, psbA-trnK, ndhG-ndhI and rps15-ycf1) and two coding genes (rpl22 and ndhE), which can be used as molecular markers in population genetic studies. All of these loci exist in the LSC and SSC regions. As shown in Fig. 5, the average nucleotide diversity in IR is lower than in LSC and SSC. TrnH-psbA is highly divergent in many plant groups. Along with rps15-ycf1, it was also identified as a hyper-variable regions among 11 species of Scutellaria(Zhao et al.,2020).NdhG-ndhI has the highest Pi of 0.021,but it is rarely divergent in other plants. In addition, deletions and insertions are evident in the plastome,including the loss of the ndhF gene.

    Table 3 Summary of whole genome de novo assembly in Wenchengia alternifolia.

    The CandiSSR pipeline has been used in many studies to develop abundant intergeneric and intrageneric polymorphic gSSR markers that can be successfully amplified in target populations. We developed 1621 candidate polymorphic gSSRs markers in W. alternifolia, which not only have available primers but are also clear of their polymorphic status.Most of the polySSRs are di-and tri-nucleotides.The mean standard deviation of di-nucleotide SSRs is higher than in tri- and tetra-nucleotides, but they also vary greatly among different single SSRs.

    The gene recovery rate in individuals of W. alternifolia from Hainan was higher than the average level and much higher than in individuals from Vietnam (Johnson et al., 2019; Li et al., 2014),perhaps because the sequencing depth was much higher, with 23 Gb clean reads of each individual in total. Although few genes were recovered in all five individuals, in at least two individuals,237 genes were recovered that contained adequate number of candidate SNPs that would be useful for genotyping and for other population genetics studies.

    4.2. Polymorphism in genomes and morphology

    W. alternifolia is a rheophyte, a riparian plants exposed to frequent submergence and strong currents during sporadic flooding events after heavy rain(Li et al.,2014;van Steenis,1987).Plastid hotspots in other plants seldom contain protein coding genes.353 putative single-copy nuclear genes used as targets in this study are suspected of being conserved in most angiosperms. However,polymorphisms in the plastome coding genes and in the recovered nuclear genes of W.alternifolia were relatively high,which might be due to long-term isolation and/or to environmental selection pressures(Mitsui and Setoguchi,2012).The sampled populations in Hainan and Vietnam show significant variation in morphology and habitat (Figs. 1-3), which calls for further studies on population genetics and adaptive evolution.

    5. Conclusions

    In this study, five individuals from distinct populations of W. alternifolia were sampled for genome skimming. Using these data, we assembled complete plastomes and characterized the plastid hotspots, polymorphic gSSRs, low or single copy gene fragments and candidate single nucleotide polymorphisms(SNPs).The rich genomic information presented here will be available for further studies on the population genetics, local adaptation and conservation biology of the critically endangered Wenchengia alternifolia.

    Author contributions

    PL,BL and LY conceived the ideas;PL and LXY contributed to the sampling; QYZ, HXC, ZHL and TY performed the experiments and analyzed the data.The manuscript was written by QYZ, BL and PL,then revised by all the other authors.

    Data availability

    The raw reads that support the findings of this study have been deposited into CNGB Sequence Archive (CNSA) of China National GeneBank DataBase (CNGBdb) with accession number CNP0001750.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This research was supported by the National Natural Science Foundation of China (grant number 31970225 and 31900181), the Zhejiang Provincial Natural Science Foundation (grant number LY19C030007) and the Open Fund of Shanghai Key Laboratory of Plant Functional Genomics and Resources(PFGR202104).We thank Dr.Enhua Xia,Ms.Meizhen Wang and Dr.Xinjie Jin for helping with the analyses,Dr.David E.Boufford for revising the manuscript.We thank the Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Guangdong, China and the China National GeneBank for producing the sequencing data. We are grateful to anonymous reviewers for the constructive comments.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.pld.2021.09.006.

    欧美3d第一页| cao死你这个sao货| 国产精品一区二区三区四区久久| 久久精品国产清高在天天线| 中文亚洲av片在线观看爽| av在线天堂中文字幕| 亚洲全国av大片| 99久久精品国产亚洲精品| 一个人免费在线观看电影 | av福利片在线| 1024视频免费在线观看| 国产伦人伦偷精品视频| 91成年电影在线观看| 国产精品久久久人人做人人爽| 精华霜和精华液先用哪个| 777久久人妻少妇嫩草av网站| 国产av麻豆久久久久久久| 国产伦一二天堂av在线观看| 麻豆久久精品国产亚洲av| 少妇人妻一区二区三区视频| 久久久久久大精品| 久9热在线精品视频| 婷婷丁香在线五月| netflix在线观看网站| 国产亚洲精品久久久久久毛片| 成人特级黄色片久久久久久久| 亚洲专区中文字幕在线| 午夜视频精品福利| 欧美午夜高清在线| 国产精品av久久久久免费| 欧美zozozo另类| 一本一本综合久久| 国产久久久一区二区三区| 欧美日韩瑟瑟在线播放| 午夜福利18| 亚洲熟妇中文字幕五十中出| 亚洲成人久久爱视频| 久久久久精品国产欧美久久久| 精品高清国产在线一区| 国产激情久久老熟女| 国产又黄又爽又无遮挡在线| 老熟妇乱子伦视频在线观看| 国产精品久久久av美女十八| 久久久久久久午夜电影| 给我免费播放毛片高清在线观看| 亚洲欧洲精品一区二区精品久久久| 国产精品电影一区二区三区| 窝窝影院91人妻| 黄色女人牲交| 搡老熟女国产l中国老女人| 久久天躁狠狠躁夜夜2o2o| 人人妻人人澡欧美一区二区| 亚洲一区二区三区不卡视频| 十八禁人妻一区二区| 搞女人的毛片| 99精品久久久久人妻精品| 国产高清激情床上av| 一边摸一边抽搐一进一小说| 久久精品91蜜桃| 免费在线观看视频国产中文字幕亚洲| 日韩大尺度精品在线看网址| 最新美女视频免费是黄的| 级片在线观看| 亚洲avbb在线观看| 在线免费观看的www视频| 国产精品av视频在线免费观看| 国产男靠女视频免费网站| 村上凉子中文字幕在线| 久久久久久人人人人人| 欧美精品亚洲一区二区| 国产精品98久久久久久宅男小说| 欧美激情久久久久久爽电影| 亚洲午夜精品一区,二区,三区| 久久午夜综合久久蜜桃| 久久精品aⅴ一区二区三区四区| 999久久久国产精品视频| 久久热在线av| 国产成人啪精品午夜网站| 欧美3d第一页| 久久草成人影院| 精品久久蜜臀av无| 欧美另类亚洲清纯唯美| 欧美成人免费av一区二区三区| 狂野欧美激情性xxxx| 国产高清videossex| 久久久久精品国产欧美久久久| 欧美大码av| 看免费av毛片| 9191精品国产免费久久| 91九色精品人成在线观看| 午夜日韩欧美国产| 女生性感内裤真人,穿戴方法视频| 99久久久亚洲精品蜜臀av| 国产一级毛片七仙女欲春2| 香蕉丝袜av| 国产精品爽爽va在线观看网站| 亚洲精品色激情综合| 岛国在线观看网站| 熟女少妇亚洲综合色aaa.| 亚洲人成伊人成综合网2020| 老司机福利观看| 一本精品99久久精品77| 99精品在免费线老司机午夜| 韩国av一区二区三区四区| 女人爽到高潮嗷嗷叫在线视频| 不卡av一区二区三区| 三级男女做爰猛烈吃奶摸视频| 两个人的视频大全免费| 精品久久久久久,| 成人三级黄色视频| 亚洲国产看品久久| 欧美午夜高清在线| 丰满人妻一区二区三区视频av | 欧美在线黄色| 叶爱在线成人免费视频播放| 国产精品久久久久久人妻精品电影| 免费观看人在逋| 最近最新免费中文字幕在线| 2021天堂中文幕一二区在线观| 国产精品亚洲美女久久久| 国产片内射在线| 久久午夜亚洲精品久久| 99在线人妻在线中文字幕| 欧美成人午夜精品| 制服人妻中文乱码| 又大又爽又粗| 国产精品av视频在线免费观看| 啦啦啦韩国在线观看视频| 99久久综合精品五月天人人| 首页视频小说图片口味搜索| 精品午夜福利视频在线观看一区| 最新在线观看一区二区三区| 亚洲国产精品久久男人天堂| 无限看片的www在线观看| ponron亚洲| 亚洲欧美日韩无卡精品| 亚洲av日韩精品久久久久久密| 亚洲欧美日韩高清专用| 制服人妻中文乱码| 老汉色∧v一级毛片| 亚洲激情在线av| 亚洲国产欧美一区二区综合| 精品久久久久久久久久久久久| 又黄又爽又免费观看的视频| 一区福利在线观看| cao死你这个sao货| 最新在线观看一区二区三区| 99国产精品一区二区三区| 久久人人精品亚洲av| 亚洲人成77777在线视频| 一级作爱视频免费观看| 啦啦啦观看免费观看视频高清| 中文亚洲av片在线观看爽| 91麻豆精品激情在线观看国产| 一个人观看的视频www高清免费观看 | 12—13女人毛片做爰片一| 婷婷六月久久综合丁香| 夜夜爽天天搞| 精品久久久久久久久久久久久| 国产乱人伦免费视频| 巨乳人妻的诱惑在线观看| 一个人免费在线观看电影 | 中文在线观看免费www的网站 | 岛国在线免费视频观看| 精品午夜福利视频在线观看一区| 岛国在线观看网站| 亚洲精品久久成人aⅴ小说| 亚洲七黄色美女视频| 精品欧美一区二区三区在线| 蜜桃久久精品国产亚洲av| 一本综合久久免费| 免费看a级黄色片| 亚洲性夜色夜夜综合| 亚洲欧美激情综合另类| 香蕉久久夜色| 亚洲片人在线观看| 91国产中文字幕| 欧美久久黑人一区二区| 久久国产精品影院| 变态另类丝袜制服| x7x7x7水蜜桃| 欧美精品亚洲一区二区| 一进一出好大好爽视频| 一级片免费观看大全| 久久久精品大字幕| 午夜福利在线在线| 欧美zozozo另类| 精品国内亚洲2022精品成人| 国产免费男女视频| 国产蜜桃级精品一区二区三区| 国产精品久久久久久人妻精品电影| 别揉我奶头~嗯~啊~动态视频| 国内久久婷婷六月综合欲色啪| 看片在线看免费视频| 大型黄色视频在线免费观看| 香蕉丝袜av| 国产97色在线日韩免费| 日韩欧美 国产精品| 亚洲av日韩精品久久久久久密| 精品无人区乱码1区二区| 亚洲av成人一区二区三| 婷婷六月久久综合丁香| 真人一进一出gif抽搐免费| 怎么达到女性高潮| 国产爱豆传媒在线观看 | 夜夜躁狠狠躁天天躁| 人妻夜夜爽99麻豆av| 亚洲精品国产精品久久久不卡| 午夜老司机福利片| 国产精品一区二区三区四区免费观看 | 母亲3免费完整高清在线观看| 精品久久久久久久久久久久久| 欧美三级亚洲精品| 俄罗斯特黄特色一大片| 制服诱惑二区| 中文资源天堂在线| www日本黄色视频网| 男女视频在线观看网站免费 | 欧美精品亚洲一区二区| 91成年电影在线观看| 女人被狂操c到高潮| 激情在线观看视频在线高清| 长腿黑丝高跟| 免费在线观看成人毛片| 又紧又爽又黄一区二区| 五月玫瑰六月丁香| 91国产中文字幕| 级片在线观看| 脱女人内裤的视频| 人人妻人人看人人澡| 亚洲专区国产一区二区| av在线播放免费不卡| 91成年电影在线观看| 欧美成人一区二区免费高清观看 | 欧美日韩亚洲综合一区二区三区_| 给我免费播放毛片高清在线观看| 蜜桃久久精品国产亚洲av| 成人欧美大片| 搡老熟女国产l中国老女人| 最好的美女福利视频网| 五月玫瑰六月丁香| 国产成人精品久久二区二区91| 18美女黄网站色大片免费观看| 国产69精品久久久久777片 | 1024视频免费在线观看| 欧美一区二区国产精品久久精品 | 精品人妻1区二区| 亚洲熟妇中文字幕五十中出| 淫秽高清视频在线观看| 免费搜索国产男女视频| 午夜老司机福利片| 午夜精品一区二区三区免费看| 国产精品国产高清国产av| 成人av一区二区三区在线看| 色综合亚洲欧美另类图片| 中文字幕熟女人妻在线| 精品欧美国产一区二区三| 国产亚洲欧美98| www.精华液| 久久热在线av| 久久久久免费精品人妻一区二区| 亚洲精品在线美女| 亚洲,欧美精品.| 国模一区二区三区四区视频 | 精品人妻1区二区| 亚洲精品色激情综合| 久久午夜亚洲精品久久| 国产精品野战在线观看| 午夜福利在线在线| 在线观看美女被高潮喷水网站 | 国产亚洲欧美98| 亚洲va日本ⅴa欧美va伊人久久| 精华霜和精华液先用哪个| 最近最新免费中文字幕在线| 成人一区二区视频在线观看| 99久久精品热视频| 国产视频内射| 色哟哟哟哟哟哟| 国产精品久久视频播放| 搞女人的毛片| 19禁男女啪啪无遮挡网站| 伦理电影免费视频| 午夜影院日韩av| 亚洲成人久久爱视频| 亚洲中文字幕日韩| 亚洲国产精品成人综合色| 亚洲av片天天在线观看| 深夜精品福利| √禁漫天堂资源中文www| 国产精品香港三级国产av潘金莲| 丝袜人妻中文字幕| 日韩国内少妇激情av| 深夜精品福利| 国内精品久久久久久久电影| 日本a在线网址| 久久久久国内视频| 国产aⅴ精品一区二区三区波| 一级黄色大片毛片| 亚洲18禁久久av| 欧美日韩一级在线毛片| 99久久99久久久精品蜜桃| 18禁黄网站禁片免费观看直播| 亚洲五月天丁香| 精品久久久久久久久久免费视频| 成人国产一区最新在线观看| 国产黄色小视频在线观看| 亚洲第一电影网av| 老司机靠b影院| 欧美性猛交╳xxx乱大交人| 午夜福利成人在线免费观看| 国产精品久久久久久久电影 | 亚洲av成人精品一区久久| 国产精品久久久久久久电影 | 美女高潮喷水抽搐中文字幕| 日韩欧美在线二视频| 丁香欧美五月| 久久久精品国产亚洲av高清涩受| 亚洲一区二区三区色噜噜| 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品合色在线| 亚洲狠狠婷婷综合久久图片| 可以在线观看毛片的网站| 欧美黄色片欧美黄色片| 高清在线国产一区| 国产又色又爽无遮挡免费看| 99热6这里只有精品| 亚洲中文字幕一区二区三区有码在线看 | 日日干狠狠操夜夜爽| 国产亚洲精品综合一区在线观看 | 久久久久免费精品人妻一区二区| 国产一区二区激情短视频| 淫妇啪啪啪对白视频| 91麻豆精品激情在线观看国产| 国产成人啪精品午夜网站| 啦啦啦免费观看视频1| 亚洲一区高清亚洲精品| 此物有八面人人有两片| av福利片在线| 人妻夜夜爽99麻豆av| 禁无遮挡网站| 麻豆成人av在线观看| cao死你这个sao货| www日本在线高清视频| 欧美性猛交╳xxx乱大交人| 中文字幕高清在线视频| 老汉色av国产亚洲站长工具| 观看免费一级毛片| 欧美午夜高清在线| 在线播放国产精品三级| 日韩精品免费视频一区二区三区| 成熟少妇高潮喷水视频| 搡老岳熟女国产| 首页视频小说图片口味搜索| 女人高潮潮喷娇喘18禁视频| 午夜老司机福利片| 亚洲全国av大片| 精品熟女少妇八av免费久了| 亚洲成人久久性| 真人一进一出gif抽搐免费| 不卡一级毛片| 日本一二三区视频观看| 久久香蕉精品热| 欧美成人一区二区免费高清观看 | 欧美黑人精品巨大| 成人亚洲精品av一区二区| 五月伊人婷婷丁香| 少妇的丰满在线观看| 亚洲成人精品中文字幕电影| e午夜精品久久久久久久| 亚洲精品一区av在线观看| 亚洲欧美激情综合另类| 成人国产一区最新在线观看| 无人区码免费观看不卡| 婷婷精品国产亚洲av| 亚洲av日韩精品久久久久久密| 免费观看精品视频网站| 国产蜜桃级精品一区二区三区| 亚洲人与动物交配视频| 色哟哟哟哟哟哟| 真人一进一出gif抽搐免费| 久久婷婷成人综合色麻豆| 真人一进一出gif抽搐免费| 我的老师免费观看完整版| 99在线视频只有这里精品首页| 黄色 视频免费看| 久久香蕉激情| 不卡一级毛片| 麻豆成人午夜福利视频| 黄色 视频免费看| 成人av在线播放网站| 国内少妇人妻偷人精品xxx网站 | 中文字幕高清在线视频| 露出奶头的视频| 黑人操中国人逼视频| av在线天堂中文字幕| 国产熟女xx| 在线观看美女被高潮喷水网站 | 欧美黄色片欧美黄色片| 欧美久久黑人一区二区| 波多野结衣高清作品| 亚洲av成人精品一区久久| www.999成人在线观看| 人妻丰满熟妇av一区二区三区| 国产av不卡久久| 脱女人内裤的视频| 琪琪午夜伦伦电影理论片6080| 免费一级毛片在线播放高清视频| videosex国产| 国产熟女xx| 搡老妇女老女人老熟妇| 亚洲国产精品合色在线| 免费搜索国产男女视频| 在线a可以看的网站| 又大又爽又粗| 国产99白浆流出| 午夜精品久久久久久毛片777| 999久久久国产精品视频| 精品无人区乱码1区二区| 亚洲美女黄片视频| 精品午夜福利视频在线观看一区| 亚洲国产看品久久| 国产精品永久免费网站| 丰满人妻一区二区三区视频av | 18禁裸乳无遮挡免费网站照片| 一区二区三区激情视频| 亚洲色图 男人天堂 中文字幕| 国内少妇人妻偷人精品xxx网站 | 国产1区2区3区精品| 久久久精品欧美日韩精品| 国产免费男女视频| 亚洲黑人精品在线| 国产视频一区二区在线看| 又大又爽又粗| 久久婷婷成人综合色麻豆| 黄色片一级片一级黄色片| 国产三级在线视频| 91麻豆av在线| 免费av毛片视频| 人妻丰满熟妇av一区二区三区| 九九热线精品视视频播放| 又黄又粗又硬又大视频| 一级片免费观看大全| 久久久久久免费高清国产稀缺| 国产成人aa在线观看| 亚洲自拍偷在线| 日本三级黄在线观看| 亚洲av美国av| 国产激情偷乱视频一区二区| 日韩欧美免费精品| 国产精品1区2区在线观看.| 两性夫妻黄色片| 日韩精品青青久久久久久| 老司机午夜福利在线观看视频| 久久久国产精品麻豆| 国产av麻豆久久久久久久| 亚洲性夜色夜夜综合| 岛国在线观看网站| 禁无遮挡网站| 欧美又色又爽又黄视频| 美女扒开内裤让男人捅视频| 亚洲激情在线av| 99精品在免费线老司机午夜| 90打野战视频偷拍视频| 中文资源天堂在线| 夜夜爽天天搞| 悠悠久久av| 桃色一区二区三区在线观看| 久久精品国产亚洲av香蕉五月| 国产在线精品亚洲第一网站| 亚洲av日韩精品久久久久久密| 一本大道久久a久久精品| av超薄肉色丝袜交足视频| 日韩中文字幕欧美一区二区| 亚洲人成电影免费在线| 一级a爱片免费观看的视频| 伦理电影免费视频| 琪琪午夜伦伦电影理论片6080| 国产伦一二天堂av在线观看| 精品久久久久久久末码| 亚洲精品中文字幕在线视频| 国产97色在线日韩免费| 两个人免费观看高清视频| 淫妇啪啪啪对白视频| 国产一区二区三区在线臀色熟女| 国产精品国产高清国产av| 亚洲五月婷婷丁香| 国产精品影院久久| 国产久久久一区二区三区| 亚洲精品美女久久久久99蜜臀| 亚洲av片天天在线观看| cao死你这个sao货| 身体一侧抽搐| 久久久久久亚洲精品国产蜜桃av| 色综合亚洲欧美另类图片| 可以在线观看毛片的网站| 日本免费a在线| 一级黄色大片毛片| 亚洲人与动物交配视频| 男女下面进入的视频免费午夜| 淫妇啪啪啪对白视频| 听说在线观看完整版免费高清| 曰老女人黄片| 一级作爱视频免费观看| 欧美在线黄色| 日韩大尺度精品在线看网址| 国产黄色小视频在线观看| 又紧又爽又黄一区二区| 99久久国产精品久久久| 国产又色又爽无遮挡免费看| 免费观看精品视频网站| 免费观看人在逋| 熟女电影av网| e午夜精品久久久久久久| 在线永久观看黄色视频| 久久久久久久久中文| 夜夜爽天天搞| 大型黄色视频在线免费观看| 午夜福利成人在线免费观看| 波多野结衣高清作品| 欧美乱色亚洲激情| 久久久久九九精品影院| av中文乱码字幕在线| 久久久久精品国产欧美久久久| 欧美日韩中文字幕国产精品一区二区三区| 欧美激情久久久久久爽电影| tocl精华| 精品久久久久久,| 男女那种视频在线观看| 舔av片在线| 小说图片视频综合网站| 99热6这里只有精品| 男女做爰动态图高潮gif福利片| 丁香六月欧美| 99久久无色码亚洲精品果冻| 久久久久久人人人人人| www.精华液| 久久精品综合一区二区三区| 欧美日韩精品网址| 狂野欧美白嫩少妇大欣赏| 亚洲片人在线观看| 黄色毛片三级朝国网站| 最近最新免费中文字幕在线| 国产三级中文精品| 精品久久久久久久久久久久久| 嫩草影院精品99| 欧美成人午夜精品| 最新在线观看一区二区三区| 男女床上黄色一级片免费看| 两性午夜刺激爽爽歪歪视频在线观看 | 中文资源天堂在线| 男插女下体视频免费在线播放| 国产三级在线视频| 国产在线精品亚洲第一网站| а√天堂www在线а√下载| 我的老师免费观看完整版| 色av中文字幕| 国产亚洲欧美在线一区二区| av福利片在线观看| 亚洲欧美激情综合另类| 黄片小视频在线播放| 特级一级黄色大片| 毛片女人毛片| 99re在线观看精品视频| 真人做人爱边吃奶动态| 在线观看午夜福利视频| 亚洲美女黄片视频| 免费观看精品视频网站| 亚洲黑人精品在线| 神马国产精品三级电影在线观看 | 视频区欧美日本亚洲| 久久国产精品影院| 国产亚洲欧美98| 在线免费观看的www视频| 亚洲va日本ⅴa欧美va伊人久久| 久9热在线精品视频| 国产不卡一卡二| 人人妻人人看人人澡| 一本久久中文字幕| 亚洲国产精品999在线| 成人一区二区视频在线观看| 一级片免费观看大全| 婷婷精品国产亚洲av在线| 国产在线精品亚洲第一网站| 国产高清有码在线观看视频 | 日本免费a在线| 老汉色∧v一级毛片| 午夜福利成人在线免费观看| 露出奶头的视频| 熟女电影av网| 久久久久国产一级毛片高清牌| 久久久久久国产a免费观看| 麻豆成人av在线观看| 成人国语在线视频| 19禁男女啪啪无遮挡网站| 亚洲专区国产一区二区| 最新在线观看一区二区三区| 亚洲,欧美精品.| 757午夜福利合集在线观看| 国产麻豆成人av免费视频| 免费av毛片视频| 亚洲最大成人中文| 无人区码免费观看不卡| 日韩欧美三级三区| 在线十欧美十亚洲十日本专区| 99久久国产精品久久久| 99热只有精品国产| 婷婷亚洲欧美| 97超级碰碰碰精品色视频在线观看| 日本精品一区二区三区蜜桃| 成年版毛片免费区| 国产视频内射| 久久精品影院6| 日本成人三级电影网站| 精品午夜福利视频在线观看一区| 久久精品综合一区二区三区|