• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Measuring fine molecular structures with luminescence signal from an alternating current scanning tunneling microscope

    2022-12-11 03:29:20FeiWenGuohuiDongandHuiDong
    Communications in Theoretical Physics 2022年12期

    Fei Wen ,Guohui Dongand Hui Dong,?

    1 Graduate School of China Academy of Engineering Physics,Beijing 100084,China

    2 School of Physics and Electronic Engineering,Sichuan Normal University,Chengdu 610068,China

    Abstract In scanning tunneling microscopy-induced luminescence(STML),the photon count is measured to reflect single-molecule properties,e.g.,the first molecular excited state.The energy of the first excited state is typically shown by a rise of the photon count as a function of the bias voltage between the tip and the substrate.It remains a challenge to determine the precise rise position of the current due to possible experimental noise.In this work,we propose an alternating current version of STML to resolve the fine structures in the photon count measurement.The measured photon count and the current at the long-time limit show a sinusoidal oscillation.The zero-frequency component of the current shows knee points at the precise voltage as the fraction of the detuning between the molecular gap and the DC component of the bias voltage.We propose to measure the energy level with discontinuity of the first derivative of such a zero-frequency component.The current method will extend the application of STML in terms of measuring molecular properties.

    Keywords: alternating current scanning tunneling microscope,inelastic electron scattering,single-molecule electroluminescence,molecular energy levels

    1.Introduction

    Measuring the induced luminescence in scanning tunneling microscopy(STML)is currently arising as a powerful tool to detect single-molecular properties,such as energy levels and optical responses[1].The technique of generating light from a metal-insulator-metal tunneling junction was discovered by Lambe and McCarthy in 1976 [2].After,light emission with nearly atomic spatial resolution was reported for a scanning tunneling microscopy (STM) [3].

    The origin of emitted light in STM had been controversial;whether the photon is emitted from molecules?Intuitively,the transition involving molecular states could lead to molecular luminescence as the first origin.And the energy transfer from an excited molecular state to the metal substrate may also contribute to light emission,known as the quenching process,as the second origin.Berndtet alreported spatially resolved photon emission from an STM junction[4].And high emission efficiency from molecules was guaranteed by an oxide layer that blocks such a quenching process [5].To observe the emission solely from molecules,a decoupling layer to separate the molecule from the substrate is needed[6].By virtue of the decoupling proposal,molecular luminescence was realized with different decoupling layers and various substrates.The fluorescence from an individual molecule is observed for porphyrin molecules adsorbed onto a thin aluminum oxide (Al2O3) film covered on a metal NiAl(100)surface [7,8] and for molecules on the organic film as the decoupling layer on the metallic substrate [9–16].Ultra-thin insulating NaCl film was shown as a good decoupling layer[17] for the observation of luminescence,e.g.,for the individual pentacene [18] and C60[19] molecules from a metallic substrate.The advantage of strong enhanced molecular fluorescence caused by the decoupling method [20–23] makes the sandwich structure with metallic tip,decoupling layer and metallic substrate as a feasible platform for the STML experiments.Our current work will focus on such structure.

    In general,the theory of STML includes three mechanisms,i.e.,the inelastic electron scattering (IES) mechanism,charge injection (CI) mechanism and the gap plasmon mechanism.We focus on the IES mechanism where the electron tunnels from one electrode to the other inelastically while exciting the molecule in the gap.In the sandwich setup,the tunneling current,as well as the luminescence photon,is detected as a function of the bias voltage applied between the tip and the substrate.Once the energy of the tunneling electron is above a molecular transition gap,the single molecule can be pumped to an excited state and then fluoresces.Thus a rise of the photon count can be observed at the position where the tunneling electron energy matches the molecular transition energy [24].And the molecular energy level can be determined by the rise position of the photon count[25].Yet,it is difficult to accurately determine the energy level due to possible noise in the experiments [26].

    In this paper,we propose an AC-STML method to detect fine molecular levels.Originally,STM with alternating current[27] was developed to probe the noise spectrum.Here,we extend its application in molecular structure detection.To resolve the molecular structure,we calculate the current and the luminescence photon count for the AC bias STM with perturbation theory and express the current in the series of Bessel’s function.We find that the measured photon count and the inelastic current oscillate with time at the long-time limit.The zero-frequency component of the Fourier transformation of the current shows knee points at the precise voltage as the fraction of the detuning between the molecular gap and the DC (time-independent) component of bias voltage.The fine molecular structure can be determined specifically with the knee points in the DC current (the zero-frequency component of the AC current) as a function of the driving AC frequency.

    The rest of the paper is organized as follows.In section 2,we describe our model of STML with AC bias and calculate the inelastic tunneling current in the time domain through Bessel’s function of the first kind.Then we obtain the zero-frequency current in the frequency domain.Section 3 shows the current and the first derivative of the current as a function of AC frequency.We summarize the main contributions in section 4.

    2.Methods

    2.1.The inelastic current in STML

    We sketch the setup of the AC-STML system in figure 1.The molecule is decoupled by a thin NaCl layer (the blue layer)from the metal substrate (the grey layer).Here,we describe the molecule with dipole approximation[24].The nucleus is marked by the yellow sphere and the molecular electron is marked by the black sphere.The tip generates a tunneling electron(the red sphere)by the AC bias applied between the tip and the substrate.The AC biascontains a time-independent partV0and a sinusoidal part with amplitudeV1and frequency ν.The radius of the tip’s apex isR,andddenotes the distance from the bottom of the tip to the substrate.The molecular nucleus is set as the origin of the coordinate system.→r,→rmand →adenote the coordinates of the tunneling electron,the molecular electron and the center of the tip’s apex,respectively.The tunneling electron interacts with the molecule via the Coulomb interaction.The molecule can be excited by the tunneling electron and will subsequently emit photons via spontaneous emission.

    The Hamiltonian in our AC-STML system is divided into three parts,

    The electron wavefunctions in the statekof the tip and in the statenof the substrate are written [31] as

    At a given bias,both the elastic and the inelastic tunneling occur.The interaction between the molecule and the tunneling electron is small and is treated as a perturbation.Thus the probability of the molecule in its excited state is quite low[34].At the beginning,we assume that the molecule is in its ground state and the tunneling electron is in the statenof the substrate,i.e.,noticing the typical low temperature in the STML experiments [7,8,18].Using the time-dependent perturbation theory,we find that at timet,the system evolves to state

    where (E)ρs(ρt(E))is the density of state in the substrate(tip)at energyE.Eeg=Ee-Egis the molecular energy gap,andJi(x)is thei-thBessel function of the first kind.In the derivation above,we have used the property of the Bessel functionsJi(-a)=(-1)i Ji(a).We change the range of the integral aboutEnfrom[-∞,μ0]to[2μ0,μ0],since most electrons of the metal occupy states near the Fermi energy.The detailed derivations are presented in the appendix.

    2.2.AC-current in the frequency domain

    In a manner different from the DC voltage case,the system under AC bias will not reach a steady state with a constant current at the long-time limit.Instead,the current oscillates with various Fourier frequencies.The information of the energy level can be extracted from these components in the Fourier transformations ofIs,t(t)as follows:

    The photon count in the AC system heavily depends on the AC inelastic tunneling current that we calculated above.As the molecule is firstly excited to its excited state by the AC bias and then decays back through the spontaneous emission process,the population equation of the molecule excited state reads [24]stands for the excited-state population and γ is the spontaneous decay rate.Since the AC inelastic tunneling current oscillates with various Fourier frequencies,we divide the excited-state populationwith respect to the Fourier frequencies,i.e.,Thus,the zero-component current contributes to a steady photon count in the long-time limit while every non-zerofrequency component gives one time-dependent photon count with its corresponding frequency.

    To find the energy levels,we consider the zero-frequency component of the inelastic current (equation(10)),i.e.,ω=0 as

    The result shown in equation (11) retains the current for the case with a DC voltage(V1=0)obtained in[24]by noticing thatJ0(0)=1 andJl(0)=0 for anyl≠0.In the paper [24],the current caused by the DC bias is kept constant at the long-time limit,while in our AC case,the inelastic current oscillates with time and cannot reach a steady state.So we make a Fourier transformation of the AC-induced current and investigate the zero-frequency component of the current.In the long-time limit,the time-independent photon count is proportional to the zero-component current,i.e.,equation (11).

    3.Results

    To reveal the resonant conditions in the above current,we perform the numerical calculation of the tunneling current with parameters extracted from the experimental setup.In the STML experiments,the metal used for the tip and the substrate is typically chosen as gold(Au)[35–39],silver(Ag)[1,29,30,40–46] and copper (Cu) [11,18,47,48].In our simulation of the STML current,the tip and the substrate are made of silver with Fermi energy μ0=-4.64 eV.The calculation of the current requires the Ag’s density of state,which is obtained from the book [49] by the spline interpolation of the discrete data points.The detail of the obtained density of state was presented in our previous publications [24,50].In the experiments,the molecular gap is typically chosen to be around 1.5 eV ~4 eV [1,29,38,42,43,51–53] to avoid the possible damage caused by the strong static electric field between the tip and the substrate.For example,the energy gap between the first single excited state and the ground state of the free-base phthalocyanine (H2Pc) molecule is 1.81 eV[42,51],and theQ(0,0) transition energy of the zincphthalocyanine(ZnPc)molecule is 1.90 eV[1,29,38,43,52,53].Here,we choose that the molecular gap isEeg=2.0 eV.In the scanning process,the distancedbetween the tip and the substrate is typically around several nanometers.And we have usedd=0.5 nm and the radius of the tip apex isR=0.5 nm.

    3.1.Tunneling current for the tip position =(0,0,d)

    Since the absolute value of the Bessel function decreases as its order increases,it is reasonable to cut off the high order term of the Bessel function of the summation in equation(11).Noticing that the factor cos[(l+l′-1)π2]vanishes for the case wherel+l′ is even,we consider the cutoffs with∣l-l′∣≤3and∣l-l′∣≤5to check the convergence of the current in equation(11).Figure 2(a)shows the zero-frequency inelastic tunneling current as a function of AC frequency ν.The parameters in the simulation are given as follows,l?[-3,3],R=0.5 nm,d=0.5 nm,=(0,0,d),Eeg=2 eV,eV1/?ν=2,μ0=-4.64 eV andeV0=-1.88 eV.The tip is placed right above the molecule.In figure 2(a),the red dotted line reveals the current including the summation of∣l∣≤3 and∣l-l′∣≤3,and the black line shows that of∣l∣≤3 and∣l-l′∣≤5.The coincidence of the two curves demonstrates that the zero-frequency inelastic current already converges with∣l-l′ ∣=3and ∣l∣≤3.Therefore,we use the cutoff∣l∣≤3 and∣l-l′∣≤3in the following calculation.

    Figure 1.The schematic diagram of the AC STML system.In the dipole approximation,the yellow (black) sphere represents the molecular nucleus (molecular electron).The molecule is separated fromthe metallic substrate by the decoupling layer.The red sphere stands for the tunneling electron.The ra di us of the tip a pex is R.d representsthedista→nc→ebe→tweenthebott omofthe tip an dthe decouplinglayer. (,) means thedi stancefrom the tunneling electron (molec ular electron,the cent er of the tip’s apex) to the nucleus.The AC bias Vb(t)=V0+V1 sin (νt)is applied between the tip and thesubstrate.

    Figure 2.(a)The convergency of the zero-frequency inelastic current with =(0,0,d).The red dotted (blue dashed) curve shows the current under the summation of∣l∣≤3 and∣l -l′∣≤3(∣l -l′∣≤5).Both lines show the non-analyticity of the current with respect to the oscillating frequency.(b)The first derivative of the zerofrequency inelastic current with respect to the oscillating frequency ν.The tip is placed right above the molecule.The red dots show the discontinuous data in the current,which correspond to ?ν=0.04,0.06,and 0.12 eV.We have chosen the parameters as l ?[-3,3],R=0.5 nm,d=0.5 nm,=(0,0,d),Eeg=2 eV,μ0=-4.64 eV,and eV0=-1.88 eV.The ratio of the time-dependent voltage amplitude over the oscillating frequency is fixed at eV1/?ν=2.

    The curve in figure 2(a) also shows the discrete knee points.We numerically calculate the first derivative of the inelastic tunneling currentIs,t(ω=0)with respect to the AC frequency ν and plot the result in figure 2(b).In figure 2(b),the line reveals the discontinuity of the first derivative of the zero-frequency current with the discontinuous spots located at ?ν=0.04 eV,0.06 eV,and 0.12 eV.By defining the detuning Δ=Eeg+eV0,we find that the discontinuous spots are in agreement with the conditionΔ-l′? ν=0withl′=3,2,1,respectively.Mathematically,such discontinuous behavior can be understood with the Jacobi-Anger expansion.The STML system with AC biasV0+V1sin(νt)is equivalent to the system with a series of DC biases(l′=0,± 1,± 2,…).Once one effective biasmatches the molecular energy gap,namelya new contribution to the molecular excitation rate(the inelastic current)emerges and results in one discontinuous point in its first derivative curve.Therefore we have demonstrated that the discontinuous spots reveal the fine detail of the molecule.

    To investigate the influence caused by the height of the tip,we choose the parametersd=0.3 nm,d=0.4 nm andd=0.5 nm respectively.Figure 3(a) shows the zero-frequency component of the inelastic current which is dependent upon the position of the tip.The green,yellow and red curves correspond to the inelastic current with the tip fixed atd=0.3 nm,d=0.4 nm andd=0.5 nm respectively.The inelastic current becomes larger as the tip moves to the molecule.Because we modeled the electron wavefunction of the tip as equation (2),which decays with the tip radius exponentially,when the STM tip approaches the substrate,the electron wavefunction at the position of the tunneling electron increases,resulting in the increase of the transition matrix element.Finally,the inelastic current increases.Figure 3(b) reveals the first derivative of the inelastic current with respect to the frequency.Discontinuous data are marked by a dot.All the curves have discontinuous data at the same spots ?ν=0.04 eV,0.06 eV,and 0.12 eV,which are in agreement with the conditionΔ-l′? ν=0.Although the inelastic current changes with the tip approaching the molecule,the knee points of the current satisfy the resonant condition which is independent of the position of the tip.

    Figure 3.(a) The zero-frequency component of the inelastic current with different heights of the tip.The green,yellow and red curves correspond to the inelastic current with d=0.3 nm,d=0.4 nm and d=0.5 nm respectively.(b) The first derivative of the zerofrequency inelastic current with respect to the frequency ν.The tip is placed right above the molecule.The dotted markers in(b)show the discontinuous data at ?ν=0.04 eV,0.06 eV,and 0.12 eV.The other parameters are the same as before.

    Figure 4.(a)The convergence of the zero-frequency inelastic current in =(0.2 nm,0,d).The red dotted line and the blue dashed line correspond to the condition∣l -l′∣≤3and∣l -l′∣≤5,respectively.(b) The first-order derivative of the zero-frequency inelastic current about the bias frequency ν in a=(0.2 nm,0,d).The other parameters are the same as before.

    Figure 5.(a) The zero-frequency component of the inelastic tunneling currentas afunctionof the frequency with thelateral displacement betweenthe tipand the molecule fixedat=(0,0,d),=(0.1 nm,0,d)an ?=(0.2 nm,0,d),which is represented by the red,blue and yellow curves respectively.(b)The first derivative of the zero-frequency component of the current with respect to the frequency.The correspondence between the color and the lateral displacement is the same as (a).The dotted markers show the discontinuous spots in curves.The other parameters are the same as before.

    Figure 6.The inelastic tunneling current and its first derivative in =(0.2 nm,0,d)with Δ=0.04,0.06,0.08,0.1,and 0.12 eV.(a)–(e)show the inelastic tunneling current with an upward trend.(f)–(j) give the first derivative of the current.The round (square,triangle) dot characterizes the discontinuous points.

    Figure 7.The energy of knee points as a function of Δ=Eeg+eV0.The data points in round (square,triangle) dots correspond to the knee points with the same marker in figure 6.The slope of the triangle (square,round) dot line equals to1l′=1 (12,13).

    The advantage of our AC-STML is that the frequency can be tuned with precision.In the DC bias case,the inelastic tunneling current has a sudden rise from zero when the absolute value of the DC bias becomes equal to a critical quantity,i.e.,the absolute value of the molecular energy gap divided by the electron charge [24].And one can extract the information of the molecular energy gap from this curve theoretically.However,due to the noise of the experiment,the inelastic tunneling current curve changes smoothly near the critical quantity.Thus one can only read out the energy gap roughly.In the AC STML method,the point of the energy gap is featured as the knee point of the zero-frequency component of the AC current.These points show a discontinuous and non-analytical property at the non-zero point of the current curve.By numerically calculating the first derivative of the zero-frequency component of the inelastic tunneling current with respect to the AC frequency,the discontinuous points,i.e.,the sudden rising points,correspond to the points of energy resonance.We can read out discontinuous points directly and then obtain the energy gap of the molecule.

    The method of realizing our proposal has two steps.Firstly,the molecule is probed via a DC bias.The molecular energy gap can be roughly obtained through the rising point in the photon-emission spectrum.And we estimate the rough value asV0.Second,we add a non-zero AC component to this DC voltage and apply this time-dependent bias to the molecule.A series of knee points can be shown in the figure of the zero-frequency inelastic tunneling currentIs,t(ω=0)as a function of the AC frequency.Then,we can precisely determine these non-analytical points through the first derivative of the inelastic tunneling currentIs,t(ω=0)with respect to the AC frequency.The precise molecular gap is given with the relationEeg-e∣V0∣=l′?ν(l′=0,± 1,± 2,± 3).

    3.2.Tunneling current for the tip position a→=(0.2 nm,0,d)

    Without loss of generality,we consider the case where the tip is laterally displaced from the center of the molecule,e.g.,=(0.2 nm,0,d).We calculate the zero-frequency inelastic current as shown in figure 4(a).The curve shows the same feature as that in figure 2(a).The other parameters in figure 4 are the same as in figure 2.The coincidence between the red dotted line and the blue dashed line also shows the convergence of our calculation when we consider the summation with terms ∣l∣≤3 and∣l-l′∣≤3.We also calculate the frist derivative of the zero-frequency inelastic current with respect to the AC frequency to explore the fine details of the current.As shown in figure 4(b),the first derivative of the zero-frequency inelastic current reveals the discontinuity at the same spots ?ν=0.04 eV,0.06 eV,and 0.12 eV.The results in=(0,0,d)and=(0.2 nm,0,d)indicates that the fnie structure in the AC current is robust with respect to the relative position between the tip and the molecule.

    To investigate the influence of the relative position of the tip and the molecule on the inelastic current,we calculated the zero-frequency component of the current and its first derivative with respect to the frequency as a function of the frequency in figure 5.Since we assume that the molecular dipole is isotropic in three axes,the inelastic current is symmetric around thez-axis.Hence,we only calculate the displacement of the tip in thex-axis.In figure 5,the red,blue and yellow curves correspond to the cases with=(0,0,d),=(0.1 nm,0,d)and=(0.2 nm,0,d)respectively.In figure 5(a),when the tip is right above the molecule,the zerofrequency inelastic current is much smaller than in the other cases.The current with=(0.1 nm,0,d)is a little smaller than the current with=(0.2 nm,0,d).So,the inelastic current can change with the distance between the tip and the molecule.In figure 5(b),the dotted markers reveal the knee points of the current at the same spots ?ν=0.04 eV,0.06 eV,and0.12 eV,showing that the resonant relation is independent on the relative of the tip and the molecule.

    To show the general case,we calculate the inelastic tunneling current and its first derivative with different energy detuning Δ=0.04,0.06,0.08,0.1,and 0.12 eV,as illustrated in figure 6.The left column represents the current curves with an upward trend as discussed before.When the frequency ν of the bias is small,the energy of the tunneling electron is too weak to excite the molecule.No inelastic tunneling electron transfers energy to the molecule and no inelastic current flows through the electrodes.The energy of the rising point in the current becomes higher as Δ increases.From the definition Δ=Eeg+eV0,the increase ofV0causes the effective bias-V0to decrease.To reach the molecular excitation energy,the value of ?ν should be larger.The right column in figure 6 plots the first derivative of the current.The round (square,triangle) spot reveals the nonanalysis feature of the current.With Δ increasing,the energy of the knee point in the same shape increases too.

    To figure out the relation between the energy of knee points and Δ,we show the energy of knee points as the function of the energy Δ with various orders.Figure 7 plots the energy of spots with the same markers in figure 6.The energy of the knee points linearly increases with energy Δ.The slope of the line with triangle (square,round) markers is 1 (1/2,1/3),and matches 1l′ in the relationΔ-l′? ν=0 withl′=1 (2,3).This demonstrates that the molecular gapEegcan be determined via the knee pointsΔ-l′? ν=0.

    4.Conclusions

    In summary,we have proposed the AC-STML setup to measure fine molecular structures.We calculate the photon count reflected by the inelastic current and obtain its Fourier components at the long-time limit.We show that the rising position of the current spectrum is precisely determined by the match between the effective bias and the molecular energy gap.These rising positions are utilized to find the molecular energy levels by scanning the frequency of the AC bias.The observations here allow us to propose an alternative method to determine the molecular levels,especially the fine structures around electronic levels,e.g.,the vibrational levels.

    The AC-STML method can be realized in experiments.Theoretically,our proposal works well in a large range of AC frequencies.In reality,the AC frequency can be realized around the GHz level [54].Therefore,as long as we can localize the rough biasV0to the rangeeV through the inelastic current curve in the DC bias case,the precise energy gap will be obtained successfully.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (NSFC) (Grant No.11 875 049),the NSAF (Grant Nos.U1730449 and U1930403),and the National Basic Research Program of China (Grant No.2016YFA0301201).

    Appendix.The derivation of the AC current

    The first derivative of the inelastic tunneling amplitudece,k(t)

    The solution of the inelastic tunneling amplitudece,k(t)is

    The inelastic tunneling rate can be expressed as

    Then equation (12)can be rewritten as

    The inelastic tunneling rate can be expressed through the series of Bessel’s function

    where we have used the relationJl(-a)=(-1)l Jl(a).Calculating the integral,we obtain

    By replacing the summation with the integral and substituting the inelastic tunneling rate equation (14) into the current aboveIs,t(t),we obtain the inelastic tunneling current explicitly (equation (9) in the main text) as

    ORCID iDs

    日韩欧美国产在线观看| 九九在线视频观看精品| 欧美另类亚洲清纯唯美| 国产成人欧美在线观看| 可以在线观看的亚洲视频| 一夜夜www| 天堂√8在线中文| 久久久久久人人人人人| 国产亚洲精品综合一区在线观看| 久久久久国产精品人妻aⅴ院| 757午夜福利合集在线观看| 国产亚洲精品综合一区在线观看| 久久国产精品人妻蜜桃| 欧美丝袜亚洲另类 | 黄色片一级片一级黄色片| 婷婷丁香在线五月| 色尼玛亚洲综合影院| 久久人妻av系列| netflix在线观看网站| 久久久久久久久中文| 男女午夜视频在线观看| 国产成年人精品一区二区| 欧美一区二区亚洲| www国产在线视频色| 久久人妻av系列| 一个人看视频在线观看www免费 | 18禁黄网站禁片午夜丰满| 欧美日韩亚洲国产一区二区在线观看| 国产午夜精品论理片| 手机成人av网站| 欧美一区二区精品小视频在线| 搡女人真爽免费视频火全软件 | 亚洲乱码一区二区免费版| 国产精品久久久久久亚洲av鲁大| 日韩欧美国产一区二区入口| 村上凉子中文字幕在线| 露出奶头的视频| 中国美女看黄片| 亚洲人成伊人成综合网2020| 国产成人av激情在线播放| 欧美一级a爱片免费观看看| www日本在线高清视频| 精品人妻偷拍中文字幕| 宅男免费午夜| tocl精华| 一进一出抽搐动态| 黑人欧美特级aaaaaa片| 亚洲专区国产一区二区| av在线蜜桃| 男女做爰动态图高潮gif福利片| 18禁国产床啪视频网站| 夜夜爽天天搞| 午夜福利成人在线免费观看| 中文字幕精品亚洲无线码一区| 中文字幕人妻熟人妻熟丝袜美 | 亚洲成人中文字幕在线播放| 久久精品综合一区二区三区| 男女视频在线观看网站免费| 人妻久久中文字幕网| av专区在线播放| 国产精品1区2区在线观看.| 国内少妇人妻偷人精品xxx网站| 女生性感内裤真人,穿戴方法视频| 天天躁日日操中文字幕| 特大巨黑吊av在线直播| 熟妇人妻久久中文字幕3abv| 亚洲精品在线美女| 日韩欧美一区二区三区在线观看| 欧美激情在线99| 亚洲欧美激情综合另类| 观看免费一级毛片| 国产精品一区二区三区四区免费观看 | 国产精品 欧美亚洲| 日日摸夜夜添夜夜添小说| 老司机在亚洲福利影院| 日韩免费av在线播放| 亚洲内射少妇av| 精品久久久久久久末码| 久久伊人香网站| 中文字幕久久专区| 在线观看舔阴道视频| 一区二区三区激情视频| 久久精品国产清高在天天线| 中亚洲国语对白在线视频| 日韩有码中文字幕| 在线播放无遮挡| 一进一出抽搐gif免费好疼| 国产免费av片在线观看野外av| 国内毛片毛片毛片毛片毛片| 狂野欧美白嫩少妇大欣赏| 一级毛片高清免费大全| 老熟妇仑乱视频hdxx| 一进一出好大好爽视频| 老鸭窝网址在线观看| www国产在线视频色| 婷婷亚洲欧美| 在线观看一区二区三区| av视频在线观看入口| 女警被强在线播放| 给我免费播放毛片高清在线观看| 日韩亚洲欧美综合| 午夜久久久久精精品| 熟女电影av网| 露出奶头的视频| 亚洲欧美激情综合另类| 亚洲va日本ⅴa欧美va伊人久久| 2021天堂中文幕一二区在线观| 叶爱在线成人免费视频播放| 蜜桃亚洲精品一区二区三区| 国产精品99久久99久久久不卡| 男女做爰动态图高潮gif福利片| 免费搜索国产男女视频| xxx96com| 神马国产精品三级电影在线观看| а√天堂www在线а√下载| 成年女人毛片免费观看观看9| 免费看光身美女| 日韩成人在线观看一区二区三区| 日本 av在线| 亚洲精华国产精华精| 在线播放国产精品三级| 悠悠久久av| 亚洲精品粉嫩美女一区| 最新在线观看一区二区三区| 国产精品99久久久久久久久| 亚洲激情在线av| 十八禁人妻一区二区| 精品久久久久久久久久久久久| 无限看片的www在线观看| 亚洲真实伦在线观看| 天天添夜夜摸| 最新在线观看一区二区三区| 波野结衣二区三区在线 | 国产不卡一卡二| 亚洲精品粉嫩美女一区| 精品欧美国产一区二区三| 久久精品国产亚洲av香蕉五月| 亚洲国产欧美人成| 欧美日韩一级在线毛片| 久久精品亚洲精品国产色婷小说| 女人高潮潮喷娇喘18禁视频| 长腿黑丝高跟| 可以在线观看的亚洲视频| 在线播放国产精品三级| 九九在线视频观看精品| 19禁男女啪啪无遮挡网站| 亚洲五月天丁香| tocl精华| 蜜桃亚洲精品一区二区三区| 国产黄片美女视频| 欧美午夜高清在线| 18禁裸乳无遮挡免费网站照片| 真实男女啪啪啪动态图| x7x7x7水蜜桃| 精品久久久久久久久久久久久| 黄色女人牲交| www.www免费av| 亚洲av成人精品一区久久| 每晚都被弄得嗷嗷叫到高潮| 天堂√8在线中文| 非洲黑人性xxxx精品又粗又长| 欧美乱色亚洲激情| 五月伊人婷婷丁香| 色播亚洲综合网| 我要搜黄色片| 亚洲第一欧美日韩一区二区三区| 岛国在线观看网站| 久久亚洲精品不卡| www.www免费av| 亚洲在线自拍视频| 一进一出抽搐gif免费好疼| 神马国产精品三级电影在线观看| 久久精品影院6| 亚洲av电影在线进入| 国产麻豆成人av免费视频| 精品国内亚洲2022精品成人| 午夜福利高清视频| 深夜精品福利| 美女高潮的动态| 欧美日韩国产亚洲二区| 成人三级黄色视频| 亚洲七黄色美女视频| 99久久精品热视频| 18禁在线播放成人免费| 99久国产av精品| 亚洲最大成人中文| 亚洲片人在线观看| 久久午夜亚洲精品久久| 精品久久久久久久人妻蜜臀av| 亚洲专区中文字幕在线| 国产一区二区三区在线臀色熟女| 欧美黄色淫秽网站| 午夜日韩欧美国产| 少妇人妻一区二区三区视频| 少妇丰满av| 18禁国产床啪视频网站| 脱女人内裤的视频| 国产av在哪里看| or卡值多少钱| 欧美一级毛片孕妇| 亚洲一区二区三区色噜噜| 丰满人妻一区二区三区视频av | 51午夜福利影视在线观看| 老司机午夜十八禁免费视频| 成年版毛片免费区| 午夜福利高清视频| a在线观看视频网站| 国产97色在线日韩免费| 日本成人三级电影网站| 偷拍熟女少妇极品色| 法律面前人人平等表现在哪些方面| 变态另类成人亚洲欧美熟女| 国产欧美日韩精品亚洲av| 色视频www国产| 变态另类成人亚洲欧美熟女| 成人三级黄色视频| 日韩欧美精品免费久久 | 三级男女做爰猛烈吃奶摸视频| 欧美午夜高清在线| 久久精品91无色码中文字幕| 成年免费大片在线观看| 中文字幕人妻熟人妻熟丝袜美 | 久久亚洲精品不卡| 日本一二三区视频观看| 国产亚洲精品av在线| 亚洲成人精品中文字幕电影| 免费看十八禁软件| 午夜日韩欧美国产| 久久久成人免费电影| 国产淫片久久久久久久久 | 给我免费播放毛片高清在线观看| 日韩大尺度精品在线看网址| 午夜福利在线观看免费完整高清在 | 99热精品在线国产| 午夜福利18| 国产精品久久视频播放| 国产伦精品一区二区三区四那| 日韩 欧美 亚洲 中文字幕| 欧美xxxx黑人xx丫x性爽| 男女那种视频在线观看| 五月伊人婷婷丁香| 精品熟女少妇八av免费久了| 欧美三级亚洲精品| 欧美日韩乱码在线| 中文字幕高清在线视频| 久久久成人免费电影| 欧美日韩一级在线毛片| 日本成人三级电影网站| 一个人免费在线观看电影| 精品国内亚洲2022精品成人| 精品人妻1区二区| 欧美日韩乱码在线| 国产aⅴ精品一区二区三区波| 女人高潮潮喷娇喘18禁视频| 女人十人毛片免费观看3o分钟| 亚洲av电影不卡..在线观看| 99国产极品粉嫩在线观看| 亚洲欧美一区二区三区黑人| 久久国产精品人妻蜜桃| 久久久成人免费电影| 操出白浆在线播放| 麻豆成人av在线观看| 国产精品精品国产色婷婷| 精品99又大又爽又粗少妇毛片 | 一边摸一边抽搐一进一小说| 国产伦在线观看视频一区| 搡女人真爽免费视频火全软件 | 两性午夜刺激爽爽歪歪视频在线观看| 丰满的人妻完整版| 97超级碰碰碰精品色视频在线观看| 激情在线观看视频在线高清| 亚洲欧美日韩高清在线视频| 9191精品国产免费久久| 99视频精品全部免费 在线| 老汉色av国产亚洲站长工具| 国产亚洲欧美98| 九九在线视频观看精品| 国内毛片毛片毛片毛片毛片| 亚洲av电影不卡..在线观看| 日本五十路高清| 欧美zozozo另类| 国产激情偷乱视频一区二区| 18禁黄网站禁片免费观看直播| 99riav亚洲国产免费| 国产亚洲精品一区二区www| 欧美bdsm另类| 狂野欧美激情性xxxx| 麻豆久久精品国产亚洲av| 男女视频在线观看网站免费| 国产精品一区二区三区四区免费观看 | 毛片女人毛片| a级一级毛片免费在线观看| 亚洲美女黄片视频| 九色成人免费人妻av| 免费在线观看成人毛片| av福利片在线观看| 男女床上黄色一级片免费看| 熟女人妻精品中文字幕| 真人做人爱边吃奶动态| 美女大奶头视频| 午夜福利在线观看吧| 中文字幕人妻熟人妻熟丝袜美 | 国产成人影院久久av| 久久久久久久亚洲中文字幕 | 国产三级中文精品| 制服丝袜大香蕉在线| 国内精品久久久久久久电影| 99久久99久久久精品蜜桃| 大型黄色视频在线免费观看| 国产一区二区在线av高清观看| 欧美成狂野欧美在线观看| 观看免费一级毛片| 中文资源天堂在线| 波多野结衣高清无吗| 亚洲内射少妇av| 欧美日韩福利视频一区二区| 亚洲在线自拍视频| av福利片在线观看| 国产一区二区激情短视频| 欧美日韩亚洲国产一区二区在线观看| 999久久久精品免费观看国产| 日本 欧美在线| 亚洲av中文字字幕乱码综合| 免费电影在线观看免费观看| 在线观看午夜福利视频| a级一级毛片免费在线观看| 亚洲美女视频黄频| 欧美3d第一页| 好看av亚洲va欧美ⅴa在| 亚洲内射少妇av| 特大巨黑吊av在线直播| 日本五十路高清| 午夜激情欧美在线| 国产精品99久久99久久久不卡| 国产主播在线观看一区二区| 91在线精品国自产拍蜜月 | 亚洲国产精品sss在线观看| 久久久精品欧美日韩精品| av片东京热男人的天堂| 色老头精品视频在线观看| 热99在线观看视频| 一边摸一边抽搐一进一小说| 亚洲天堂国产精品一区在线| 精品电影一区二区在线| 成人特级av手机在线观看| 三级毛片av免费| 日日摸夜夜添夜夜添小说| 亚洲激情在线av| 国产美女午夜福利| 亚洲精品一卡2卡三卡4卡5卡| 成年女人永久免费观看视频| 淫妇啪啪啪对白视频| av在线蜜桃| 叶爱在线成人免费视频播放| 国产午夜精品论理片| 少妇的逼好多水| 婷婷丁香在线五月| 色在线成人网| 国产中年淑女户外野战色| 在线天堂最新版资源| 琪琪午夜伦伦电影理论片6080| 中文字幕久久专区| 高清日韩中文字幕在线| x7x7x7水蜜桃| 日韩精品青青久久久久久| 少妇裸体淫交视频免费看高清| 在线播放无遮挡| 少妇的逼好多水| 国产av一区在线观看免费| 亚洲自拍偷在线| 在线观看日韩欧美| 亚洲精品在线美女| 久久久色成人| 精品国产超薄肉色丝袜足j| 高清毛片免费观看视频网站| 国产精品1区2区在线观看.| 99国产精品一区二区蜜桃av| 亚洲av中文字字幕乱码综合| 叶爱在线成人免费视频播放| netflix在线观看网站| 叶爱在线成人免费视频播放| 日韩国内少妇激情av| 丰满乱子伦码专区| 欧美最黄视频在线播放免费| 麻豆国产97在线/欧美| 最新美女视频免费是黄的| 搡老岳熟女国产| 非洲黑人性xxxx精品又粗又长| 国产免费一级a男人的天堂| 日韩亚洲欧美综合| 国产一区二区三区视频了| 成人无遮挡网站| 国产老妇女一区| 99久久无色码亚洲精品果冻| 少妇高潮的动态图| 国模一区二区三区四区视频| 国产精品98久久久久久宅男小说| 一二三四社区在线视频社区8| 亚洲国产精品久久男人天堂| 搡老岳熟女国产| 精品99又大又爽又粗少妇毛片 | 18禁裸乳无遮挡免费网站照片| 三级男女做爰猛烈吃奶摸视频| 欧美zozozo另类| 在线播放无遮挡| 一个人免费在线观看的高清视频| 成人欧美大片| 91av网一区二区| 亚洲av电影不卡..在线观看| 一a级毛片在线观看| 欧美3d第一页| 3wmmmm亚洲av在线观看| 少妇的丰满在线观看| 97碰自拍视频| 亚洲欧美精品综合久久99| 一a级毛片在线观看| 黄色丝袜av网址大全| 在线免费观看的www视频| 久久久精品大字幕| 久久久精品欧美日韩精品| 欧美绝顶高潮抽搐喷水| 日韩av在线大香蕉| 午夜两性在线视频| 操出白浆在线播放| 国产成人系列免费观看| 亚洲人与动物交配视频| 日本与韩国留学比较| 成年女人毛片免费观看观看9| 国产精品香港三级国产av潘金莲| 精品人妻一区二区三区麻豆 | 99热这里只有精品一区| 高清日韩中文字幕在线| 看片在线看免费视频| 俄罗斯特黄特色一大片| 欧美激情久久久久久爽电影| 一边摸一边抽搐一进一小说| 欧美一区二区精品小视频在线| 免费在线观看亚洲国产| eeuss影院久久| 操出白浆在线播放| 国产毛片a区久久久久| 亚洲七黄色美女视频| 久久精品国产亚洲av涩爱 | 性色avwww在线观看| 欧美精品啪啪一区二区三区| 69av精品久久久久久| 欧美一级a爱片免费观看看| 精品久久久久久,| 午夜福利成人在线免费观看| 在线观看一区二区三区| 两个人看的免费小视频| 波多野结衣高清作品| 夜夜爽天天搞| 国产精品嫩草影院av在线观看 | 19禁男女啪啪无遮挡网站| 丰满人妻熟妇乱又伦精品不卡| 日本 av在线| 亚洲不卡免费看| 黄色女人牲交| 久久人妻av系列| 99热只有精品国产| 免费观看精品视频网站| 亚洲18禁久久av| 一级毛片女人18水好多| 亚洲熟妇熟女久久| 国产av麻豆久久久久久久| 欧美性猛交黑人性爽| 少妇熟女aⅴ在线视频| 十八禁人妻一区二区| 日本免费一区二区三区高清不卡| 国产视频内射| 久久精品国产亚洲av香蕉五月| 高潮久久久久久久久久久不卡| 淫秽高清视频在线观看| 欧美日韩精品网址| 好男人在线观看高清免费视频| 免费看a级黄色片| 校园春色视频在线观看| 欧美黑人欧美精品刺激| 9191精品国产免费久久| 99国产精品一区二区蜜桃av| av在线蜜桃| 亚洲一区高清亚洲精品| 久久久成人免费电影| 美女被艹到高潮喷水动态| 国产精品爽爽va在线观看网站| 午夜免费男女啪啪视频观看 | 免费看十八禁软件| 成人特级黄色片久久久久久久| 久久久久九九精品影院| 国产精品亚洲一级av第二区| 给我免费播放毛片高清在线观看| 91字幕亚洲| 成人鲁丝片一二三区免费| 亚洲成人中文字幕在线播放| 国产久久久一区二区三区| 他把我摸到了高潮在线观看| 国产成人a区在线观看| 亚洲18禁久久av| 国产精品野战在线观看| 88av欧美| 成人欧美大片| 国产三级黄色录像| 午夜日韩欧美国产| 国产伦人伦偷精品视频| 免费av不卡在线播放| 黄片大片在线免费观看| 麻豆久久精品国产亚洲av| 90打野战视频偷拍视频| 人人妻人人看人人澡| 欧美黄色片欧美黄色片| 亚洲av成人精品一区久久| 久久精品综合一区二区三区| 高清在线国产一区| 国产成人系列免费观看| 最新在线观看一区二区三区| 亚洲国产精品999在线| 精品午夜福利视频在线观看一区| 热99在线观看视频| 最新美女视频免费是黄的| 亚洲18禁久久av| 成人欧美大片| 国产精品精品国产色婷婷| 特级一级黄色大片| 91久久精品国产一区二区成人 | 波多野结衣高清无吗| 国产日本99.免费观看| 国产野战对白在线观看| 91麻豆av在线| 丰满的人妻完整版| 免费观看精品视频网站| 国产精品精品国产色婷婷| 99国产精品一区二区三区| 最近最新中文字幕大全免费视频| 在线观看66精品国产| 亚洲最大成人手机在线| 日韩人妻高清精品专区| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产清高在天天线| 亚洲在线自拍视频| 最近最新中文字幕大全免费视频| av在线蜜桃| 亚洲精华国产精华精| 亚洲精品一卡2卡三卡4卡5卡| 一夜夜www| 欧美日韩综合久久久久久 | 亚洲欧美精品综合久久99| 人人妻人人澡欧美一区二区| 欧美日韩亚洲国产一区二区在线观看| 国产三级在线视频| 久久人妻av系列| 亚洲精品色激情综合| 人妻丰满熟妇av一区二区三区| 男女之事视频高清在线观看| 小说图片视频综合网站| 亚洲最大成人手机在线| 国产野战对白在线观看| 在线看三级毛片| 精品电影一区二区在线| 欧美乱妇无乱码| 亚洲成人免费电影在线观看| 欧美成人性av电影在线观看| 久久精品国产综合久久久| 国产成人福利小说| 国产色爽女视频免费观看| 97人妻精品一区二区三区麻豆| 欧美日韩福利视频一区二区| 久久精品91蜜桃| 黄片大片在线免费观看| 久久国产精品影院| 欧美激情在线99| 国产免费男女视频| 久久久久久国产a免费观看| 国产精品一区二区免费欧美| 国产欧美日韩一区二区三| 老司机福利观看| 国产野战对白在线观看| 亚洲第一欧美日韩一区二区三区| 午夜福利在线观看免费完整高清在 | 久久精品91无色码中文字幕| 一进一出抽搐gif免费好疼| 欧美日韩亚洲国产一区二区在线观看| 免费高清视频大片| 亚洲无线观看免费| a在线观看视频网站| av天堂在线播放| 欧洲精品卡2卡3卡4卡5卡区| 国产高清激情床上av| 在线国产一区二区在线| 母亲3免费完整高清在线观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲人成电影免费在线| 久久人人精品亚洲av| 国产精品永久免费网站| 变态另类丝袜制服| 91九色精品人成在线观看| 欧美色视频一区免费| 亚洲乱码一区二区免费版| 国产精品久久久久久久久免 | 国产精品一及| 在线国产一区二区在线| 亚洲精品国产精品久久久不卡| 中文字幕av在线有码专区| 国产精品爽爽va在线观看网站| 亚洲国产欧美网| 岛国在线免费视频观看| 成人特级黄色片久久久久久久| 最新在线观看一区二区三区| 91麻豆精品激情在线观看国产| 真人做人爱边吃奶动态| 亚洲黑人精品在线| 国产爱豆传媒在线观看| 99久久综合精品五月天人人| 十八禁网站免费在线| 中文资源天堂在线|