• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hierarchical dimensional crossover of an optically-trapped quantum gas with disorder

    2022-12-11 03:29:46KangkangLiandZhaoxinLiang
    Communications in Theoretical Physics 2022年12期

    Kangkang Li and Zhaoxin Liang

    Department of Physics,Zhejiang Normal University,Jinhua 321004,China

    Abstract Dimensionality serves as an indispensable ingredient in any attempt to formulate low-dimensional physics,and studying the dimensional crossover at a fundamental level is challenging.The purpose of this work is to study the hierarchical dimensional crossovers,namely the crossover from three dimensions (3D) to quasi-2D and then to 1D.Our system consists of a 3D Bose–Einstein condensate trapped in an anisotropic 2D optical lattice characterized by the lattice depths V1 along the x direction and V2 along the y direction,respectively,where the hierarchical dimensional crossover is controlled via V1 and V2.We analytically derive the ground-state energy,quantum depletion and the superfluid density of the system.Our results demonstrate the 3D-quasi-2D-1D dimensional crossovers in the behavior of quantum fluctuations.Conditions for possible experimental realization of our scenario are also discussed.

    Keywords: ultracold quantum gas,Bogoliubov theory,dimensional crossover,quantum depletion

    1.Introduction

    Dimensionality plays a fundamental role in determining the properties of quantum many-body systems.It underpins many remarkable phenomena such as the high-Tc superconductivity[1]and magic-angle graphene[2–4]in two dimensions(2D)and the Tomonaga–Luttinger liquid [5] in 1D.Therefore,there are ongoing interests and great efforts in investigating how dimensionality affects the properties of quantum many-body systems.

    Tightly confined Bose–Einstein condensate (BEC) [6]provides an ideal playground for the theoretical and experimental explorations of the dimensional effects.In particular,the state-of-the-art technology allows the depth of an optical lattice to be arbitrarily tuned by changing the laser intensities,enabling realizations of quasi-1D [7] and quasi-2D [8,9]BECs.Thus,an important direction of investigation consists of studying the properties of a BEC system in the dimensional crossover.

    Along this research line,considerable research has been carried out.For instance,[10,11]have shown that the presence of a 2D lattice can induce a 3D to 1D crossover in the behavior of quantum fluctuations;[12–14] have investigated quantum phases along the 3D–2D crossover and the visualization of the dimensional effects in collective excitations.These works[10–13,15,16,14,17]consider the tight confinement scheme that gives rise to a direct dimensional crossover from 3D to 2D or 1D (i.e.3D–2D or 3D–1D crossover).Instead,we will be interested in thehierarchicaldimensional crossovers,i.e.the 3D-quasi-2D-1D dimensional crossovers.

    We will be interested in the effect of dimensionality on not only the ground state energy and quantum depletion but also the transport properties.This is motivated by experimental realizations of BECs in the presence of disorder[18,19].For example,superfluidity represents a kinetic property of a system,and the superfluid density is a transport coefficient determined by the linear response theory.In this work,we investigate the 3D-quasi-2D-1D crossovers in the properties of a disorder BEC trapped in an anisotropic optical lattice,using the Green function approach.Specifically,we calculate the ground-state energy and quantum depletion,as well as the superfluid density,and we analyze the combined effects of dimensionality and disorder.

    2.Model

    At zero temperature,an optically-trapped BEC can be well described by theN-body Hamiltonian [10–13]

    We consider the anisotropic 2D optical lattice in Hamiltonian (1) in the form [6]

    whereV1,2denote the laser intensities andis the recoil energy,with ?qBbeing the Bragg momentum andmthe atomic mass.The lattice period is fixed byd=π/qB.Atoms are free in thezdirection.By controlling the depths of the optical latticeV1andV2,crossovers to low dimensions are expected to occur via the hierarchical access of new energy scales: firstly,a 3D Bose gas becomes quasi-2D when the energetic restriction to freezex-direction excitations is reached;next,by further freezing the kinetic energy along they-direction,the quasi-2D BEC is expected to enter the quasi-1D regime.

    Moreover,in Hamiltonian (1),can be produced by the random potential [21,11,13].For sufficiently dilute disorder[18,19],v(r)can be approximated by an effective pseudopotential,i.e.v(r)=gimpδ(r),whereis the effective coupling constant of an impurity-boson pair and ?bis the effective scattering length accounting for the presence of a 2D optical lattice [22,23].

    We assume the lattice depthsV1andV2in equation(2)in the unit of the recoil energy ofERare relatively large(V1≥5,V2≥5),so that the interband gap ofEgapis bigger than the chemical potential of μ,i.e.Egap?μ.Meanwhile,because of the quantum tunneling,the overlap of the wave functions of two consecutive wells is still sufficient to ensure full coherence even in the presence of disorder.By this assumption[10–13],we restrict ourselves to the lowest band,where the physics is governed by the ratio between the chemical potential μ and the bandwidth of 4(J1+J2),whereJ1andJ2are the tunneling rates between neighboring wells.Generally speaking,for 4(J1+J2)?μ,the system retains an anisotropic 3D behavior,whereas for 4(J1+J2)?μ,the system undergoes a dimensional crossover to a 1D regime.In the limit of 4(J1+J2)?μ,the model system can be treated as 1D.Following[10–13],we treat our model system within the tight-binding approximation as shown in appendix A.The lowest Bloch band of the model system can be described in terms of the Wannier functions aswith(i=1,2 andx1=x,x2=y).We remark that this work is limited to a tightbinding approximation by neglecting beyond-lowest-Blochband transverse modes along thexandydirections.Further considering the effects of beyond-lowest-Bloch-band transverse modes on the dimensional crossover goes beyond the scope of this work.

    Directly following[11,13],we expand the field operators in Hamiltonian (1) asand obtain

    where

    is the energy dispersion of the non-interacting system.Here,J1andJ2are the tunneling rates along thex-andy-direction,respectively.Moreover,we haveJ=J1+J2,Vis the volume of the model system,andis the renormalized coupling constant.Thein equation (3) is the Fourier transform of disorder potential.

    We remark that in this work,we do not consider the effect of the confinement-induced resonance (CIR) [24,25] on the coupling constant ?g.The basic physics of CIR can be understood in the language of Feshbach resonance [26],where the scattering open channel and closed channels are,respectively,represented by the ground-state transverse mode and the other transverse modes along the tight-confinement dimensions.Within the tight-binding approximation assumed in this work,the ultracold atoms are frozen in the states of the lowest Bloch band and can not be excited into the other transverse modes.Thus the effect of CIR on ?gcan be safely ignored as the closed channels are absent [24–26].

    Our subsequent calculations proceed in two steps.First,we calculate the ground state energy and quantum depletion.Previous studies [11,13] have shown that the effects of disorder simply lead to trivial energy shifts in the ground state energy,and therefore,we shall ignore the disorder potential in this part of calculations and setVran=0.Second,we investigate how the dimensionality affects the superfluid density in the presence of the disorder potentialVran≠0.

    3.Ground state energy and quantum depletion

    For an optically-trapped Bose gas described by Hamiltonian(1),the ground state energyEgand quantum depletion can be calculated via the single-particle Green functionG(k,ω) [27]as follows

    withE(k) being the excitation energy.In equations (5) and(6),theG(k,ω) is the Fourier transformation of the Green function

    in the Heisenberg representation,whereTdenotes the chronological product.

    By applying the Bogoliubov theory [10–14] to the Hamiltonian (1),we follow the standard procedures and obtain

    By plugging equation (8) into equations (5) and (6),respectively,the ground state energyEgand quantum depletion (N-N0)/Nare straightforwardly obtained (see the detailed derivations in appendix B)

    and

    In equations (9) and (10),the functionsf(s) andh(s),respectively,are given by

    and

    Figure 1.Scaling function f(s)in equation(11)(black solid line)and its 3D(black dotted line)asymptotic behavior with s=s1+s2 being the dimensionless tunneling rates.On the left side of the vertical dashed line,we fix s2=0.01 and set s1=[0,2].The blue dot denotes the 1D Lieb–Liniger limit of In the right side,we fix s1=2 and set s2=[0.01,4].As s decreases from 6 to 0,the model system realizes the step-by-step dimensional crossover from 3D to quasi-2D and then 1D.In comparison,the red solid line denotes the one-step dimensional crossover from 3D to pure 2D studied in [13] with the red dotted curve being the pure 2D asymptotic behavior.

    Figure 2.The behavior of h(s) as the dimensionless tunneling rates of s1,2 change independently.In the left side of the vertical dashed line,we fix s2=0.01 and set s1=[0,1].In the right side,we fix s1=1 and set s2=[0.01,3].The BEC behaves from 1D-like to quasi-2D like,and finally to 3D-like,as s increases.The two black dotted lines denote the 1D and 3D asymptotic behaviors respectively.The blue curve describes the disorder-induced quantum depletion along the dimensional crossover,which is plotted by the functions

    Equations (9) and (10) are the key results of this work.In figures 1 and 2,we plotf(s) andh(s),respectively.In the limits→∞,the system is anisotropic 3D,whereas in the opposite limits→0,the system is 1D.Thus,when continuously decreasingby enhancing the confinement,the system necessarily crossovers from the anisotropic 3D to 1D.We emphasize that the 3D-like gas here is referred as to an optically-trapped Bose gas in the tight-binding approximation,which is different from 3D Bose gas in the almost free space.However,from the theoretical angles,we can extend the parameter regimes from tight-binding-3D-gas to beyond-tight-binding-3D-gas,i.e.entering the parameter regime ofV1<5,V2<5.In what follows,we are surprised to find that our analytical results can recover the Lee–Huang–Yang results obtained from the 3D free space as a surprising bonus of our analytical results.To induce the hierarchical dimensional crossover,we consider the following scheme for controlling the lattice depths,which consists of two stages:(i)we first fix the lattice strengthV1=5 and increaseV2from the initial strength ofV2=5 to the final strength ofV2=12 (i.e.s2is decreased to almost zero),where the system is expected to crossover from the 3D to the quasi-2D;(ii)we fixV2=12 and further increase the value ofV1from the initial strength ofV1=5 to the final strength ofV1=12 until the value ofs=s1+s2is almost zero.

    In process(i),the behavior of the functions off(s)andh(s)are shown by the solid curves in figures 1 and 2.Let us first check whether our analytical results in equations(9)and(10)in the limits→∞can recover the well-known 3D results of Bose gases.Fors→∞,corresponding to the anisotropic 3D regime,we findin equation (11)andas denoted by the black circled curves in figures 1 and 2,respectively.Thus we exactly recover the 3D results of the quantum ground state energy and quantum depletion in[13].We note that our work is different from[13],where one adds a 1D optical lattice and increases the lattice depth to realize a purely 2D system.Instead,our scheme realizes the quasi-2D quantum system.To compare the two,we also plot thef(s) associated with the case in [13] [see red curves in figure 1].As clearly shown,our scheme realizes a quasi-2D(black curve),instead of a purely 2D,quantum system before it further crossovers to quasi-1D.

    In process (ii),we increaseV1and fix the lattice depthV2,where the system is expected to crossover from the quasi-2D to the quasi-1D and then to pure 1D.In particular,we note that the functionf(s) shown in figure 1 exactly approachesin the limits→0,corresponding to the Lieb–Liniger result of 1D Bose gas in[10].For the quantum depletion shown in figure 2,the functionh(s) diverges asThis signals that in the absence of tunneling there is no real BEC,in agreement with the general theorems in one dimension.

    Our results in equations (9) and (10) complement the descriptions of dimensional crossovers described in [10,11,13,12].We also note that the theoretical treatments beyond the Bogoliubov approximation are beyond the scope of this work.

    4.Superfluid density

    In the second part of this paper,we apply the linear response theory to investigate the effects of disorder on the superfluid density of the BEC trapped in a 2D optical lattice.The superfluid density ρsis determined by the response of the momentum density to an externally imposed velocity field.We calculate ρsbased on the Bogoliubov approximation.Note that [21] pioneered in the study of the superfluid density of a 3D disordered Bose gas within the framework of Bogoliubov theory,which is consistent with the results obtained by the Beliaev–Popov diagrammatic technique [28].In the context of ultracold Bose gas,one of the authors in[11,13]has investigated the disorderinduced superfluid density along the 3D–1D dimensional crossover using the Bogoliubov approximation.

    Figure 3.The behavior of I(s)as the dimensionless tunneling rates of s1,2 change independently.On the left side of the vertical dashed line,we fix s2=0.01 and set s1=[0,2].In the right side,we fix s1=2 and set s2=[0.01,2].The BEC behaves from 1D-like to quasi-2D-like,and finally to 3D-like,as s increases.The black dotted line on the right side denotes the 3D asymptotic behavior.

    In a disordered BEC,the static current-current response function consists of the low-frequency,long-wavelength longitudinal responseχL(k)and the transverse responseχT(k),i.e.see details of the definition of χijin[11,13].The transverse response of a BEC is only due to the normal fluid,since the superfluid component can only participate in the irrotational flow.

    For the disordered BEC trapped in a 2D optical lattice described by Hamiltonian (1),where the rotational symmetry is broken,the response function along the unconfinedzdirection is different from that in the confinedx–yplane.In the following,we assume a slow rotation with respect to thezaxis and calculate the transverse response function along thezdirection.We find

    Equation (13) can be interpreted as the second-order term in the perturbation expansion of the normal-fluid density in terms of the weak disorderVk.

    The result of equation (13) is plotted in figure 3.In the asymptotic 3D limit,one findscorresponding to the dotted curve in figure 3.In this case,equation (13) recovers the corresponding result of 3D Bose gases as in [13].Equation (13) presents another key result of this paper,which provides an analytical expression for the normal fluid density in a Bose fluid in an anisotropic twodimensional optical lattice with the presence of weak disorder.The superfluid density ρs=ρ-ρnis thus straightforwardly obtained.

    5.Discussion and conclusion

    We justify the Bogoliubov approximation used in our calculations aposterioriby estimating the quantum depletion[10].The experimental work [29] by Ketterle’s group has shown that the Bogoliubov theory provides a semiquantitative description for an optically-trapped BEC even when the quantum depletions are in excess of 50%.For a uniform BEC,the quantum depletion isand the Bogoliubov approximation is valid providedis small.For an optically-trapped BEC,the quantum depletion is modified qualitatively aswithm*being the effective mass,which remains small for typical experimental parameters as in[10].For an optically-trapped Bose gas along the dimensional crossovers,we can estimate the quantum depletion (N-N0)/Nwith the help of figure 2.Considering typical experiments in an opticallytrapped BEC as in[6],the relevant parameters aren=3×1013cm-3,d=430 nm,a3D=5.4 nm,andd/σ1~d/σ2~1.The quantum depletion in equation (10) is thus evaluated as(N-N0)/N~0.0036×h(s),withh(s) shown in figure 2.It is clear that the quantum depletion (N-N0)/N<20%,and therefore,the Bogoliubov approximation is valid in the spirit of[29].Apart from the phase fluctuations due to the tight confinement alongxandy-directions,the effect of the disorder potential can also enhance quantum fluctuations and thus affect the Bogoliubov approximation.As such,we calculate the disorder-induced correction to the quantum depletion as

    For the case of weak disorder ofwithnimpbeing the impurity density,the quantum depletion due to the disorder along the dimensional crossover is shown by the blue curves in figure 2.This result indicates the quantum depletion due to the disorder is small and the Bogoliubov approximation is still valid.

    In summary,we have investigated a 3D disordered BEC trapped in an anisotropic 2D optical lattice characterized by the lattice depths ofV1in thex-direction andV2in theydirection,respectively.We have derived the analytical expressions of the ground-state energy,quantum depletion and superfluid density of the system.Our results show the hierarchical,3D-quasi-2D-1D crossovers in the behavior of quantum fluctuations and the superfluid density.The physics of the hierarchical dimensional crossover involves the interplay of three quantities: the strength of the optical lattice,the interaction between bosonic atoms,and the strength of disorder.All these quantities are experimentally controllable using state-of-the-art technologies.In particular,the depth of an optical lattice can be tuned from 0ERto 32ERalmost at will[6].Therefore,the phenomena discussed in this paper should be observable within the current experimental capabilities.Observing this hierarchical dimensional effect directly would present an important step in revealing the interplay between dimensionality and quantum fluctuations in quasi-low dimensions.The present work is based on the Bogoliubov theory.Future studies in this direction include the treatment of the system for the whole range of interatomic interaction strength,from zero to infinity,as well as for arbitrarily strong disorder.

    Acknowledgments

    We thank Chao Gao for stimulating discussions.This work was supported by the Zhejiang Provincial Natural Science Foundation (Grant Nos.LZ21A040001 and LQ20A040004),the National Natural Science Foundation of China (Nos.12074344,and 12104407)and the key projects of the Natural Science Foundation of China (Grant No.11835011).

    Note added

    Before submitting our work,we notice that a similar work[17] has studied the 2D–1D dimensional crossover.In contrast,our work has focused on the gradual 3D–2D–1D dimensional crossover.

    Appendix A.Validity of tight-binding approximation

    In the tight-binding approximation[6],the tunnelling rates ofJ1andJ2along thex-andy-directions are defined as

    withw(x) andw(y)being the Wannier functions in thex-andy-directions.The analytic solutions for the Wannier functions can be obtained by solving the 1D Mathieu problem as shown in [30].In such,the approximate analytic expressions of tunnelling ratesJ1andJ2have been derived in [31]

    In order for analytical expressions ofJ1andJ2to be valid,the considered energy band must be a slowly varying function of the quasi-momentum.Hence,the potential depth s must be sufficiently large.Note that the tight-binding approximation is valid under the following conditions (i)lattice depths odV1andV2in equation (2) are relatively large(V1≥5,V2≥5)to make sure that the interband gap ofEgapis bigger than the chemical potential of μ,i.e.Egap?μ;(ii) the overlap of the wave functions of two consecutive wells are still sufficient to ensure full coherence because of the quantum tunneling.

    Now we are ready to give the rough estimations of parameter regimes of the tight-binding approximation being valid.Here,we use the typically experimental parameters of an optically-trapped Bose gas in [32].The typical detailed parameters read as follows: the recoil energy isER≈h×3.33 kHz withhbeing Plank constant and the chemical potential of gas isμ≈≈h×400 Hz.In the case of(V1≈5,V2≈5),we can estimate the parameters ofJ1/ER≈J2/ER≈0.09 based on equations (A3) and (A4).Then we can further estimate the dimensionless parameters used in the figures of this work as follows:2 ×(0.09+0.09)×10=3.6,suggesting that our model system is 3D-like.Meanwhile,as shown in [32],the optically-trapped Bose gas is entirely superfluid below the critical lattice heightVc≈13ERcorresponding toJ1andJ2being almost zero because of the exponential decrease in equations (A3) and (A4).We conclude that the tight-binding approximation can be regarded to be valid under 5

    Appendix B.Detailed derivations of equations(9)and(10)

    In this appendix,we give the detailed derivations of equations (9) and (10).The derivation of equation (9) in the main text can be written as follows

    with

    where we have used the residue theorem,andCdenotes the integration path around the upper half-plane.Then we have

    with

    where the integration about τ can be written as the hypergeometric function

    hence we obtain

    with

    Finally we get the equations (9) in the main text

    The derivation of equations(10)in the main text is as follows

    with

    三级男女做爰猛烈吃奶摸视频| 乱人视频在线观看| 麻豆成人午夜福利视频| 成年av动漫网址| 欧美一级a爱片免费观看看| 亚洲色图av天堂| 男女啪啪激烈高潮av片| 国产精品一区二区三区四区久久| 一本久久精品| 日本在线视频免费播放| h日本视频在线播放| 日本五十路高清| 国产黄a三级三级三级人| 插阴视频在线观看视频| av在线老鸭窝| 女同久久另类99精品国产91| 99热网站在线观看| 精品久久久久久久末码| 亚洲第一电影网av| 中文亚洲av片在线观看爽| 一区福利在线观看| 嫩草影院新地址| 免费在线观看成人毛片| 看黄色毛片网站| 1000部很黄的大片| 精品久久国产蜜桃| 在现免费观看毛片| 天堂网av新在线| 欧美区成人在线视频| 26uuu在线亚洲综合色| 青青草视频在线视频观看| 狂野欧美白嫩少妇大欣赏| 天堂网av新在线| 国产精品久久久久久久电影| 免费电影在线观看免费观看| 亚洲欧美清纯卡通| 国产成人a区在线观看| 变态另类成人亚洲欧美熟女| 99久久中文字幕三级久久日本| 国产成人a∨麻豆精品| 国产单亲对白刺激| 国产精品一区二区三区四区免费观看| 男女做爰动态图高潮gif福利片| 哪个播放器可以免费观看大片| 国产一区二区三区av在线 | 禁无遮挡网站| 夜夜夜夜夜久久久久| 亚洲人成网站在线观看播放| 免费看a级黄色片| 欧美一区二区国产精品久久精品| 久久精品国产亚洲网站| 国产伦一二天堂av在线观看| 亚洲精品成人久久久久久| 超碰av人人做人人爽久久| 免费在线观看成人毛片| 不卡视频在线观看欧美| 在线观看一区二区三区| 欧美激情在线99| 亚洲欧美精品综合久久99| 欧美人与善性xxx| 自拍偷自拍亚洲精品老妇| 综合色av麻豆| 国产精品久久久久久久久免| 久久鲁丝午夜福利片| 国产精品无大码| 国产精品精品国产色婷婷| 三级毛片av免费| 欧美变态另类bdsm刘玥| 神马国产精品三级电影在线观看| 综合色av麻豆| 精品日产1卡2卡| 熟妇人妻久久中文字幕3abv| 热99在线观看视频| 春色校园在线视频观看| 精品久久久久久久人妻蜜臀av| 99久久久亚洲精品蜜臀av| 亚洲av成人av| 非洲黑人性xxxx精品又粗又长| 在线国产一区二区在线| 久久精品国产自在天天线| 岛国在线免费视频观看| 天堂影院成人在线观看| 亚洲国产高清在线一区二区三| 亚洲av.av天堂| 最后的刺客免费高清国语| 精品人妻一区二区三区麻豆| 国产免费一级a男人的天堂| 中文精品一卡2卡3卡4更新| 久久国内精品自在自线图片| 99热精品在线国产| 久久99精品国语久久久| 亚洲欧美日韩卡通动漫| 国产亚洲av片在线观看秒播厂 | av黄色大香蕉| 人妻夜夜爽99麻豆av| 99在线人妻在线中文字幕| 日韩亚洲欧美综合| 看黄色毛片网站| 久久99精品国语久久久| 美女内射精品一级片tv| 十八禁国产超污无遮挡网站| 欧美精品一区二区大全| 中文字幕熟女人妻在线| 精品99又大又爽又粗少妇毛片| 国内精品一区二区在线观看| 99热只有精品国产| 热99re8久久精品国产| 久久久欧美国产精品| 99国产极品粉嫩在线观看| 舔av片在线| 麻豆av噜噜一区二区三区| 国产精品99久久久久久久久| 久久久成人免费电影| 午夜免费激情av| 国产在线精品亚洲第一网站| 蜜臀久久99精品久久宅男| 欧美日韩乱码在线| 国产av一区在线观看免费| 熟女电影av网| 床上黄色一级片| 少妇人妻精品综合一区二区 | 亚洲国产欧美在线一区| 国产黄色视频一区二区在线观看 | 亚洲精品久久久久久婷婷小说 | 欧美成人一区二区免费高清观看| 国内精品久久久久精免费| 国产爱豆传媒在线观看| 我要搜黄色片| 国产在视频线在精品| 亚洲一区二区三区色噜噜| 麻豆国产97在线/欧美| 中文字幕精品亚洲无线码一区| kizo精华| 国产伦精品一区二区三区视频9| 亚洲精品久久国产高清桃花| 国产伦精品一区二区三区四那| 亚洲激情五月婷婷啪啪| 国产高清有码在线观看视频| 久久久久久久亚洲中文字幕| 中文字幕av成人在线电影| 成人漫画全彩无遮挡| 嘟嘟电影网在线观看| 夫妻性生交免费视频一级片| 国产黄a三级三级三级人| 少妇熟女欧美另类| 99久久九九国产精品国产免费| 99热网站在线观看| 韩国av在线不卡| 亚洲在久久综合| avwww免费| 一本久久精品| 亚洲性久久影院| 精品久久久久久久久亚洲| 国产精品久久久久久av不卡| 亚洲av中文字字幕乱码综合| 热99在线观看视频| 最近的中文字幕免费完整| 国产伦在线观看视频一区| avwww免费| 毛片女人毛片| 亚洲性久久影院| 久久婷婷人人爽人人干人人爱| 给我免费播放毛片高清在线观看| 久久这里有精品视频免费| 欧美日本亚洲视频在线播放| 一本久久精品| 午夜免费男女啪啪视频观看| 精品一区二区免费观看| 青春草国产在线视频 | 我要看日韩黄色一级片| 蜜桃久久精品国产亚洲av| 亚洲第一区二区三区不卡| 久久久久久久午夜电影| 亚洲国产精品久久男人天堂| 亚洲av中文av极速乱| 最近中文字幕高清免费大全6| 亚洲第一电影网av| 日产精品乱码卡一卡2卡三| 岛国在线免费视频观看| 日韩一区二区视频免费看| 九草在线视频观看| 久久精品影院6| 国产日本99.免费观看| 亚洲色图av天堂| 长腿黑丝高跟| 国产69精品久久久久777片| 婷婷精品国产亚洲av| 久久精品影院6| 成人鲁丝片一二三区免费| 三级经典国产精品| 狂野欧美激情性xxxx在线观看| 晚上一个人看的免费电影| 全区人妻精品视频| 嫩草影院新地址| 国产高清三级在线| 国产 一区精品| 最近手机中文字幕大全| 国产午夜精品一二区理论片| 国产成人91sexporn| 熟女人妻精品中文字幕| 国产精品一区二区三区四区免费观看| 国产男人的电影天堂91| 国产精品一二三区在线看| 国语自产精品视频在线第100页| 国产成人精品婷婷| 在线播放无遮挡| 3wmmmm亚洲av在线观看| 久久精品夜色国产| 在线天堂最新版资源| 舔av片在线| 精品久久久久久久久久久久久| 日本免费一区二区三区高清不卡| 好男人视频免费观看在线| 国产欧美日韩精品一区二区| 亚洲精品成人久久久久久| 一本一本综合久久| 亚洲无线观看免费| 久久久久久久久大av| 午夜激情欧美在线| 亚洲第一区二区三区不卡| 国产精品女同一区二区软件| 国产色婷婷99| 久久婷婷人人爽人人干人人爱| 亚洲人与动物交配视频| 国产精品久久久久久久电影| 欧美激情在线99| 亚洲丝袜综合中文字幕| 高清日韩中文字幕在线| 极品教师在线视频| 日韩精品青青久久久久久| 国产精品久久视频播放| 日韩国内少妇激情av| 欧美精品国产亚洲| 亚洲美女搞黄在线观看| 国产真实伦视频高清在线观看| 毛片女人毛片| 日本成人三级电影网站| 日本爱情动作片www.在线观看| 亚洲欧美日韩高清在线视频| 99久久精品热视频| 51国产日韩欧美| h日本视频在线播放| 麻豆国产97在线/欧美| 国内久久婷婷六月综合欲色啪| 日韩人妻高清精品专区| 亚洲精品国产av成人精品| 欧美激情国产日韩精品一区| 久久久久久大精品| 国产 一区 欧美 日韩| 亚洲乱码一区二区免费版| 午夜福利视频1000在线观看| 欧美激情久久久久久爽电影| 少妇裸体淫交视频免费看高清| 精品久久久噜噜| 最新中文字幕久久久久| 国产精品久久久久久久久免| 久久99蜜桃精品久久| 国产亚洲精品久久久com| 欧美激情久久久久久爽电影| 亚洲最大成人av| 国产色爽女视频免费观看| 91av网一区二区| 国产精品一区www在线观看| 国产精品1区2区在线观看.| 美女xxoo啪啪120秒动态图| 免费观看精品视频网站| 国产私拍福利视频在线观看| 亚洲欧美精品综合久久99| 亚洲精品亚洲一区二区| 99久久精品国产国产毛片| 亚洲欧美日韩东京热| 色综合亚洲欧美另类图片| 亚洲最大成人手机在线| 午夜视频国产福利| 人人妻人人澡欧美一区二区| 国产私拍福利视频在线观看| 在线免费十八禁| 啦啦啦韩国在线观看视频| 日韩一本色道免费dvd| 有码 亚洲区| 午夜激情福利司机影院| av在线亚洲专区| avwww免费| 国产精华一区二区三区| 亚洲成av人片在线播放无| 免费观看a级毛片全部| 亚洲av男天堂| 麻豆成人午夜福利视频| 中文资源天堂在线| eeuss影院久久| 成人无遮挡网站| 99热精品在线国产| 美女大奶头视频| 成人无遮挡网站| 国产欧美日韩精品一区二区| 久久精品国产清高在天天线| 国产乱人偷精品视频| 精品久久久久久久久亚洲| 亚洲成a人片在线一区二区| 欧美精品一区二区大全| 国产真实乱freesex| 成人特级黄色片久久久久久久| 免费搜索国产男女视频| www.av在线官网国产| 免费看美女性在线毛片视频| 尾随美女入室| 青春草亚洲视频在线观看| 国产探花在线观看一区二区| 欧美精品国产亚洲| 日韩大尺度精品在线看网址| 深夜精品福利| 亚洲国产精品国产精品| 丰满的人妻完整版| 欧美丝袜亚洲另类| 老熟妇乱子伦视频在线观看| av又黄又爽大尺度在线免费看 | 亚洲第一区二区三区不卡| 性插视频无遮挡在线免费观看| 国内精品久久久久精免费| 男人舔女人下体高潮全视频| 国产精品精品国产色婷婷| 亚洲天堂国产精品一区在线| 美女国产视频在线观看| 青春草国产在线视频 | 国产精品人妻久久久影院| 国产久久久一区二区三区| 小说图片视频综合网站| 久久久久久大精品| 国产激情偷乱视频一区二区| 久久亚洲精品不卡| 九九爱精品视频在线观看| 日韩人妻高清精品专区| 麻豆成人午夜福利视频| 亚洲av二区三区四区| 最近中文字幕高清免费大全6| 日本一本二区三区精品| 色吧在线观看| 日韩 亚洲 欧美在线| 欧美激情国产日韩精品一区| 淫秽高清视频在线观看| 久久亚洲国产成人精品v| 一区福利在线观看| 插阴视频在线观看视频| 亚洲精华国产精华液的使用体验 | 亚洲第一电影网av| 一区二区三区高清视频在线| 欧美色视频一区免费| 伦精品一区二区三区| 九九久久精品国产亚洲av麻豆| 欧美成人精品欧美一级黄| 国内精品美女久久久久久| 国内精品宾馆在线| 成人高潮视频无遮挡免费网站| 久久久久久国产a免费观看| 国产精品蜜桃在线观看 | 久久综合国产亚洲精品| 国内久久婷婷六月综合欲色啪| 国产高清激情床上av| 麻豆成人午夜福利视频| 欧美+亚洲+日韩+国产| 最近中文字幕高清免费大全6| 日韩国内少妇激情av| 国产成人精品婷婷| 国产精品野战在线观看| 日韩制服骚丝袜av| 在线播放国产精品三级| 精品人妻视频免费看| 色综合亚洲欧美另类图片| 午夜福利视频1000在线观看| 一个人看的www免费观看视频| 免费搜索国产男女视频| kizo精华| 午夜亚洲福利在线播放| 国产日韩欧美在线精品| 成年女人永久免费观看视频| 老司机福利观看| 午夜福利高清视频| 国产精品一区www在线观看| 网址你懂的国产日韩在线| 少妇的逼好多水| 亚洲第一电影网av| 黄片wwwwww| 国产老妇伦熟女老妇高清| 国产精品乱码一区二三区的特点| 久久久精品94久久精品| 国产精品永久免费网站| 色吧在线观看| 成人二区视频| 亚洲中文字幕日韩| 97超视频在线观看视频| 黄色欧美视频在线观看| 免费av毛片视频| 欧美一区二区亚洲| 非洲黑人性xxxx精品又粗又长| 日本黄色视频三级网站网址| 日韩高清综合在线| 亚洲最大成人中文| 久久久精品94久久精品| 91精品一卡2卡3卡4卡| 国产成年人精品一区二区| 精品无人区乱码1区二区| 最好的美女福利视频网| 国产淫片久久久久久久久| 国产女主播在线喷水免费视频网站 | 成年女人永久免费观看视频| 欧美高清成人免费视频www| 亚洲国产欧美在线一区| 成年av动漫网址| 美女国产视频在线观看| 干丝袜人妻中文字幕| 在线天堂最新版资源| 成人午夜高清在线视频| kizo精华| 69av精品久久久久久| 99精品在免费线老司机午夜| 久久久久久伊人网av| 欧美3d第一页| 久久热精品热| 国产中年淑女户外野战色| 夜夜看夜夜爽夜夜摸| 国产成人福利小说| 亚洲性久久影院| 久久人人爽人人爽人人片va| 中文字幕av在线有码专区| 免费电影在线观看免费观看| 亚洲不卡免费看| www.色视频.com| 久久久国产成人精品二区| 中文字幕av成人在线电影| 一本久久中文字幕| 亚洲av二区三区四区| 禁无遮挡网站| 岛国毛片在线播放| 一级毛片我不卡| 国产精品电影一区二区三区| 日本色播在线视频| av女优亚洲男人天堂| 日韩一区二区视频免费看| 欧美+亚洲+日韩+国产| 听说在线观看完整版免费高清| 校园春色视频在线观看| 久久久久久久久久久免费av| 国产av不卡久久| 秋霞在线观看毛片| 特级一级黄色大片| www.色视频.com| 男插女下体视频免费在线播放| 可以在线观看毛片的网站| 亚洲中文字幕一区二区三区有码在线看| 一边亲一边摸免费视频| 国产精品久久久久久精品电影小说 | 亚洲人成网站高清观看| 成人国产麻豆网| 99久久精品国产国产毛片| 成人永久免费在线观看视频| 国产熟女欧美一区二区| 听说在线观看完整版免费高清| 午夜视频国产福利| 女人十人毛片免费观看3o分钟| 久久人妻av系列| 久久精品综合一区二区三区| 国产亚洲欧美98| 国内揄拍国产精品人妻在线| 亚洲自偷自拍三级| 99在线视频只有这里精品首页| 夫妻性生交免费视频一级片| 日日干狠狠操夜夜爽| 国产亚洲精品久久久久久毛片| 夜夜爽天天搞| 免费av观看视频| 99国产精品一区二区蜜桃av| 少妇熟女aⅴ在线视频| 国产成人影院久久av| 亚洲欧美日韩东京热| 91在线精品国自产拍蜜月| 成人亚洲精品av一区二区| 国产真实伦视频高清在线观看| 国产黄色视频一区二区在线观看 | av女优亚洲男人天堂| 亚洲成人久久性| 日韩强制内射视频| 老女人水多毛片| 国产毛片a区久久久久| 嫩草影院精品99| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲婷婷狠狠爱综合网| 少妇高潮的动态图| 亚洲av免费高清在线观看| 欧美区成人在线视频| 最近2019中文字幕mv第一页| 成年女人看的毛片在线观看| 成年免费大片在线观看| 3wmmmm亚洲av在线观看| 亚洲人成网站在线播| 又粗又硬又长又爽又黄的视频 | 亚洲人成网站在线播| 日韩欧美三级三区| 中文字幕免费在线视频6| 亚洲av免费在线观看| 久久人妻av系列| 男人舔女人下体高潮全视频| 蜜桃亚洲精品一区二区三区| av又黄又爽大尺度在线免费看 | 欧美极品一区二区三区四区| 最好的美女福利视频网| 天堂影院成人在线观看| 菩萨蛮人人尽说江南好唐韦庄 | a级毛片a级免费在线| 久久精品国产亚洲av涩爱 | 婷婷色av中文字幕| 国产精品av视频在线免费观看| 欧美成人精品欧美一级黄| 国产爱豆传媒在线观看| 午夜精品国产一区二区电影 | 久久人人爽人人爽人人片va| 99久久人妻综合| 国产男人的电影天堂91| 精品久久久噜噜| 校园人妻丝袜中文字幕| 麻豆成人av视频| 美女cb高潮喷水在线观看| 在线观看免费视频日本深夜| 国产中年淑女户外野战色| 神马国产精品三级电影在线观看| 亚洲欧美中文字幕日韩二区| av国产免费在线观看| 日本撒尿小便嘘嘘汇集6| 久久久久久久久大av| 久久精品国产鲁丝片午夜精品| 国产一区二区三区av在线 | 国产精品不卡视频一区二区| 免费搜索国产男女视频| 免费无遮挡裸体视频| 熟女人妻精品中文字幕| 精品人妻偷拍中文字幕| 别揉我奶头 嗯啊视频| 色噜噜av男人的天堂激情| 久久99热6这里只有精品| 久久中文看片网| 国产乱人偷精品视频| 舔av片在线| 欧美日本视频| 日韩高清综合在线| 日本-黄色视频高清免费观看| 久久韩国三级中文字幕| 亚洲精品自拍成人| 麻豆精品久久久久久蜜桃| 久久中文看片网| 真实男女啪啪啪动态图| 搡老妇女老女人老熟妇| 特级一级黄色大片| 中国国产av一级| 亚洲中文字幕日韩| 禁无遮挡网站| 能在线免费观看的黄片| 99热6这里只有精品| 在线天堂最新版资源| 岛国在线免费视频观看| 一级黄色大片毛片| 久久久久久久午夜电影| 成人亚洲欧美一区二区av| 能在线免费看毛片的网站| 久久99蜜桃精品久久| 欧美成人免费av一区二区三区| 亚洲国产高清在线一区二区三| 最近手机中文字幕大全| av在线蜜桃| 人妻久久中文字幕网| 久久99热这里只有精品18| 亚洲国产日韩欧美精品在线观看| 免费大片18禁| 麻豆久久精品国产亚洲av| 一进一出抽搐动态| 亚洲综合色惰| 亚洲天堂国产精品一区在线| 日本免费a在线| 国产成人freesex在线| 欧美色视频一区免费| 亚洲精品乱码久久久久久按摩| 久久精品国产亚洲av天美| 99热网站在线观看| 熟妇人妻久久中文字幕3abv| 91在线精品国自产拍蜜月| 精品日产1卡2卡| 日韩精品青青久久久久久| 啦啦啦啦在线视频资源| 国产真实伦视频高清在线观看| 99精品在免费线老司机午夜| 国产av不卡久久| 一个人看的www免费观看视频| 美女内射精品一级片tv| 黄片无遮挡物在线观看| 中出人妻视频一区二区| 久久久久久久午夜电影| 少妇的逼水好多| 一夜夜www| 亚洲性久久影院| 搡老妇女老女人老熟妇| 国内精品一区二区在线观看| 青春草亚洲视频在线观看| av专区在线播放| 欧美一区二区国产精品久久精品| 亚洲中文字幕日韩| 成人性生交大片免费视频hd| 久久精品国产清高在天天线| 亚洲在线观看片| 日韩av在线大香蕉| 亚洲中文字幕一区二区三区有码在线看| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久久免费av| 一本久久中文字幕| 亚洲精品亚洲一区二区| 国模一区二区三区四区视频| 午夜福利高清视频| 国产 一区 欧美 日韩|