• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of 3D Dirac semimetal supported terahertz dielectric-loaded plasmonic waveguides

    2022-12-11 03:29:46YuboLiangGuangqingWangYanChengDuoCaoDejunYangXiaoyongHeFangtingLinandFengLiu
    Communications in Theoretical Physics 2022年12期

    Yubo Liang ,Guangqing Wang ,Yan Cheng ,Duo Cao,2 ,Dejun Yang,2 ,Xiaoyong He,2,? ,Fangting Lin,2 and Feng Liu,2

    1 Department of Physics,Mathematics &Science College,Shanghai Normal University,No.100 Guilin Road,Shanghai 200234,China

    2 Shanghai Normal University,Key Lab Submillimeter Astrophysics,No.100 Guilin Road,Shanghai 200234,China

    Abstract The tunable propagation properties of 3D Dirac semimetal (DSM)-supported dielectric-loaded surface plasmons structures have been investigated in the THz regime,including the influences of the Fermi level of 3D DSM layer,the fiber shape and operation frequencies.The results indicate that the shape of dielectric fiber affects the hybrid mode significantly,on the condition that if ax(the semi-minor axis length of the dielectric semi-ellipse)is relatively small,the fiber shows good mode confinement and low loss simultaneously,and the figure of merit reaches more than 200.The propagation property can be manipulated in a wide range by changing the Fermi level of 3D DSM,e.g. if the Fermi level varies in the range of 0.05 eV–0.15 eV,the propagation length changes in the range of 9.073×103–2.715×104 μm,and the corresponding modulation depth is 66.5%.These results are very helpful to understand the tunable mechanisms of the 3D DSM plasmonic devices,such as switchers,modulators,and sensors.

    Keywords: terahertz waves,3D Dirac semimetal,surface plasmons,tunable

    1.Introduction

    With its unique spectral properties,terahertz radiation(usually defined in the frequency range of 0.1 THz to 10 THz) shows prospects in many cutting-edge applications,such as molecular identification,high-resolution imaging,and homeland security[1–6].For instance,W Miaoet alreported a THz high performance hot-electron bolometer detector,which utilized a uniform graphene layer as a microbridge to connect two spiral antennas.Its noise equivalent power was about 15 fW/Hz0.5,its dynamic range reached 47 dB in the range of 0.3 K–10 K,and the optical coupling efficiency was about 58%[7].Caused by the collective oscillation of electrons,surface plasmons(SPs) propagate along the interface between the metal and dielectrics,which can be utilized to manipulate light on the sub-wavelength structure beyond the diffraction limit.The common SPs waveguides include metal wire structures,metaldielectrics-metal,channel waveguide structures,and hybrid plasmonic structures[8,9],which offer a compromise between a long propagation length and good confinement [10–13].By depositing a dielectric stripe on the metal substrate,the dielectric-loaded surface plasmonic(DLSPs)structure is a typical hybrid waveguide and indicates the advantages of strong optical field confinement capability and low dissipation[14–16].

    Tunable functional devices are very important to the further practical applications of plasmonic waveguides [17].Described by pseudo-relativistic Dirac fermions with linear energy dispersion,Dirac semimetals (DSM) manifest the merits of high mobility,strong plasmonic property and good tunable properties [18].As a typical 2D DSM,the graphene layer exhibits good tunable electronic transport and is widely investigated in the design of DLSPs [19–23].For instance,based on a hybrid plasmonic structure of micro-disk resonator configuration,A.Karimiet alsuggested a novel temporal integrator in the near-IR spectral region by replacing the noble metal with a uniform graphene layer,which showed the integration time window was about 5.55 ps,11 times longer than previous samples,and the FWHM bandwidth was 53 GHz with a significantly compact footprint of 4 μm×3 μm[19].Based on elliptical Ag wires deposited on graphene-Al2O3-Ag substrate hybrid structure,Z Liet alproposed a tunable graphene optical modulator,and its modulation depth and insertion loss were 16.7 dB μm?1and 0.17 dB μm?1,respectively.The 3 dB bandwidth of the modulator was 200 GHz [20].Consisting of GaAs cylinder-SiO2cuboidgraphene-SiO2substrate structure,X.Heet alreported a novel graphene-based hybrid plasmonic waveguide in the THz region,indicating that the normalized modal area reached 0.0018 (λ2/4) at 3 THz and the propagation length can reach as long as a few hundred microns[21].J.Gosciniaket alpresented a graphene-based electro-optic plasmonic modulator with a dielectric ridge,the modulation bandwidth of the suggested structure was more than 15 THz,and waveguide loss was about 0.08 dB[22].Based on a dielectric cylinder levitated Si-graphene-SiO2substrate or Si-graphene-Si substrate,S.Quet alproposed a tunable graphene-based hybrid plasmonic modulator,showing that the modulation depth reached 0.6 dB μm?1and the insertion loss was 0.05 dB μm?1[23].

    Nowadays,high performance flexible functional devices are in high demand to meet the rapid development of THz technology.Though there is some research work about the graphene DLSPs waveguides,it is still a challenge to modulate the THz hybrid plasmonic mode properties conveniently,due to the restrictions of the graphene thin layer.Similar to graphene,3D DSM which is also called bulk Dirac semimetal,also manifests high mobility and very good tunability [24–30].Furthermore,3D DSMs are easier to process and are more stable compared with 2D graphene membranes.The carrier mobility of 3D DSM(up to 9 × 106cm2V?1s?1at 5 K)is also much higher than that of graphene at the same temperature (2 × 105cm2V?1s?1) [31–36].To achieve the manipulation of propagation properties efficiently in the THz regime,we investigate the 3D DSM-supported DLSPs structure,including the effects of Fermi level,the shape of dielectric semielliptical fiber,and operation frequencies.The results manifest that the modulation depth of the normalized effective mode area reaches more than 63%,and the figure of merit (FoM) is more than 220 at a Fermi level of 0.15 eV.

    2.Research methods

    Figure 1 shows the sketch of the proposed 3D DSM DLSPs waveguide structures.The semielliptical dielectric fiber is deposited on the 3D DSM layer.As given in figure 1(a),axandbyare the semi-minor and semi-major axes of the dielectric semi-ellipse.Figure 1(b) shows the modified 3D DSM-supported SiO2-Si hybrid structures and the semielliptical dielectric materials deposited on the 3D DSM layer.In figure 1(b),ax1andby1are the semi-minor axis and the semi-major of interior dielectric semi-ellipse,respectively,ax2andby2are the semi-minor axis and the semi-major of the exterior dielectric semi-ellipse,respectively.

    Figure 1.The sketch of the proposed 3D DSM DLSPs waveguide structures.(a) is the sketch of the proposed 3D DSM-supported DLSPs waveguide.The semi-minor axis and the semi-major axis of dielectric semielliptical are ax and by,respectively.(b) is the sketch of the 3D DSM-supported modified DLSPs waveguide.The semi-minor axis and the semi-major axis of the interior dielectric semi-ellipse are ax1 and by1.The semi-minor axis and the semi-major axis of the exterior dielectric semi-ellipse are ax2 and by2.

    Figure 2.The propagation properties of the 3D DSM-supported DLSPs waveguides versus frequency for different kinds of semielliptical dielectric fiber.(a) is the real part of the effective index.(b) is the propagation length.(c) is the normalized effective mode area.(d) is the figure of merit.The cross-sectional area is set as 1×104 μm2.The values of ax are 40,60,80,100,120,and 140 μm,respectively.The Fermi level of the 3D DSM layer is set as 0.08 eV.

    Figure 3.The electric field distributions of the proposed 3D DSM-supported DLSPs waveguides for different kinds of semielliptical dielectric fibers.The frequency is set as 1 THz.The Fermi level of the 3D DSM layer is set as 0.10 eV.The ax are set as 40 μm(a),60 μm(b),80 μm(c),100 μm(d),125 μm(e),167 μm(f).Meanwhile,the by are set as 250 μm(a),167 μm(b),125 μm(c),100 μm(d),80 μm(e),60 μm(f),respectively.

    Figure 4.The propagation properties of the 3D DSM-supported DLSPs waveguides versus frequency for different Fermi levels.(a)is the real part of the effective index.(b)is the propagation length.(c)is the normalized effective mode area.(d)is the figure of merit versus frequency for different Fermi levels.The ax is set as 60 μm,the by is set as 167 μm.The Fermi levels are set as 0.05 eV,0.08 eV,0.10 eV,0.12 eV and 0.15 eV,respectively.The material of the dielectric semielliptical is set as SiO2.

    Figure 5.The propagation properties of the 3D DSM-supported DLSPs waveguides versus frequency for different kinds of SiO2-Si hybrid dielectric fiber.(a) is the real part of the effective index.(b) is the propagation length.(c) is the normalized effective mode area.(d) is the figure of merits of different Si semi-ellipse layer structures versus frequency.The value of ax and by is 60 μm and 167 μm,respectively.The height of Si fiber is fixed as 83.3 μm.The Fermi level of the 3D DSM layer is set as 0.10 eV.

    The dielectric constant of 3D DSM can be calculated by the formula [24–26]:

    in which εbis the permittivity of the medium,ε0is the permittivity of the vacuum.

    The complex conductivity of 3D DSM is given by [25,26]:

    in whichG(E)=n(-E)-n(E),then(E)is the Fermi distribution function,EFis the Fermi level,kF=EF/?vFis the Fermi momentum,vF≈c/300 is the Fermi velocity,ε=E/EF,Ω=?ω/EF+i?τ?1/EF,τ=μEF/ev2F=4.5 × 10?13s,and μ is carrier mobility.εc=Ec/EF=3 (Ecis the cutoff energy beyond which the Dirac spectrum is no longer linear),andg=40 is the degeneracy factor.

    The mode area is defined as the ratio of the total mode energy and peak energy density [11],

    W(r) can be calculated by the following formula:

    in whichE(r) andH(r) are the electric and magnetic fields,respectively.

    The effective indexneffcan be defined by the following formula:

    in which β is the complex propagation constant,andk0is the free space wave vector.

    The propagation lengthLcan be defined by the following formula:

    The modulation depth (MD) can be given by the following formula:

    in whichxstands forneffandL.

    The figure of merits (FoM) of the propagation mode is defined as:

    3.Results and discussions

    The numerical results have been obtained using the finite element method (FEM) software package-COMSOL MULTIPHYSICS 4.2.The propagation properties of the suggested 3D DSM DLSPs waveguides are shown in figure 2.To have a fair comparison,the cross-sectional areas of semielliptical dielectric fibers are taken as 1 × 104μm2.The influences of axon the Re(neff)and propagation lengths of hybrid modes can be found in figures 2(a) and (b),respectively.As the frequency increases,the 3D DSM permittivity decreases,and the contribution of plasmonic mode decreases,resulting in the value of the Re(neff)increasing,and the propagation length decreasing.For example,at the frequencies of 0.5 THz,1.0 THz,and 2.0 THz,the 3D DSM permittivity are ?1.850 × 104+ 1.310 × 104i,?6.162 × 103+ 2.186 × 103i and ?1.672 × 103+ 299.5i,respectively.Correspondingly,the values of Re(neff)of hybrid modes are 1.157,1.720 and 1.914,and the propagation lengths are 1.665 × 104μm,9.443 × 103μm,and 8.417 × 103μm,respectively.In addition,the semielliptical fiber shape also affects the propagation property significantly.It can be found in figure 2(a),that if the value of the semi-minor axis of dielectric semielliptical fiber is small,i.e.ax< 80 μm,the length of semielliptical fiber along theydirection,by,is large,the mode can be better confined.As the value ofax(by)increases(decreases),some modes leak into the surrounding air,and the real part of the effective index decreases.For example,at the frequency of 1.0 THz,if the value of axis 60,100 and 120 μm,the values of the Re(neff) are 1.708,1.720 and 1.686,and the propagation lengths are 1.423 × 104μm,9.443 × 103μm,and 8.070 × 103μm,respectively.The mode confinement can be well measured by the normalized effective mode areaAm/A0,in whichA0is the diffraction-limited area,and the value is λ2/4.As the frequency increases,the wavelength decreases,and the contribution of fiber mode increases,thus the 3D DSM-supported DLSPs show weak mode confinement at a large frequency,as given in figure 2(c).As the frequency increases,the permittivity of the 3D DSM layer decreases,the influence of the plasmonic mode reduces,and the contribution of dielectric fiber mode increases,resulting in the mode area increasing.To judge the comprehensive performance of mode confinement and dissipation of the hybrid modes,the definition of FoM is given by equation(9).As the frequency increases,the contribution of the low lossy fiber mode increases,while the effects of high dissipation plasmonic mode decrease,resulting in the value of FoM increasing.It is clear that the FoM is also closely associated with the fiber shape.As shown in figure 2(d),as the value ofaxdecreases,the semielliptical fiber becomes sharper,and the interaction area of fiber with the 3D DSM layer reduces,thus the 3D DSM structure manifests better mode confinement and a larger value of FoM.

    To learn the propagation properties of 3D DSM modes well,the electric field distribution for different kinds of wave structures is given in figure 3.The frequency is set as 1 THz and the Fermi level is 0.10 eV.As given in figure 3,if the value of the semi-minor axis of dielectric semielliptical fiber is very small,e.g.ax=40 μm,the semielliptical dielectric fiber cannot provide good mode confinement along thexdirection.As theaxincreases,the hybrid mode is well confined,which can be found in figures 3(b)and(c).This means that if the semi-elliptical dielectric fiber is relatively sharp,the hybrid mode indicates good mode confinement and low lossy simultaneously,which results from the relatively smaller interaction area of the dielectric fiber and the 3D DSM layer.However,if the semi-minor axis of dielectric semielliptical is very large,a large amount of mode penetrates into the surrounding air,as shown in figures 3(e) and (f).Furthermore,thanks to the larger interaction area of semielliptical fiber with the 3D DSM layer,the dissipation of the hybrid mode is also large simultaneously.For instance,at the operation frequency of 1 THz,the propagation length of 3(b) and 3(f) are 1.423×104μm and 7.084×103μm,respectively.From the above discussion,the suggested 3D DSM semielliptical DLSPs structures show good properties on the condition that the value ofaxis relatively small and the value ofbyis relatively larger,in the next work,the value ofaxandbyare set asax=60 μm,by=167 μm.

    Different from the conventional metal substrate,the permittivity of the 3D DSM layer can be changed significantly by changing the Fermi level,which affects the hybrid mode obviously,as shown in figure 4.The dielectric semielliptical material is set as SiO2.In figures 4(a)and(b),as the frequency increases,the permittivity of the 3D DSM layer decreases,the contribution of plasmonic mode decreases,and more modes penetrate into the 3D DSM layer,resulting in the value of the Re(neff) increasing,and the propagation length reducing.For example,at the frequencies of 0.5 THz,1.0 THz and 2.0 THz,the values of the Re(neff) are 1.259,1.714 and 1.902,respectively.Additionally,as given in figure 4,the 3D DSM Fermi levels affect the propagation property of the hybrid mode obviously.As the Fermi level increases,the carrier concentration increases drastically,the 3D DSM layer indicates better metal and plasmonic properties.Thus,the skin depth reduces,the propagation length increases,and the FoM also improves significantly.For example,at the frequency is 1.0 THz,if the Fermi levels are set as 0.05 eV,0.10 eV and 0.15 eV,the 3D DSM permittivity are ?2.400 × 103+ 8.564 × 102i,?9.634 × 103+ 3.415 × 103i and ?2.169 × 104+ 7.679 ×103i,respectively.Meanwhile,the values of the propagation length are 9.073 × 103μm,1.760 × 104μm and 2.715 ×104μm,and the figure of merit are 76.4,145,and 223,respectively.

    The propagation properties of the hybrid modes are closely associated with the composed materials of dielectric fiber.Figure 5 illustrates the effects of different kinds of dielectric fiber shape on the performance of hybrid modes.As the permittivity of fiber increases,the mode confinement and loss increase,resulting in a smaller propagation length.For instance,for the Si and SiO2dielectric fiber,at the frequency of 1.0 THz,the real parts of effective indices are 3.204 and 1.706,the propagation lengths are 8.927 × 103μm and 1.760 × 104μm,the normalized effective mode areas are 0.382 and 0.649,and the values of the FoM are 96.19 and 145.6 for Si and SiO2,respectively.To have a better understanding of the hybrid plasmonic properties,the composed dielectric semi-ellipses are adopted,i.e.the Si fiber is coated with a thin dielectric layer with a smaller refractive index like SiO2,which can be found in the insets of figure 5(b).Here,it is observed that as the percentages of Si decrease,the real part of theneffdecreases,the contribution of dielectric fiber decreases,and the plasmonic mode from the 3D DSM layer enhances,resulting in the mode area decreasing,as given in figure 5(c).Simultaneously,due to the low refractive index of SiO2increases,the dissipation decreases,the propagation length increases,and the value of FoM increases as well,which can be found in figures 5(b)and(d),respectively.For instance,at the operation frequency of 1 THz,if the structure mode of Si fiber along thexdirection is Si0.3ax(18 μm),Si0.5ax(30 μm),Si0.8ax(48 μm),the values of the normalized mode area are 0.3828,0.1972 and 0.1990,and the values of the FoM are 84.62,79.45 and 73.95,respectively.The modulation depth of normalized mode area and FoM are 48.48% and 12.61%,respectively.

    Figure 6 is the field distribution of the 3D DSM-modified DLSPs waveguides.As the refractive index of dielectric fiber increases,the hybrid mode can be better confined near the dielectric fiber and 3D DSM layer,and the loss increases as well,as given in figures 6(a)and(f).For example,the effective indices of hybrid modes are 1.706 + 1.356 × 10?3i and 3.204 + 2.674 × 10?3i for the SiO2and Si dielectric fiber.Next,we discuss the Si-SiO2hybrid dielectric fiber structures.With the increase of Si percentage,the interaction area of Si fiber with the 3D DSM layer increases,resulting in the increasing loss,which can be found in figures 6(b)and(c).But if the Si portion increases further,the lossy dielectric fiber contributes more to the hybrid mode,and the loss reduces.For example,if the lengths of Si fiber along thexdirection are Si0.1ax(6μm),Si0.3ax(18μm),Si0.5ax(30μm),Si0.8ax(48μm) the effective indexes of hybrid modes are 1.973 +2.443 × 10?3i,2.548 + 4.215 × 10?3i,2.854 + 4.510 ×10?3i and 3.052 + 4.471 × 10?3i,respectively.Additionally,as given in figures 6(b)–(f),the hybrid SiO2-Si dielectric fiber structure indicates better mode confinement,which results from that the semielliptical dielectric SiO2preventing the hybrid mode from penetrating into the surrounding environment.From the above simulation results,it can be concluded that if the length of Si fiber alongxdirection is Si0.3ax(18 μm),the hybrid dielectric fiber structure indicates the best performance,the FoM reaches 96.18,and the normalized effective mode area is about 0.2077.Compared with the best performance of a single dielectric fiber structure,the real part of the effective index increases by 61%,and the normalized effective mode area decreases by 65%.

    Figure 6.The electric field distribution of the 3D DSM-supported modified hybrid waveguides structure.The frequency is set as 1 THz.The Fermi level is 0.10 eV.The dielectric material of(a)and(f)is SiO2 and Si,respectively.The exterior and interior of(b)–(e)are SiO2 and Si,respectively.The height of Si is 0.5 by.the width of Si is set as 0.1 ax,0.3 ax,0.5 ax and 0.8 ax,respectively.(ax=60 μm,by=167 μm).

    4.Conclusion

    The tunable propagation properties of the 3D DSM-supported DLSPs waveguide structures have been given and discussed in the THz regime,including the effects of dielectric fiber shape,3D DSM Fermi level,and operation frequencies.The results manifest that the dielectric semielliptical fiber shape affects the hybrid mode significantly.On the condition that the value of the semi-minor axis of dielectric semielliptical is small,the sharp fiber manifests good mode confinement and low loss simultaneously,and the FoM of hybrid mode reaches more than 220.With the help of 3D DSM,the propagation length can be modulated in the range of 9.073 × 103μm–2.715 × 104μm if the Fermi level of the 3D DSM changes in the range of 0.05 eV–0.15 eV,and the corresponding modulation depth is about 65.1%.Additionally,the performance of the hybrid mode can be improved by utilizing the SiO2-Si hybrid dielectric strip,and the value of Re(neff) of the SiO2-Si semielliptical fibers reaches about 3.05 on the condition that the operation frequency is 1 THz,much larger than that of single SiO2fiber,1.71;the normalized effective mode area decreases by 65% comparing to single SiO2fiber.The results are very helpful to understand the propagation mechanism of the hybrid plasmonic structure and to design novel tunable devices in the future,such as switchers,modulators,and sensors.

    Acknowledgments

    This work is supported by the Natural Science Foundation of Shanghai under Grant Nos.21ZR1446500,Shanghai Local College Capacity Building Project under Grant No.22010503300 and 21010 503200;the Research Funding of Shanghai Normal University under Grant No.SK 202240;National Natural Science Foundation of China under Grant Nos.61674106,12073018,U1 931205;the Funding of Shanghai Municipal Education Commission under Grant No 2019-01-07-00-02-E00032;the Funding of Shanghai Municipality Science and Technology Commission under Grant No 19590746000,20070502400,YDZX20203100002498,Student Research Project of Shanghai Normal University(undergraduate) under Grant No.22LKY022.

    国产亚洲精品久久久com| 88av欧美| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久精品电影| 国产aⅴ精品一区二区三区波| 久久久色成人| 99在线人妻在线中文字幕| 免费在线观看影片大全网站| 99久久99久久久精品蜜桃| 精品久久久久久久末码| 热99在线观看视频| 精品一区二区三区视频在线观看免费| 国产在线精品亚洲第一网站| 99热这里只有精品一区 | 一进一出抽搐gif免费好疼| 99国产精品一区二区三区| 亚洲欧美精品综合久久99| 偷拍熟女少妇极品色| 美女高潮喷水抽搐中文字幕| 美女午夜性视频免费| 午夜福利在线观看免费完整高清在 | 男女之事视频高清在线观看| 国产精品亚洲一级av第二区| 色av中文字幕| 99国产精品一区二区蜜桃av| 日韩三级视频一区二区三区| 亚洲精品色激情综合| 巨乳人妻的诱惑在线观看| 日本黄色视频三级网站网址| 一本久久中文字幕| 精品不卡国产一区二区三区| av片东京热男人的天堂| 久久亚洲真实| 美女高潮喷水抽搐中文字幕| 亚洲精品在线观看二区| 搞女人的毛片| 亚洲第一电影网av| 久9热在线精品视频| 亚洲熟妇熟女久久| 黄色成人免费大全| 欧美中文日本在线观看视频| 亚洲熟妇熟女久久| 美女免费视频网站| 日韩中文字幕欧美一区二区| 久久久久免费精品人妻一区二区| 欧美另类亚洲清纯唯美| av女优亚洲男人天堂 | 色综合站精品国产| 美女午夜性视频免费| 欧美日韩黄片免| 激情在线观看视频在线高清| 真人做人爱边吃奶动态| 亚洲第一电影网av| 国产亚洲欧美98| 后天国语完整版免费观看| 日韩av在线大香蕉| 波多野结衣高清作品| 男女做爰动态图高潮gif福利片| 亚洲成人中文字幕在线播放| 男女下面进入的视频免费午夜| 亚洲av成人不卡在线观看播放网| 亚洲专区国产一区二区| 日韩大尺度精品在线看网址| 精品一区二区三区四区五区乱码| 天天躁日日操中文字幕| 舔av片在线| 天天添夜夜摸| 九色成人免费人妻av| 亚洲精品一区av在线观看| ponron亚洲| 99国产精品99久久久久| 精品99又大又爽又粗少妇毛片 | 亚洲激情在线av| 亚洲av成人不卡在线观看播放网| 日韩精品中文字幕看吧| 中国美女看黄片| 三级国产精品欧美在线观看 | 国产精品 欧美亚洲| 精品日产1卡2卡| 狂野欧美白嫩少妇大欣赏| 操出白浆在线播放| 亚洲av熟女| 免费观看的影片在线观看| 老鸭窝网址在线观看| 亚洲18禁久久av| 国产三级黄色录像| 国产av不卡久久| 午夜福利免费观看在线| 亚洲18禁久久av| 五月玫瑰六月丁香| 1024香蕉在线观看| 丁香欧美五月| 久久人人精品亚洲av| 精品电影一区二区在线| 全区人妻精品视频| 久久国产精品影院| 又紧又爽又黄一区二区| 亚洲熟女毛片儿| 日本黄色视频三级网站网址| 此物有八面人人有两片| 日本 av在线| 国产蜜桃级精品一区二区三区| 哪里可以看免费的av片| 国产精品一区二区三区四区久久| 在线永久观看黄色视频| 18禁黄网站禁片免费观看直播| www.自偷自拍.com| 日韩欧美一区二区三区在线观看| 在线视频色国产色| 一区福利在线观看| 国产一区在线观看成人免费| 少妇人妻一区二区三区视频| 不卡一级毛片| 人人妻,人人澡人人爽秒播| 热99在线观看视频| 久久中文看片网| 成人亚洲精品av一区二区| 国产高清视频在线观看网站| 国产精品女同一区二区软件 | 哪里可以看免费的av片| 精品国产美女av久久久久小说| 女人高潮潮喷娇喘18禁视频| 亚洲最大成人中文| 亚洲一区二区三区不卡视频| 国产1区2区3区精品| 亚洲人成网站高清观看| 俺也久久电影网| 欧美色视频一区免费| 俺也久久电影网| 国产亚洲av嫩草精品影院| 免费在线观看亚洲国产| 欧美色视频一区免费| 国产成人影院久久av| 国产成人影院久久av| 国产一区二区在线av高清观看| 国产精品av视频在线免费观看| 男女下面进入的视频免费午夜| 中文字幕人成人乱码亚洲影| 成人三级黄色视频| 亚洲真实伦在线观看| 好男人电影高清在线观看| 大型黄色视频在线免费观看| 国产爱豆传媒在线观看| 两个人的视频大全免费| 一区二区三区激情视频| 久久香蕉精品热| 91字幕亚洲| 99国产极品粉嫩在线观看| 亚洲成人精品中文字幕电影| 国产精品久久久久久精品电影| 国产精品日韩av在线免费观看| 亚洲av电影在线进入| 黄色视频,在线免费观看| 久久中文字幕人妻熟女| 舔av片在线| 男女视频在线观看网站免费| 欧美成狂野欧美在线观看| 中文字幕精品亚洲无线码一区| 母亲3免费完整高清在线观看| 成人无遮挡网站| 日本 欧美在线| 色综合站精品国产| 婷婷六月久久综合丁香| 91麻豆精品激情在线观看国产| 国产精品九九99| 亚洲狠狠婷婷综合久久图片| 亚洲精品中文字幕一二三四区| 亚洲精品久久国产高清桃花| 亚洲人成电影免费在线| 国产69精品久久久久777片 | 精品一区二区三区av网在线观看| 亚洲人成网站高清观看| 久久热在线av| 精品久久久久久久久久久久久| 中文字幕最新亚洲高清| 亚洲人成网站高清观看| 一级毛片精品| 99国产精品99久久久久| 国产亚洲精品综合一区在线观看| 看片在线看免费视频| 天堂av国产一区二区熟女人妻| 国产伦精品一区二区三区四那| 色综合婷婷激情| 看片在线看免费视频| 国产精品亚洲美女久久久| 在线观看66精品国产| 悠悠久久av| 日韩欧美精品v在线| 午夜免费成人在线视频| 亚洲熟女毛片儿| 老熟妇仑乱视频hdxx| 久久精品夜夜夜夜夜久久蜜豆| 久久久水蜜桃国产精品网| 国产成人精品久久二区二区91| 久久久色成人| 熟女少妇亚洲综合色aaa.| 人人妻人人看人人澡| 亚洲精品一卡2卡三卡4卡5卡| 男人舔奶头视频| 少妇人妻一区二区三区视频| 黄色视频,在线免费观看| 久久久色成人| xxxwww97欧美| 成人三级做爰电影| 国产探花在线观看一区二区| 亚洲一区二区三区不卡视频| 国产精品一区二区精品视频观看| 在线观看免费视频日本深夜| 日韩人妻高清精品专区| 国产蜜桃级精品一区二区三区| 婷婷六月久久综合丁香| 黄色视频,在线免费观看| 夜夜爽天天搞| 亚洲人成伊人成综合网2020| 日韩有码中文字幕| 国产伦人伦偷精品视频| 欧美一级毛片孕妇| 人妻久久中文字幕网| 少妇的逼水好多| 国产黄片美女视频| 久久久久久九九精品二区国产| 最新中文字幕久久久久 | 99国产综合亚洲精品| 欧美日韩一级在线毛片| 可以在线观看的亚洲视频| 亚洲精品456在线播放app | 人妻久久中文字幕网| 久久国产精品人妻蜜桃| 搡老熟女国产l中国老女人| 亚洲熟女毛片儿| 亚洲真实伦在线观看| 色综合亚洲欧美另类图片| 制服丝袜大香蕉在线| 亚洲欧美日韩高清专用| 精品日产1卡2卡| 在线国产一区二区在线| 欧美日韩精品网址| 一区二区三区高清视频在线| 欧美在线黄色| 亚洲中文av在线| 天天躁日日操中文字幕| 在线免费观看不下载黄p国产 | 国产单亲对白刺激| xxx96com| 国产伦在线观看视频一区| 欧美日韩综合久久久久久 | 亚洲天堂国产精品一区在线| 精品国内亚洲2022精品成人| 国产亚洲精品av在线| 黄色成人免费大全| 午夜福利在线观看免费完整高清在 | 欧美中文综合在线视频| 国产欧美日韩精品一区二区| 免费av不卡在线播放| 久久人人精品亚洲av| 琪琪午夜伦伦电影理论片6080| 久久亚洲真实| av片东京热男人的天堂| 国产av麻豆久久久久久久| 窝窝影院91人妻| 欧美绝顶高潮抽搐喷水| 国产av在哪里看| 综合色av麻豆| 香蕉国产在线看| 午夜成年电影在线免费观看| 日韩欧美在线乱码| 欧美日韩黄片免| 18禁黄网站禁片免费观看直播| 久久久久久久午夜电影| 亚洲成av人片免费观看| av黄色大香蕉| 国语自产精品视频在线第100页| 一a级毛片在线观看| 香蕉丝袜av| 在线免费观看不下载黄p国产 | 色综合欧美亚洲国产小说| 国产毛片a区久久久久| 国内少妇人妻偷人精品xxx网站 | 欧美日韩亚洲国产一区二区在线观看| 美女被艹到高潮喷水动态| 亚洲欧美日韩东京热| 午夜免费成人在线视频| 岛国视频午夜一区免费看| 中文字幕熟女人妻在线| 三级毛片av免费| 国产精品 欧美亚洲| 搞女人的毛片| 嫩草影视91久久| 热99在线观看视频| 欧美在线一区亚洲| 国产精品美女特级片免费视频播放器 | 天堂av国产一区二区熟女人妻| 国产极品精品免费视频能看的| 91麻豆精品激情在线观看国产| 国产成人影院久久av| 天堂影院成人在线观看| 日韩中文字幕欧美一区二区| 老汉色av国产亚洲站长工具| 中国美女看黄片| 亚洲在线自拍视频| 变态另类成人亚洲欧美熟女| 国产蜜桃级精品一区二区三区| 午夜亚洲福利在线播放| 日本黄色片子视频| 制服人妻中文乱码| 国产精品99久久99久久久不卡| 国产成人系列免费观看| 亚洲性夜色夜夜综合| 国产97色在线日韩免费| 天堂av国产一区二区熟女人妻| 欧美激情久久久久久爽电影| 久久人人精品亚洲av| 深夜精品福利| 亚洲黑人精品在线| 国内精品久久久久久久电影| 欧美日韩亚洲国产一区二区在线观看| 丰满人妻一区二区三区视频av | 亚洲欧美日韩高清专用| 伦理电影免费视频| 又紧又爽又黄一区二区| av欧美777| 啪啪无遮挡十八禁网站| 午夜久久久久精精品| 在线观看66精品国产| 亚洲成人中文字幕在线播放| 变态另类丝袜制服| 亚洲精华国产精华精| 成人鲁丝片一二三区免费| 午夜精品一区二区三区免费看| 欧美最黄视频在线播放免费| 欧美乱色亚洲激情| 亚洲午夜理论影院| 国产精品久久久久久久电影 | 午夜福利高清视频| 一进一出好大好爽视频| 男女之事视频高清在线观看| 亚洲人与动物交配视频| xxx96com| av福利片在线观看| 男女下面进入的视频免费午夜| 偷拍熟女少妇极品色| 97超级碰碰碰精品色视频在线观看| 可以在线观看毛片的网站| 国产极品精品免费视频能看的| 久久久成人免费电影| 观看美女的网站| 在线观看免费午夜福利视频| 天堂网av新在线| 亚洲电影在线观看av| 久久精品夜夜夜夜夜久久蜜豆| 又大又爽又粗| 亚洲欧洲精品一区二区精品久久久| 欧美乱色亚洲激情| 国产一区二区在线观看日韩 | 亚洲成人久久性| 在线永久观看黄色视频| 欧美黑人巨大hd| 成人一区二区视频在线观看| av中文乱码字幕在线| 啪啪无遮挡十八禁网站| 久久午夜综合久久蜜桃| 精品人妻1区二区| 色综合亚洲欧美另类图片| 男人和女人高潮做爰伦理| 日日夜夜操网爽| 黄色 视频免费看| 色噜噜av男人的天堂激情| 亚洲国产欧美一区二区综合| 高清在线国产一区| 国产极品精品免费视频能看的| 亚洲无线在线观看| 免费在线观看亚洲国产| 好看av亚洲va欧美ⅴa在| 国产一区在线观看成人免费| 亚洲黑人精品在线| 高潮久久久久久久久久久不卡| 欧美日韩综合久久久久久 | 两个人看的免费小视频| 色哟哟哟哟哟哟| 男女床上黄色一级片免费看| 麻豆成人午夜福利视频| 亚洲人成网站高清观看| 日韩中文字幕欧美一区二区| 国产精品一及| 真人一进一出gif抽搐免费| 91老司机精品| 婷婷精品国产亚洲av在线| 日本免费a在线| 欧美中文日本在线观看视频| 国产精品一区二区三区四区免费观看 | www日本在线高清视频| 色噜噜av男人的天堂激情| 中国美女看黄片| 亚洲 欧美一区二区三区| 欧美日本亚洲视频在线播放| 91久久精品国产一区二区成人 | 亚洲国产欧美一区二区综合| xxx96com| 99久久久亚洲精品蜜臀av| 中文字幕熟女人妻在线| 女警被强在线播放| 国产亚洲精品av在线| 亚洲成人中文字幕在线播放| 嫩草影院入口| 欧美大码av| 黄色 视频免费看| 亚洲无线在线观看| 久久久国产成人精品二区| 亚洲av五月六月丁香网| 色吧在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美日本视频| 丰满的人妻完整版| 精品免费久久久久久久清纯| 国产高清videossex| 国产一区二区三区视频了| 国产一区二区激情短视频| 欧美色欧美亚洲另类二区| 好看av亚洲va欧美ⅴa在| 中文字幕人成人乱码亚洲影| 中亚洲国语对白在线视频| 高潮久久久久久久久久久不卡| www.自偷自拍.com| 亚洲欧美一区二区三区黑人| 日韩欧美国产在线观看| 日本黄大片高清| 综合色av麻豆| 色综合欧美亚洲国产小说| 小说图片视频综合网站| 成年女人永久免费观看视频| 两人在一起打扑克的视频| 曰老女人黄片| 国产精品一区二区三区四区久久| 国产成人一区二区三区免费视频网站| 搞女人的毛片| 亚洲一区高清亚洲精品| 丰满人妻熟妇乱又伦精品不卡| 久久久久久九九精品二区国产| 国产三级黄色录像| 婷婷丁香在线五月| 欧美一区二区精品小视频在线| 成在线人永久免费视频| 精品久久久久久久久久久久久| 国产精品综合久久久久久久免费| 日本a在线网址| 国产1区2区3区精品| 一进一出好大好爽视频| 少妇的丰满在线观看| 身体一侧抽搐| 欧美zozozo另类| 人妻丰满熟妇av一区二区三区| 国产高清激情床上av| 国产精品美女特级片免费视频播放器 | 免费无遮挡裸体视频| 国产一区二区在线av高清观看| 国产精品久久久久久精品电影| 日本与韩国留学比较| 国产精品爽爽va在线观看网站| 熟女少妇亚洲综合色aaa.| 夜夜躁狠狠躁天天躁| 每晚都被弄得嗷嗷叫到高潮| 一个人免费在线观看的高清视频| 国产人伦9x9x在线观看| 久久精品aⅴ一区二区三区四区| 亚洲欧美激情综合另类| 精品一区二区三区视频在线观看免费| 久久精品综合一区二区三区| 亚洲第一电影网av| 国产爱豆传媒在线观看| 国产伦人伦偷精品视频| 久久久久精品国产欧美久久久| 亚洲专区中文字幕在线| 欧美激情在线99| 可以在线观看毛片的网站| avwww免费| 在线观看日韩欧美| 国产精品98久久久久久宅男小说| 19禁男女啪啪无遮挡网站| 国产v大片淫在线免费观看| 麻豆成人av在线观看| 综合色av麻豆| 在线播放国产精品三级| 亚洲精品一区av在线观看| 午夜免费激情av| 国产免费男女视频| 国产私拍福利视频在线观看| 中文字幕精品亚洲无线码一区| 一个人看的www免费观看视频| 免费高清视频大片| 国产精品亚洲av一区麻豆| 久久香蕉精品热| 黄频高清免费视频| 一级毛片女人18水好多| 国产又色又爽无遮挡免费看| 日韩有码中文字幕| 国内精品一区二区在线观看| 波多野结衣高清作品| 成熟少妇高潮喷水视频| 精品电影一区二区在线| 欧美xxxx黑人xx丫x性爽| 亚洲一区二区三区不卡视频| 久久中文看片网| 99久国产av精品| 伊人久久大香线蕉亚洲五| 18禁裸乳无遮挡免费网站照片| 日本熟妇午夜| 国产三级黄色录像| 黄色丝袜av网址大全| 啦啦啦免费观看视频1| 1024手机看黄色片| 黄色日韩在线| 日日干狠狠操夜夜爽| 亚洲无线观看免费| 久久久久久久午夜电影| 久久人妻av系列| 亚洲国产精品999在线| av女优亚洲男人天堂 | 成人av一区二区三区在线看| 欧美黑人巨大hd| 香蕉久久夜色| 国产黄a三级三级三级人| 黄色丝袜av网址大全| 精品久久久久久,| 在线观看免费午夜福利视频| 黑人巨大精品欧美一区二区mp4| 精品免费久久久久久久清纯| 中文字幕av在线有码专区| 99热只有精品国产| 精品久久久久久成人av| 亚洲乱码一区二区免费版| 欧美丝袜亚洲另类 | 日韩欧美在线乱码| 国产高清视频在线观看网站| 日本在线视频免费播放| 男女下面进入的视频免费午夜| 日本黄色片子视频| 亚洲 国产 在线| 欧美色视频一区免费| 国产精品1区2区在线观看.| 久久久精品欧美日韩精品| 欧美最黄视频在线播放免费| 色尼玛亚洲综合影院| 五月伊人婷婷丁香| 美女扒开内裤让男人捅视频| 丁香欧美五月| 99热这里只有精品一区 | 日本a在线网址| 网址你懂的国产日韩在线| 欧美xxxx黑人xx丫x性爽| 久久香蕉精品热| 欧美日韩一级在线毛片| 久久欧美精品欧美久久欧美| 国产视频内射| 91av网一区二区| 欧美中文综合在线视频| 国产91精品成人一区二区三区| 亚洲欧美日韩高清在线视频| 国产精品九九99| 一区二区三区国产精品乱码| 亚洲av电影在线进入| 亚洲va日本ⅴa欧美va伊人久久| 18禁美女被吸乳视频| 免费无遮挡裸体视频| 国产成人影院久久av| 两个人的视频大全免费| 热99re8久久精品国产| 国产精品久久久av美女十八| 熟女少妇亚洲综合色aaa.| 欧美午夜高清在线| 久久久久免费精品人妻一区二区| 一本久久中文字幕| 美女免费视频网站| 99久久精品一区二区三区| 国产精品久久视频播放| 日本与韩国留学比较| 最近最新中文字幕大全电影3| 制服丝袜大香蕉在线| 免费在线观看影片大全网站| 少妇的丰满在线观看| 色综合亚洲欧美另类图片| 脱女人内裤的视频| 亚洲国产精品成人综合色| 欧美又色又爽又黄视频| 国产精品一区二区免费欧美| 亚洲av第一区精品v没综合| 我的老师免费观看完整版| 亚洲国产精品久久男人天堂| 成在线人永久免费视频| 日本黄大片高清| 日韩欧美在线二视频| 99国产综合亚洲精品| 精品国产亚洲在线| 欧美日韩亚洲国产一区二区在线观看| 国产三级黄色录像| 全区人妻精品视频| 亚洲精品456在线播放app | 久久精品亚洲精品国产色婷小说| 最近在线观看免费完整版| 色噜噜av男人的天堂激情| 99久久99久久久精品蜜桃| 午夜精品在线福利| 日韩 欧美 亚洲 中文字幕| 亚洲中文日韩欧美视频| 久久性视频一级片| av欧美777| 久久久久免费精品人妻一区二区| 久9热在线精品视频| 日韩欧美一区二区三区在线观看| 特级一级黄色大片| bbb黄色大片| 国产精品一及| 日韩精品中文字幕看吧| 97超级碰碰碰精品色视频在线观看| 久久精品影院6| 女同久久另类99精品国产91|