• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-Principle Study on Electronic Structure and Magnetic Properties of Bulk and Its (001) Surfaces of Hexagonal Fe2Ge Alloy

    2022-12-10 11:44:14,,,,,
    人工晶體學(xué)報(bào) 2022年11期

    , , , , ,

    (1.School of Physics Mechatronic Engineering, GuiZhou Minzu University, Guiyang 550025, China; 2.School of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China; 3.Engineering Training Center, Guizhou Minzu University, Guiyang 550025, China)

    Abstract:The electronic structures and magnetic properties of the bulk Fe2Ge and its (001) surfaces were calculated by the pseudo-potential plane wave method based on the first-principle of density functional theory. Here, two types of the terminated (001) surfaces were considered: Ge(Ⅰ)-(001) surface and Ge(Ⅱ)-(001) surface. For the electronic structures, the different types of the Fe2Ge (001) surfaces all show metallic characteristics, which are in agreement with the bulk counterpart. For the magnetism, the Ge atoms are ferromagnetic spin ordering in the bulk and Ge(Ⅱ)-(001) surface, while the Ge atoms are ferrimagnetic spin ordering in the first layer of the Ge(Ⅰ)-(001) surface. Moreover, the spin magnetic moment of the Ge atoms in the Ge(Ⅱ)-(001) surface are better than those of the bulk and Ge(Ⅰ)-(001) surface. These results are related to the hybridization between the Fe d and Ge p states, which were discussed by analyzing their density of states.

    Key words:Fe2Ge (001) surface; electronic structure; magnetic property; first-principle; density functional theory; spin polarizability

    0 Introduction

    As a magnetic material, the binary alloy Fe2Ge has attracted growing attention[1-3]for its excellent magneto-transport characteristics and potential applications in magnetic storage devices[4]. Fe2Ge is hexagonal structure with space group ofP63/mmc(No.194). There is only one symmetry type of Fe atoms, which has a trigonal bipyramid environment surrounded by four nearest neighbor Ge atoms.

    Since the 1960s, it has been proved by experiments[5-7]that the intermetallic compound Fe2Ge has hexagonal structure of B82type asβphase[5]. Neutron and X-ray diffraction adopted by Adelson et al[6]. indicated that Fe2Ge is a ferromagnetic metal phase. Magnetization measurements adopted by Hall et al[7]. indicated that Fe2Ge exhibits large anisotropy in the hyperfine magnetic field due to the domination of the anisotropy of crystal field. With further experimental researches and theoretical calculations, it is found that there are a great deal number of discrepancies[8-16]among previously experimental magnetic moments for the hexagonal-βphase of the intermetallic compound Fe2Ge. Recently, the investigation on magnetic properties of Fe2Ge thin film, which is obtained by MBE code position on Ge (111), has provided a new method to restudy the previously controversial results on the magnetic property of the hexagonal-βphase Fe2Ge[17]. In addition, stable hexagonal phase Fe2Ge was obtained by adding proper amount of intermetallic compound Fe2Ge to MnNiSi-based alloys. The FM/PM magnetic structure transition (MST) was obtained by adjusting the Fe2Ge content at a wide range of Curie temperature[18].

    The compound Fe2Ge has high magnetization, low dielectric constant, excellent electromagnetic properties and high Curie temperature up to 400 K predicted by theory. Meanwhile, the Fe element in the compound Fe2Ge has +2, +3 and other valence status, which is a good oxidation reduction catalyst with preferable surface activity. In addition, the compound Fe2Ge is also a new environment-friendly electromagnetic material with a close-packed hexagonal structure, which exists obvious anisotropy inc-axis direction and perpendicular toc-axis direction[2-4,17], i.e., the Fe positive ion and adjacent Ge negative ions comprise two-dimensional regular hexagonal structure centered on Fe positive ion. The charge centers of these positive and negative ions coincide with each other without any external forces. But if there are any external forces, the charge centers of the cation and anion will shift to each other, generating a magnetic moment. The superposition of the couple magnetic moments produced by all the units in the crystal results in a macroscopic distribution of the electrical potential along the surface. At the same time, the 3d states electrons of Fe atoms in the Fe2Ge are not filled, forming the outer electronic configuration of 3d64s2, while the outer electronic configuration of Ge atoms is 3d104s24p2. Therefore, the complex Fe-Ge chemical bonds formed at the Fe2Ge surface lead to the changes of electronic structure of the surface. However, the magnetic mechanism of the surface is not clear.

    These researches motivated us to study the electronic structures and magnetic properties of Fe2Ge (001) surface, as well as that of the bulk through the Ultrasoft pseudo-potential (USPP) plane wave method based on the first-principle of density functional theory using a slab model.

    1 Computational details

    The binary compound Fe2Ge is hexagonal system with space group ofP63/mmc(No.194) and lattice parameters ofa=0.500 27 nm andc=0.405 48 nm. Each crystal cell contains four Fe atoms and two Ge atoms. In the unit cell of Fe2Ge, Fe atoms occupy the (0.333, 0.667, 0.25) and (0.333, 0.667, 0.75) sites and Ge atom occupies the (0, 0, 0) site. The crystal structure of Fe2Ge is shown in Fig.1.

    The electronic structure and magnetic properties were calculated using the first-principle pseudopotential plane wave method based on functional density theory. All calculations were completed by Cambridge sequential total energy package (CASTEP). Initially, the surface model of Fe2Ge was established and the Broyden Fletcher Goldfarb and Shannon (BFGS) algorithm was used to optimize the geometry of the model. It was found that Fe2Ge (001) surface is stable. Subsequently, the electronic structure and magnetic property of Fe2Ge (001) surface were calculated on the basis of geometry optimization. Ultrasoft pseudo-potentials (USPP) was used to deal with the interaction between ions and electrons. The exchange correlation potential is selected as the generalized gradient approximation (GGA). The wavefunctions of valence electrons were expanded by the plane wave sets. The cutoff energy of plane wave was 350 eV and the accuracy of iterative convergence was 5.0×10-6eV. The total energy was calculated in reciprocal space and the Brillouin zone integral was calculated by Monkhorst-Pack method. Considering the strong exchange correlation potential between the d state electrons of the transitional metal Fe element, the GGA with Hubbard U (GGA+U) method was used to calculate the electronic properties and magnetic properties of the bulk and surface. Here, the U value was set to 2.5 eV, which was referred to the Reference [19]. The calculated results are in agreement with the theorical data given in Reference [20]. Besides, during the calculation, the convergence tests were conducted by increasing gradually vacuum width and the number of atomic layers. The slab thickness of 6 atomic layers were adopted to carry out the convergence tests of the vacuum width. After the vacuum width increases to 0.8 nm, the total energy converges to a constant as the vacuum width tends to infinity. For the convergence test of the atomic layers, after the slab thickness increases to 8 atomic layers using a vacuum width of 1 nm, the surface energy tends to be stable as the atomic layers tend to infinity. In order to ensure the enough accuracy of calculated results, 10 atomic layers and 1.2 nm vacuum width were used to simulate the Fe2Ge (001) surface.

    Fig.1 Crystal structure of hexagonal Fe2Ge

    2 Results and discussion

    2.1 Stability: chemical structural and mechanical

    The chemical, structural and mechanical stabilities of the compound Fe2Ge were identified by calculating its formation energy, cohesive energy and elastic constants, respectively. The formation energy formula for this alloy is given as follows:

    (1)

    (2)

    Finally, the elastic constants were examined to determinate the mechanical stability. As presented in Table 2, the elastic constants,C11=253.265 GPa,C33=323.686 65 GPa,C44=4.323 3 GPa,C12=188.580 2 GPa andC13=62.462 58 GPa, satisfy the mechanical stability criterion for the hexagonal structure listed as follows[21]:

    C44>0

    (3)

    C11>|C12|

    (4)

    C33(C11+|C12|)>2C13

    (5)

    It is suggested that this alloy of hexagonal structure has the mechanical stability at the ground state.

    Table 2 Elastic constants C11, C33, C44, C12 and C13

    2.2 Band structures

    The band structures of the bulk Fe2Ge and its (001) surfaces were investigated due to the differences of their electronic structures. Their band structures are presented respectively in Fig.2 and Fig.3. As it can be seen in Fig.2, the band structure expands along the G-A-H-K-G-M-L-H high symmetry direction of the Brillouin zone. The different spin energy bands all overlap withEF. This indicates that the Fe2Ge exhibits metallic behavior. For the (001) surface, there are two types of the (001) terminated surfaces. The Ge(Ⅰ)-(001) terminated surface is a Ge-terminated (001) surface in which the Fe atom layers and Ge atom layers are alternatively arranged, whereas the Ge(Ⅱ)-(001) terminated surface is a Ge-terminated (001) surface where the second and third layers all are Fe atom layers (see Fig.4). Fig.3 shows the spin-up and spin-down band structures of both the Ge(Ⅰ)-(001) and Ge(Ⅱ)-(001) terminated surfaces, respectively. Their band structures are more organized than that of the bulk. However, their spin bands in different directions all intersect the Fermi level line at many points, indicating that the thin film Fe2Ge remains the metallic characteristics of the bulk.

    Fig.2 Band structure of bulk Fe2Ge

    Fig.3 Surface band structures with Ge(Ⅰ)-(001) and Ge(Ⅱ)-(001) terminations

    Fig.4 Surfaces with Ge(Ⅰ)-(001) and Ge(Ⅱ)-(001) terminations

    Fig.5 Total, Fe atoms and Ge atoms density of states

    2.3 Densities of states

    In order to further understand the electromagnetic mechanism of these metallic behaviors, the characteristics of their electronic structures were analyzed. The total DOS and atom-projected DOS are shown in Fig.5. The total DOS shows the metallic nature in both spin-up channel and spin-down channel. The spin-polarized rate of the bulk Fe2Ge is about 34.23%, which is calculated by the spin-polarized formula[22]:

    (6)

    whereN↑(E)is the number of the electrons in spin-up channel;N↓(E)is the number of the electrons in spin-down channel. The DOS of Ge atoms is nearly symmetry with respect to energy axis, implying that magnetic moments carried by Ge atoms are close to zero. However, the DOS of Fe atoms is not symmetry with respect to energy axis, indicating that magnetic moments carried by Fe atoms are ferromagnetic spin ordering. These results reveal that the Fe2Ge is a metallic ferromagnet.

    Fig.6 and Fig.7 represent the partial DOS of Fe atoms and Ge atoms, respectively. In the partial DOS of Fe atoms, the states in the energy region from 10 eV to 18 eV mainly come from p states, the states in the energy region from 4 eV to 10 eV are dominated by contributions from p states and s states, while the states in the surroundingEFare mainly contributed by d states. In the partial DOS of Ge atoms, the states in the energy from -6.5 eV to -4 eV are dominated by contributions from p states, the states in the energy from -12 eV to -6.5 eV are mainly contributed by s states, while the states in the surroundingEFconsist mainly of both p and s states.

    Fig.6 Fe atom-projected density of states

    Fig.7 Ge atom-projected density of states

    Fig.8 shows the total DOS of both the Ge(Ⅰ)-(001) and Ge(Ⅱ)-(001) terminated surfaces. Their total DOS atEFare nonzero indicating that the Ge(Ⅰ)-(001) and Ge(Ⅱ)-(001) slabs exhibit the metallic behavior. For the Ge(Ⅰ)-(001) terminated slab, the spin-polarized rate is about 43.84%, which is higher than that of the bulk. For the Ge(Ⅱ)-(001) terminated slab, the spin-polarized rate is about 18.23%, which is lower than that of the bulk.

    Fig.8 Surface density of states with Ge(Ⅰ)-(001) and Ge(Ⅱ)-(001) terminations

    The atom-projected density of states of the Ge(Ⅰ)-(001) and Ge(Ⅱ)-(001) terminated surfaces are given in Fig. 9 and Fig. 10, respectively. Obviously, their atom-projected density of states all are similar to that of the bulk. However, for the Ge(Ⅰ)-(001) terminated surface, the peaks formed by the Fe d and Ge p states are not sharp like that of the bulk, which is caused by the decreased hybridization between the Fe d and Ge p states. For the Ge(Ⅱ)-(001) terminated surface, the peaks formed by the Fe d and Ge p states are sharper than that of the bulk, which result from the increased hybridization between the Fe d and Ge p states.

    Fig.9 Atom-projected density of states of Fe and Ge in Ge(Ⅰ)-(001) terminated surface

    Fig.10 Atom-projected density of states of Fe and Ge in Ge(Ⅱ)-(001) terminated surface

    2.4 Magnetic properties

    The atom-projected and total magnetic moments of the unit cell for Fe2Ge are presented in Table 3. Here, the magnetic moments for Fe atoms in the unit cell are positive indicating the existence of ferromagnetic coupling between Fe atoms. However, the negatively magnetic moment for Ge atom in the unit cell implies its antiferromagnetic coupling with Fe atoms. In the unit cell, the proportion of the magnetic moment for Fe atoms to total magnetic moments is highly 99.796%. This indicates that the magnetic property of bulk is dominated by contributions from the atoms projected magnetic moments of Fe atoms. As shown in Table 3, the value of magnetic moment per Fe atom is close to Fe (2.25 μB) in Fe2Ge in Reference [20].

    Table 3 Total and atom-projected magnetic moments

    Fig.11 Atom-projected magnetic moments of different terminated surfaces

    The atom-projected magnetic moments of the Ge(Ⅰ)-(001) and Ge(Ⅱ)-(001) terminated surface in the first, second, third and fourth layers (S1, S2, S3, S4) are shown in Fig. 11. For the Ge(Ⅰ)-(001) terminated slab, the magnetic moment of the Fe atom in S2 get the maximum value. The magnetic moment of the Fe atom in S4 is about 2.47 μB, which is very close to that of the bulk (see Table 3). The value of the Ge atom magnetic moment in S1 is equal to that in S3 but they have different signs. The Ge (S1) with positively magnetic moment indicates the ferromagnetic spin ordering whereas the Ge (S3) with negatively magnetic moment shows the ferrimagnetic spin ordering. For the Ge(Ⅱ)-(001) terminated slab, the magnetic moment for Fe atom increases as the layer varies from S2 to S3 and the Fe atom in S3 gets the highest magnetic moment. The magnetic moments for the Ge atoms in S1 and S4 are negative, exhibiting the ferrimagnetic spin ordering. These results imply that the Ge spin-polarized magnetism of the Ge(Ⅱ)-(001) terminated surface is stronger compared with the Ge(Ⅰ)-(001) terminated surface. In terms of the changes of the geometric structure, in the Ge(Ⅱ)-(001) terminated surface, the distance between the Ge atom in S1 and the Ge atom in S4 is about 0.37 nm, which is larger than the values of other Ge-Ge bond lengths in the bulk Fe2Ge and Ge(Ⅰ)-(001) terminated surface. It is suggested that the interaction between the Ge atoms in the Ge(Ⅱ)-(001) terminated surface is weak. Consequently, it promotes the magnetic property of Ge atoms. On the other hand, the DOS of Ge atoms of the Ge(Ⅱ)-(001) terminated surface is similar to that of the bulk and Ge(Ⅰ)-(001) terminated surface except that owing to the increased hybridization between the Fe d states and Ge p states, it has a very sharp peak of spin-up states at -4.5 eV and a very sharp peak of spin-down states at -3.5 eV (see Fig.7, Fig.9 and Fig.10). Therefore, in the Ge(Ⅱ)-(001) terminated surface, the p states of Ge atoms has strong localization and large exchange splitting (see Fig.10), which results in large enhancement of the spin magnetic moments of the Ge atoms.

    3 Conclusions

    The electronic structure and magnetic properties of the Fe2Ge bulk and (001) surface were calculated by the first-principle pseudopotential plane wave method based on functional density theory. For the bulk, the Fe2Ge shows the metallic characteristic with the 34.23% spin polarization. Near theEFlevel, the DOS of Fe atoms is mainly come from the contributions of the d states, and the DOS of Ge atom is contributed by the s states and p states. However, the total DOS is dominated by the contributions from the d states. Similarly, the total magnetic moment of the bulk almost comes from the contributions (99.796%) from the Fe atoms magnetic moments. For the surface, two different types of the Fe2Ge (001) surface were taken into consideration: Ge(Ⅰ)-(001) terminated surface and Ge(Ⅱ)-(001) terminated surface. They all exhibit metallic nature, which remain the bulk corresponding behavior. Their spin polarizations are 43.84% and 18.23%, respectively. In the magnetism, the Fe atoms magnetic moments in all surface are agree well with the corresponding magnetic moments of the bulk. The Ge atoms in S1 for the Ge(Ⅰ)-(001) terminated surface show ferromagnetic spin ordering, which is opposite to the magnetic spin ordering of the Ge atoms of the bulk. This is caused by the decreased hybridization between the Fe d and Ge p states in the Ge(Ⅰ)-(001) terminated surface. In addition, the spin magnetic moment of Ge atoms for Ge(Ⅱ)-(001) terminated surface are stronger than those of bulk and Ge(Ⅰ)-(001) terminated surface.

    国产一区亚洲一区在线观看| 国产熟女欧美一区二区| 美女cb高潮喷水在线观看| 女性被躁到高潮视频| 欧美精品亚洲一区二区| 亚洲精品456在线播放app| 又黄又爽又刺激的免费视频.| 国产精品不卡视频一区二区| 久久精品熟女亚洲av麻豆精品| 免费看不卡的av| 成人亚洲精品一区在线观看| 亚洲成色77777| av有码第一页| videosex国产| a级片在线免费高清观看视频| 不卡视频在线观看欧美| 久久鲁丝午夜福利片| 日韩熟女老妇一区二区性免费视频| 成人国语在线视频| 七月丁香在线播放| 国产欧美另类精品又又久久亚洲欧美| 黑人猛操日本美女一级片| 亚洲欧美日韩卡通动漫| 久久久久网色| 妹子高潮喷水视频| 少妇精品久久久久久久| 考比视频在线观看| 一级黄片播放器| 国产伦理片在线播放av一区| 国产伦理片在线播放av一区| 婷婷色综合www| 夜夜骑夜夜射夜夜干| 亚洲精品456在线播放app| 老女人水多毛片| 人妻 亚洲 视频| 99国产综合亚洲精品| 蜜臀久久99精品久久宅男| 日韩中文字幕视频在线看片| 亚洲精品乱久久久久久| 看免费成人av毛片| 精品国产露脸久久av麻豆| 人体艺术视频欧美日本| 只有这里有精品99| 国产精品成人在线| av福利片在线| 18+在线观看网站| 亚洲欧美成人精品一区二区| 亚洲av二区三区四区| 我的老师免费观看完整版| 亚洲美女黄色视频免费看| 桃花免费在线播放| 中文字幕最新亚洲高清| 亚洲,一卡二卡三卡| 日韩欧美精品免费久久| 欧美精品亚洲一区二区| 亚洲人成网站在线播| 99久久精品一区二区三区| 国产欧美亚洲国产| 日韩av不卡免费在线播放| 亚洲av成人精品一二三区| 在线观看三级黄色| 美女cb高潮喷水在线观看| 欧美精品高潮呻吟av久久| 免费观看在线日韩| 有码 亚洲区| 简卡轻食公司| 国产精品99久久久久久久久| 日韩不卡一区二区三区视频在线| 丝袜美足系列| 国产精品麻豆人妻色哟哟久久| 你懂的网址亚洲精品在线观看| 最新中文字幕久久久久| 日韩强制内射视频| 国产日韩一区二区三区精品不卡 | 人妻 亚洲 视频| 色94色欧美一区二区| 欧美日韩成人在线一区二区| 成人国产麻豆网| 国国产精品蜜臀av免费| 美女内射精品一级片tv| 一边摸一边做爽爽视频免费| 国产日韩欧美亚洲二区| 国产毛片在线视频| 天天操日日干夜夜撸| 欧美最新免费一区二区三区| 国产精品偷伦视频观看了| 女人精品久久久久毛片| 大码成人一级视频| 国产黄片视频在线免费观看| 18禁裸乳无遮挡动漫免费视频| 久久99精品国语久久久| 不卡视频在线观看欧美| 亚洲av成人精品一区久久| 嘟嘟电影网在线观看| 国产探花极品一区二区| 少妇 在线观看| 嫩草影院入口| 欧美性感艳星| 又粗又硬又长又爽又黄的视频| 国产精品三级大全| 亚洲欧美清纯卡通| 色婷婷久久久亚洲欧美| 免费看av在线观看网站| 国产精品久久久久久精品电影小说| 在现免费观看毛片| 秋霞在线观看毛片| 国产亚洲av片在线观看秒播厂| 国产毛片在线视频| 天天操日日干夜夜撸| 菩萨蛮人人尽说江南好唐韦庄| av天堂久久9| av电影中文网址| 嘟嘟电影网在线观看| 欧美变态另类bdsm刘玥| 全区人妻精品视频| 国产一区二区在线观看日韩| 免费av中文字幕在线| 男女国产视频网站| 国产免费一区二区三区四区乱码| 亚洲三级黄色毛片| 午夜av观看不卡| 一区二区三区四区激情视频| 国产高清三级在线| 2022亚洲国产成人精品| 亚洲成人手机| 99久久精品一区二区三区| 超色免费av| 91在线精品国自产拍蜜月| 丝瓜视频免费看黄片| 夜夜看夜夜爽夜夜摸| 日韩av免费高清视频| 水蜜桃什么品种好| 九草在线视频观看| 精品久久久久久久久av| 狠狠精品人妻久久久久久综合| 亚洲成色77777| 777米奇影视久久| 日韩 亚洲 欧美在线| 久久av网站| 少妇丰满av| 一本久久精品| 亚洲,欧美,日韩| 精品国产一区二区久久| av女优亚洲男人天堂| 国产又色又爽无遮挡免| 日韩制服骚丝袜av| 亚洲精品第二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 高清在线视频一区二区三区| 亚洲精品视频女| 欧美日韩视频高清一区二区三区二| 国产爽快片一区二区三区| 国产精品久久久久久久电影| 国产精品女同一区二区软件| 在线观看人妻少妇| 人妻夜夜爽99麻豆av| 国产精品欧美亚洲77777| 国产无遮挡羞羞视频在线观看| 色94色欧美一区二区| 午夜激情久久久久久久| 中文字幕制服av| 成年美女黄网站色视频大全免费 | 日本黄色日本黄色录像| 国产男女内射视频| 三上悠亚av全集在线观看| 九九在线视频观看精品| 丰满迷人的少妇在线观看| 内地一区二区视频在线| 视频在线观看一区二区三区| 一级毛片我不卡| 夜夜爽夜夜爽视频| 街头女战士在线观看网站| 国产免费视频播放在线视频| 国产精品人妻久久久久久| 国产极品粉嫩免费观看在线 | 国产高清不卡午夜福利| 精品久久国产蜜桃| av线在线观看网站| 亚洲一区二区三区欧美精品| 美女cb高潮喷水在线观看| 蜜桃在线观看..| 视频区图区小说| 王馨瑶露胸无遮挡在线观看| 两个人免费观看高清视频| 免费人妻精品一区二区三区视频| 亚洲国产最新在线播放| 久久狼人影院| av福利片在线| 国产乱来视频区| 女性生殖器流出的白浆| 成人漫画全彩无遮挡| videos熟女内射| 久久精品人人爽人人爽视色| 制服人妻中文乱码| 香蕉精品网在线| 国产成人精品在线电影| 国产欧美日韩综合在线一区二区| 在线免费观看不下载黄p国产| 人妻 亚洲 视频| 成人国产麻豆网| 黄色视频在线播放观看不卡| 高清午夜精品一区二区三区| 国产精品女同一区二区软件| 秋霞伦理黄片| 亚洲欧美成人综合另类久久久| 丝袜美足系列| 国产探花极品一区二区| 国产片内射在线| 国产在线一区二区三区精| 久久热精品热| 国产免费一区二区三区四区乱码| 久久久欧美国产精品| 草草在线视频免费看| a 毛片基地| 欧美激情国产日韩精品一区| 一级毛片电影观看| 91成人精品电影| 成人手机av| 久久99热这里只频精品6学生| 国产色爽女视频免费观看| 91aial.com中文字幕在线观看| 亚洲四区av| 亚洲精品美女久久av网站| 97超视频在线观看视频| 国产欧美日韩一区二区三区在线 | 国产精品久久久久久久久免| 久久人妻熟女aⅴ| 欧美日韩视频高清一区二区三区二| 午夜影院在线不卡| 少妇人妻 视频| 黄色视频在线播放观看不卡| 免费观看在线日韩| 免费观看无遮挡的男女| 在线播放无遮挡| 一本色道久久久久久精品综合| 热re99久久精品国产66热6| 伦理电影大哥的女人| 男女高潮啪啪啪动态图| 久久狼人影院| 日韩中文字幕视频在线看片| 精品人妻一区二区三区麻豆| 视频区图区小说| 少妇熟女欧美另类| 国产女主播在线喷水免费视频网站| 91在线精品国自产拍蜜月| 久久精品熟女亚洲av麻豆精品| 日本wwww免费看| 久久精品夜色国产| 精品国产露脸久久av麻豆| 日本av手机在线免费观看| 十八禁高潮呻吟视频| 国产精品无大码| a级毛片黄视频| 在线播放无遮挡| 国产精品成人在线| 国产精品欧美亚洲77777| 美女大奶头黄色视频| 欧美国产精品一级二级三级| 热re99久久精品国产66热6| 女人久久www免费人成看片| 一级毛片 在线播放| 国产成人免费无遮挡视频| 国产色爽女视频免费观看| 黄片无遮挡物在线观看| 大香蕉97超碰在线| 国产午夜精品一二区理论片| 如日韩欧美国产精品一区二区三区 | 大香蕉久久网| 欧美日韩在线观看h| 国产免费一区二区三区四区乱码| 精品人妻在线不人妻| 日韩精品有码人妻一区| 热99国产精品久久久久久7| 国产精品国产av在线观看| 欧美三级亚洲精品| 午夜激情久久久久久久| a级毛色黄片| 亚洲人成77777在线视频| 有码 亚洲区| 香蕉精品网在线| av.在线天堂| 精品久久久久久久久av| 久久国内精品自在自线图片| 国产不卡av网站在线观看| 一区二区av电影网| 亚洲精品日本国产第一区| 国产在线视频一区二区| 亚洲美女视频黄频| av电影中文网址| 国产日韩欧美在线精品| 国产免费现黄频在线看| 黑人高潮一二区| 免费大片18禁| 久久99热6这里只有精品| 黑丝袜美女国产一区| 国国产精品蜜臀av免费| 自线自在国产av| 肉色欧美久久久久久久蜜桃| 狂野欧美激情性xxxx在线观看| 狠狠精品人妻久久久久久综合| 国产永久视频网站| 啦啦啦视频在线资源免费观看| 美女国产高潮福利片在线看| 高清视频免费观看一区二区| 精品久久蜜臀av无| 亚洲精品中文字幕在线视频| 久久99一区二区三区| 国产av国产精品国产| 久久婷婷青草| av福利片在线| 女性被躁到高潮视频| 久久av网站| 日韩精品有码人妻一区| 日日爽夜夜爽网站| av黄色大香蕉| 三级国产精品欧美在线观看| a级毛片免费高清观看在线播放| 国产乱来视频区| 欧美三级亚洲精品| 啦啦啦在线观看免费高清www| 日韩一区二区三区影片| 日韩成人伦理影院| 日韩中字成人| 性色avwww在线观看| 国产av一区二区精品久久| 免费观看a级毛片全部| 插阴视频在线观看视频| 赤兔流量卡办理| 久久久久精品久久久久真实原创| 色婷婷久久久亚洲欧美| 欧美+日韩+精品| 日日撸夜夜添| 水蜜桃什么品种好| 大香蕉久久网| 国产欧美另类精品又又久久亚洲欧美| 性色av一级| 国产精品久久久久久久电影| 国产高清国产精品国产三级| 国产在线一区二区三区精| 国产黄色免费在线视频| 91精品伊人久久大香线蕉| 国产毛片在线视频| 精品少妇久久久久久888优播| 色5月婷婷丁香| 男女边吃奶边做爰视频| 国产av一区二区精品久久| 有码 亚洲区| 精品视频人人做人人爽| 一级毛片电影观看| 亚洲欧美成人精品一区二区| av一本久久久久| 国产深夜福利视频在线观看| 午夜日本视频在线| 久久午夜综合久久蜜桃| 丝袜喷水一区| 欧美日韩成人在线一区二区| 夜夜骑夜夜射夜夜干| 久久久久久久久久成人| 2018国产大陆天天弄谢| 蜜桃久久精品国产亚洲av| 久久久亚洲精品成人影院| 好男人视频免费观看在线| 人人妻人人爽人人添夜夜欢视频| 中文精品一卡2卡3卡4更新| 成年人午夜在线观看视频| 老司机影院毛片| 久久精品久久精品一区二区三区| av在线老鸭窝| 亚洲精品,欧美精品| 免费观看的影片在线观看| 久久久精品免费免费高清| 色婷婷av一区二区三区视频| 蜜桃国产av成人99| 成人免费观看视频高清| 日韩中文字幕视频在线看片| 国产精品久久久久久久久免| 蜜臀久久99精品久久宅男| 高清欧美精品videossex| 精品亚洲成国产av| 精品久久久久久久久亚洲| 狂野欧美白嫩少妇大欣赏| 你懂的网址亚洲精品在线观看| 人人妻人人添人人爽欧美一区卜| 大又大粗又爽又黄少妇毛片口| 草草在线视频免费看| 亚洲成人一二三区av| 人成视频在线观看免费观看| videossex国产| 精品少妇黑人巨大在线播放| 97在线视频观看| 啦啦啦啦在线视频资源| 人妻夜夜爽99麻豆av| 免费观看性生交大片5| 免费人成在线观看视频色| av免费在线看不卡| 三级国产精品片| 日韩欧美一区视频在线观看| av在线观看视频网站免费| 啦啦啦中文免费视频观看日本| 一级爰片在线观看| 亚洲欧洲国产日韩| 国产一级毛片在线| 男女啪啪激烈高潮av片| 狂野欧美激情性xxxx在线观看| 男人操女人黄网站| 18禁在线无遮挡免费观看视频| 精品亚洲成国产av| 街头女战士在线观看网站| 精品人妻熟女av久视频| 伦理电影大哥的女人| 校园人妻丝袜中文字幕| 国产日韩欧美在线精品| 亚州av有码| 一级爰片在线观看| 精品一区二区免费观看| 丰满饥渴人妻一区二区三| 国产免费福利视频在线观看| 毛片一级片免费看久久久久| 亚洲精品一二三| 国产成人91sexporn| 性色av一级| 两个人的视频大全免费| 毛片一级片免费看久久久久| 91精品三级在线观看| 啦啦啦在线观看免费高清www| 性色av一级| 天天躁夜夜躁狠狠久久av| 插阴视频在线观看视频| 日韩,欧美,国产一区二区三区| 日韩强制内射视频| 国产色婷婷99| 色婷婷av一区二区三区视频| 中文字幕亚洲精品专区| 欧美日韩成人在线一区二区| 国产老妇伦熟女老妇高清| 精品国产露脸久久av麻豆| 精品少妇内射三级| 国产毛片在线视频| 国产精品欧美亚洲77777| 欧美精品高潮呻吟av久久| 精品久久久久久电影网| 美女视频免费永久观看网站| 亚洲av国产av综合av卡| 最近手机中文字幕大全| 波野结衣二区三区在线| 国产av国产精品国产| 免费大片黄手机在线观看| 亚洲婷婷狠狠爱综合网| 成人毛片60女人毛片免费| 久久精品国产亚洲网站| 亚洲欧洲国产日韩| 精品一区二区三卡| 人人澡人人妻人| av有码第一页| 夜夜骑夜夜射夜夜干| 日韩一本色道免费dvd| 另类精品久久| 亚洲国产av影院在线观看| 欧美一级a爱片免费观看看| av一本久久久久| 日韩,欧美,国产一区二区三区| 亚洲国产最新在线播放| 一级,二级,三级黄色视频| 丝袜在线中文字幕| 免费不卡的大黄色大毛片视频在线观看| 成年女人在线观看亚洲视频| 日本av手机在线免费观看| 色网站视频免费| 不卡视频在线观看欧美| 亚洲欧洲日产国产| 黄色怎么调成土黄色| 国产成人精品一,二区| 国产午夜精品久久久久久一区二区三区| 亚洲婷婷狠狠爱综合网| 国产免费又黄又爽又色| 欧美人与性动交α欧美精品济南到 | 欧美日韩在线观看h| 在线免费观看不下载黄p国产| 满18在线观看网站| 热re99久久国产66热| 九草在线视频观看| 91精品国产国语对白视频| 亚洲久久久国产精品| 午夜激情久久久久久久| 精品视频人人做人人爽| 亚洲综合色网址| 国产色爽女视频免费观看| 黑人高潮一二区| 国产淫语在线视频| 一级毛片电影观看| 赤兔流量卡办理| 男女国产视频网站| 大又大粗又爽又黄少妇毛片口| 中文精品一卡2卡3卡4更新| 免费少妇av软件| 各种免费的搞黄视频| 国产色婷婷99| 大片电影免费在线观看免费| 老女人水多毛片| 国产精品国产三级国产av玫瑰| 丝瓜视频免费看黄片| 日韩制服骚丝袜av| 久久精品国产亚洲网站| 国产永久视频网站| 简卡轻食公司| 我的老师免费观看完整版| 中文字幕最新亚洲高清| 黑人欧美特级aaaaaa片| 18+在线观看网站| 欧美精品国产亚洲| 欧美3d第一页| 日本免费在线观看一区| 国产片特级美女逼逼视频| 交换朋友夫妻互换小说| 夫妻午夜视频| 热99久久久久精品小说推荐| 日本av手机在线免费观看| 欧美最新免费一区二区三区| 观看美女的网站| 五月开心婷婷网| 一区二区三区免费毛片| 你懂的网址亚洲精品在线观看| 日本欧美国产在线视频| 成年女人在线观看亚洲视频| 国产亚洲最大av| 伦精品一区二区三区| 久久 成人 亚洲| 美女脱内裤让男人舔精品视频| 亚洲av免费高清在线观看| 亚洲激情五月婷婷啪啪| 亚洲av综合色区一区| 久久久久精品久久久久真实原创| 精品亚洲成a人片在线观看| 亚洲国产欧美在线一区| 高清在线视频一区二区三区| 日韩av免费高清视频| 高清视频免费观看一区二区| 久久青草综合色| 在线天堂最新版资源| 高清不卡的av网站| 成人午夜精彩视频在线观看| 亚洲国产精品一区三区| 久久鲁丝午夜福利片| av一本久久久久| 欧美+日韩+精品| 国产成人免费无遮挡视频| 人体艺术视频欧美日本| av不卡在线播放| 伦理电影大哥的女人| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久久久电影| 国产片特级美女逼逼视频| 亚洲av中文av极速乱| 成人二区视频| 亚洲欧洲国产日韩| 久久国产精品男人的天堂亚洲 | 亚洲精品自拍成人| 亚洲综合精品二区| 亚洲精品视频女| 18禁动态无遮挡网站| 亚洲精品乱久久久久久| 80岁老熟妇乱子伦牲交| 91在线精品国自产拍蜜月| 大香蕉久久网| 多毛熟女@视频| 精品午夜福利在线看| h视频一区二区三区| 99九九线精品视频在线观看视频| 伦精品一区二区三区| 啦啦啦视频在线资源免费观看| 久久精品人人爽人人爽视色| 一级毛片我不卡| 波野结衣二区三区在线| 国产 精品1| 日本午夜av视频| 天天影视国产精品| 国产综合精华液| 精品国产露脸久久av麻豆| 免费观看的影片在线观看| 在线观看免费日韩欧美大片 | 69精品国产乱码久久久| 中文字幕亚洲精品专区| 七月丁香在线播放| 国产精品国产av在线观看| 久久韩国三级中文字幕| 满18在线观看网站| 热re99久久精品国产66热6| 26uuu在线亚洲综合色| 欧美精品高潮呻吟av久久| 亚洲av电影在线观看一区二区三区| 久久久久国产网址| 在现免费观看毛片| 中文欧美无线码| 日本91视频免费播放| 亚洲国产精品一区三区| 99精国产麻豆久久婷婷| 久久精品夜色国产| 视频区图区小说| 亚洲精品久久成人aⅴ小说 | 日本91视频免费播放| 日韩强制内射视频| 伦理电影大哥的女人| 午夜激情av网站| 精品久久久久久久久亚洲| 黄色欧美视频在线观看| 成人18禁高潮啪啪吃奶动态图 | 自拍欧美九色日韩亚洲蝌蚪91| 国产毛片在线视频| 欧美日韩国产mv在线观看视频| 日韩一本色道免费dvd| 国产精品国产三级国产专区5o| 亚洲伊人久久精品综合| 久久精品国产a三级三级三级| 国产亚洲午夜精品一区二区久久| 精品人妻熟女毛片av久久网站|