• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameter matching of hydraulic balancing circuit based on AMESim

    2022-11-28 02:09:48HENingningZHANGPingZHANGSenSUNTianyu

    HE Ningning, ZHANG Ping, ZHANG Sen, SUN Tianyu

    (School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)

    Abstract: In order to improve the stability of the hydraulic balancing circuit, taking a certain type of vehicular radar flip device as the research object, the influence of different wind load, counterbalance valve parameters and hydraulic pump flow pulsation on the system flip process are simulated and analyzed. Through the force analysis of the flipping device, the total load curve of the flip cylinder is obtained by using MATLAB simulation. The simulation model of balancing circuit and plane flip device are built by AMESim software, and the reasonable parameter matching relationship is obtained by specific simulation analysis. The simulation results show that when the wind load is to the left and decreases, the system runs more stably. When wind load works in the right direction, the load on the piston rod of the hydraulic cylinder decreases but the jitter amplitude increases. At the same time, the stability of the balancing circuit can be effectively improved by properly reducing the damping diameter of the counterbalance valve, setting the pilot ratio to 4∶1 and using the hydraulic pump with small pulsation. The optimized parameter matching relationship can not only meet the requirements of typical system conditions and responses, but also improve the performance of the circuit.

    Key words: balancing circuit; parameter matching; AMESim; counterbalance valve; simulation

    0 Introduction

    The balancing circuit is one of the most commonly used circuits in hydraulic systems. It is used in engineering, construction, metallurgy and other mechanical fields, especially under negative load conditions to balance load gravity to achieve stable system operation. The matching performance of the circuit has a great influence on the system[1]. If the matching is unreasonable, the system will experience jitter, motion stall, excessive control pressure and inaccurate positioning, which will bring adverse effects on equipment operation safety, system energy consumption, boom and frame deformation, etc[2]. Many scholars have conducted relevant studies on the steady-state characteristics of the balancing circuit from different angles and with different methods[3-4]. The dynamic characteristics of the hydraulic counterbalance valve are studied with the method of parameter optimization[5]. AMESim is used to analyze the influence of the counterbalance valve on the jitter phenomenon of the crane lifting system[6]. The dynamic characteristics of threaded cartridge valve are simulated and analyzed through AMESim software[7-8]. The influence of counterbalance valve spring stiffness, orifice structure parameters and motor inlet and outlet controlled cavity volume on the stability of hydraulic motor circuit is studied[9]. At present, most of the research focuses on the performance of the counterbalance valve and the impact of the counterbalance valve parameters on the circuit[10-12]. However, there is no systematic research on the influence of the load change and the parameter change of other circuit components on the system performance. A certain type of vehicular radar flip system is taken as an example. The system model is established by using AMESim software, and the influences of wind load, counterbalance valve parameters and hydraulic pump pulsation on the stability of the circuit are analyzed. The parameter matching of the circuit is studied to improve the stability of the balancing circuit.

    1 Working condition analysis of hydraulic system and working principle of balancing circuit

    1.1 Working condition analysis of hydraulic system

    The schematic diagram of a certain type of vehicular radar flip device is shown in Fig.1, which is composed of a flip cylinder, a mechanical arm and a radar antenna. The flipping angle of the mechanical arm is controlled by the extension of the hydraulic cylinder piston rod. The angle between the mechanical arm and the horizontal plane is 30°, and it rotates clockwise to 110° to reach the working position. After the work is completed, the flip cylinder is controlled to rotate to the initial position. In the flipping process, the load on the piston rod of the hydraulic cylinder changes constantly with the change of the angle of the mechanical arm. When the flip exceeds 90° and turning motion to the initial position, there is a negative load condition. If no technical measures are taken, the mechanical arm will drop at an excessive velocity. Therefore, two-way counterbalance valve should be set in the circuit. In addition, wind load is an important part of the system load, the change of overturning moment caused by high wind load will affect the circuit control accuracy and stability. In this paper, it is set that the wind load is positive to the right and negative to the left.

    1—Flip hydraulic cylinder; 2—Mechanical arm; 3—Radar antenna

    According to the wind load direction, the system is divided into three working conditions, and the stress situation is shown in Fig.2.

    When there is no wind load during the flipping process, as shown in Fig.2(a), the torque balance equation is

    L3Fcosαsinβ+L3Fsinαcosβ-W(L2+L3)cosβ=0.

    (1)

    When the wind load direction is to the right during the flipping process, as shown in Fig.2(b), the torque balance equation is

    L3Fcosαsinβ+L3Fsinαcosβ-W(L2+L3)cosβ+

    F1(L1+L2+L3)sinβ=0.

    (2)

    (a) No wind load

    When the wind load direction is to the left during the flipping process, as shown in Fig.2(c), the torque balance equation is

    L3Fcosαsinβ+L3Fsinαcosβ-W(L2+L3)cosβ-

    F1(L1+L2+L3)sinβ=0,

    (3)

    whereFrepresents the force on the piston rod of the hydraulic cylinder;F1represents wind load;L1represents the distance from the top of the mechanical arm to the center of gravity, the size is 1 000 mm;L2represents the distance from the center of gravity to the hinge point of the flip hydraulic cylinder and the mechanical arm, the size is 1 382 mm;L3represents the distance from the hinge point of the flip hydraulic cylinder and the mechanical arm to the bottom end of the mechanical arm, the size is 618 mm;αrepresents the initial angle between the flip hydraulic cylinder and the horizontal plane;βrepresents the angle between the mechanical arm and the horizontal plane, the value range is 30°to 110°;Wrepresents the total gravity of the system, the size is 40 kN. The relationship betweenαandβis

    (4)

    The load on the piston rod of the cylinder is simulated by MATLAB, and the load curve is shown in Fig.3. It can be seen from the simulation curve that the load on the piston rod of the cylinder under the three working conditions gradually decreases with the increase of the turning angle of the manipulator. The maximum positive load is 203 868 N, and the maximum negative load is 88 885 N.

    Fig.3 Variation of load curves

    1.2 Working principle of balancing circuit

    The schematic diagram of a certain type of vehicular radar hydraulic system is shown in Fig.4[13-14]. The balancing circuit consists of hydraulic cylinder, counterbalance valves,Ytype reversing valve, relief valve and hydraulic pump. The counterbalance valve structure is shown in Fig.5, which is mainly composed of main valve core, check valve core, pressure adjusting spring and other components. The counterbalance valve 1 is on the side without rod cavity of hydraulic cylinder, and the counterbalance valve 2 is on the side with rod cavity of hydraulic cylinder. The working principle of the balancing circuit is as follows.

    In the process of flipping to the specified position, the counterbalance valve 1 is equivalent to a check valve, and the counterbalance valve 2 is equivalent to a sequence valve. A part of the oil enters portathrough the right position of the reversing valve, overcomes the spring force of the check valve core, enters the rodless cavity of the hydraulic cylinder, and pushes the piston to move. A part of the oil acts on the main valve core of the counterbalance valve 2 through the pilot portc. The main valve core of counterbalance valve 2 opens under the combined action of pilot oil pressure, rod chamber oil pressure and main valve core spring force, and returns to the tank from portd. In the process of turning to the initial position, the functions of counterbalance valve 1 and counterbalance valve 2 are opposite to the flipping process. The oil enters portdthrough the left position of the reversing valve, portbis the pilot port, and returns to the tank from porta. When the reversing valve is placed in the neutral position, it can be used in conjunction with the counterbalance valve to keep the hydraulic cylinder at any position, which has a good pressure-keeping effect.

    1—Hydraulic pump; 2—Relief valve; 3—Reversing valve; 4—Counterbalance valve; 5—Hydraulic cylinder

    1—Pressure regulating screw; 2—Pressure adjusting nut; 3—Pressure adjusting spring; 4—Main valve core; 5—Check valve core; 6—Reset spring

    2 Balancing circuit simulation model

    According to the hydraulic system principle of a certain type of vehicular radar flip device, the counterbalance valve and axial plunger pump model are built by using the HCD (Hydraulic component design) library of AMESim software, and the plane mechanism library is used to build the system flip device model. The internal gear pump and other hydraulic components are selected from the standard hydraulic library model to build the system. The built system simulation model is shown in Fig.6, and the plunger pump model is shown in Fig.7. Set the parameters of the model according to the actual parameters of the circuit. The cylinder diameter is 140 mm, the piston rod diameter of the hydraulic cylinder is 100 mm, and the cylinder stroke is 794 mm.

    1—Hydraulic pump; 2—Reversing valve; 3—Control signal; 4—Counterbalance valve; 5—Hydraulic cylinder; 6—Load application module

    Fig.7 Plunger pump model

    3 Dynamic performance simulation of balancing circuit

    The dynamic characteristics of the circuit are achieved by simulation. The simulation time is 130 s, including flipping stage, stay stage and turning motion stage. Specific simulation and analysis of the influence of wind load changes, counterbalance valve parameters and hydraulic pump flow pulsation on the performance of the balancing circuit.

    3.1 Impact of wind load on the balancing circuit

    3.1.1 Influence of wind load size on the balancing circuit

    Set three working conditions, the wind load is to the left (that is in the windward state) and the size is 20 kN, 10 kN and no wind load. It can be seen from Figs.8 and 9 that the size of the wind load has a significant impact on the stability of the system. In the process of flipping, with the continuous decrease of wind load on the system, the load on the piston rod of the hydraulic cylinder decreases, the displacement of the main valve core of the counterbalance valve 2 decreases, and the velocity fluctuation of the hydraulic cylinder piston rod becomes smaller and smaller. It can be seen that the system is more stable when the wind load is reduced.

    Fig.8 Displacement curves of counterbalance valve 2 main valve core

    Fig.9 Velocity curves of hydraulic cylinder piston rod

    3.1.2 Influence of wind load direction on balancing circuit

    There are three working conditions: wind load to the left is 5 kN, no wind load and wind load to the right is 5 kN. During the flipping process, with the change of the angle of the mechanical arm, the load on the piston rod of the hydraulic cylinder also changes, and the load on the piston rod decreases when the wind load changes from left to right. It can be seen from Fig.10 that with the change of wind load from left to right, the displacement of the main valve core of the counterbalance valve 2 decreases. It can be seen from Fig.11 that when the wind load is to the left and decreases, the load on the piston rod of the hydraulic cylinder decreases and the speed jitter amplitude decreases. However, when the wind load is to the right and increases, the load on the piston rod of the hydraulic cylinder decreases and the speed jitter amplitude increases. It shows the direction of the wind load has a great influence on the balancing circuit.

    Fig.10 Displacement curves of counterbalance valve 2 main valve core

    Fig.11 Velocity curves of hydraulic cylinder piston rod

    3.2 Influence of counterbalance valve parameters on the balancing circuit

    3.2.1 Control influence of port damping diameter

    The diameter of the damping hole of the control oil port is 1 mm, 0.5 mm and 0.2 mm, respectively, and the influence of different orifice diameters on the stability of the circuit is studied. It can be seen from the simulation curves of Figs.12 and 13 that as the damping diameter of the control port decreases, both the displacement of the main valve core of the counterbalance valve 2 during the flipping process and the overshoot of the movement velocity of the hydraulic cylinder piston rod in the turning process increase. The time for the main valve core to reach the stable opening degree is shortened, and the velocity of the hydraulic cylinder piston rod is faster to reach the stable state, but too small diameter will lead to the delay of the system and the increase of the velocity jitter of the hydraulic cylinder piston rod. Therefore, appropriately reducing the control port damping diameter can effectively improve the stability of the counterbalance valve, so the damping diameter of control port is 0.5 mm.

    Fig.12 Displacement curves of counterbalance valve 2 main valve core in flipping stage

    Fig.13 Velocity curves of piston rod of hydraulic cylinder in turning motion stage

    3.2.2 Influence of size of pilot ratio

    By setting the size of the counterbalance valve oil cavity and the spring cavity, the pilot ratio of the counterbalance valve is set to 5∶1, 4∶1 and 3∶1, respectively. The movement velocity of hydraulic cylinder piston rod and the displacement curve of counterbalance valve 2 main valve core under different pilot ratio are obtained by simulation. It can be seen from Figs.14 and 15 that when the pilot ratio is 4∶1, the running speed of the piston rod of the hydraulic cylinder is relatively stable. The number of jitter and overshoot of the main valve core are reduced at the same time, and the time to reach the stable opening is also shortened, so the pilot ratio is set to 4∶1 can effectively improve circuitstability.

    Fig.14 Velocity curves of hydraulic cylinder piston rod

    Fig.15 Displacement curves of counterbalance valve 2 main valve core

    3.3 Influence of hydraulic pump pulsation on balancing circuit

    The internal gear pump and axial plunger pump are used in the simulation circuit. The outlet flow curves of the hydraulic pump and the displacement curves of the main valve core of the counterbalance valve 2 are obtained as shown in Figs.16 and 17.

    Fig.16 Flow curves of pump outlet

    Fig.17 Displacement curves of counterbalance valve 2 main valve core

    According to the simulation results, it can be concluded that the flow pulsation of the gear pump is higher than that of the axial plunger pump. When the flow pulsation of the hydraulic pump decreases in the initial flipping process, the overshoot of the main valve core of the counterbalance valve 2 changes little, and the time for the main valve core to reach the stable opening degree is reduced from 2.1 s to 1.3 s. Smaller flow pulsation can make the circuit reach stable state faster.

    3.4 System dynamic performance analysis

    Reasonable parameter matching is carried out according to the simulation results.Under different working conditions, the load variation curves of the hydraulic cylinder piston rod during the flipping stage is shown in Fig.18, which is basically consistent with the theoretical load curve shown in Fig.3. It can be seen from Figs.19 and 20 that the hydraulic cylinder piston rod moves at a constant velocity in the process of flipping, stays working after flipping to a certain angle, and finally turns back to the initial state smoothly.

    Fig.18 Force curves of piston rod of hydraulic cylinder

    Fig.19 Displacement curve of hydraulic cylinder piston rod

    The displacement of the counterbalance valve during the flipping stage is shown in Figs.21 and 22. The check valve core of counterbalance valve 1 is open, and the main valve core is closed. The check valve core of balancing valve 2 is closed, and the main valve core is open. As the load decreases, the valve core displacement decreases gradually, and the turning motion stage is reversed. After the parameters are matched, the hydraulic cylinder piston rod velocity oscillation decreases, the main valve core opens normally, and the system runs stably and has good performance.

    Fig.20 Velocity curves of hydraulic cylinder piston rod

    Fig.21 Displacement curves of check valve core

    Fig.22 Displacement curves of counterbalance valve main valve core

    4 Conclusions

    1) The simulation model of the balancing circuit and the plane flip mechanism is built by AMESim software, and the force curves of the piston rod of the hydraulic cylinder under different working conditions are simulated and analyzed for a certain type of vehicle radar flip device. The results are basically consistent with the load curve of the hydraulic cylinder piston rod under different wind loads obtained by MATLAB simulation.

    2) Through the simulation analysis, it is found that the magnitude and direction of wind load have great influence on the circuit. When the wind load direction is to the left and the size is different, the load on the piston rod of the hydraulic cylinder decreases with the decrease of the wind load, and the hydraulic cylinder runs more smoothly. When the wind load direction is different, the comparison of the wind load to the right and the no wind load conditions shows that the load on the piston rod of the hydraulic cylinder decreases, but the vibration amplitude of the hydraulic cylinder increases, and the circuit stability becomes worse. The system can operate stably under a certain range of wind load.

    3) It can improve the movement stability of the hydraulic cylinder piston rod by appropriately reducing the diameter of the orifice of the control port of the counterbalance valve and setting the pilot ratio to 4∶1. At the same time, the oil pulsation output by the hydraulic pump is directly related to the stability of the circuit. A pump with a smaller pulsation can shorten the time for the system to reach a stable state. After reasonable parameter matching, the system performance is improved.

    国产精品久久久久久av不卡| 夫妻性生交免费视频一级片| 亚洲国产精品成人久久小说| 两个人视频免费观看高清| 精品不卡国产一区二区三区| 欧美变态另类bdsm刘玥| 99热这里只有精品一区| 久久精品夜色国产| 男人和女人高潮做爰伦理| 久久午夜福利片| 最近最新中文字幕免费大全7| 国产不卡一卡二| 亚洲熟女精品中文字幕| 国产三级在线视频| 亚洲精品视频女| 国产精品国产三级专区第一集| 久久热精品热| 国产爱豆传媒在线观看| av网站免费在线观看视频 | 最近中文字幕2019免费版| 国产午夜精品一二区理论片| av专区在线播放| 十八禁国产超污无遮挡网站| 欧美 日韩 精品 国产| 一级黄片播放器| 国产精品国产三级国产专区5o| 麻豆乱淫一区二区| 麻豆成人午夜福利视频| 午夜亚洲福利在线播放| 一级毛片久久久久久久久女| 男女边吃奶边做爰视频| 亚洲怡红院男人天堂| 国产精品国产三级专区第一集| 日本-黄色视频高清免费观看| 一级毛片黄色毛片免费观看视频| 免费无遮挡裸体视频| 国产免费又黄又爽又色| 中文字幕亚洲精品专区| 青春草国产在线视频| 人妻系列 视频| 国产精品熟女久久久久浪| 天天躁日日操中文字幕| 午夜福利在线在线| 国产伦一二天堂av在线观看| 成人欧美大片| 如何舔出高潮| 午夜福利在线观看吧| 91久久精品国产一区二区三区| 国产精品人妻久久久影院| 亚洲伊人久久精品综合| 免费观看a级毛片全部| 久久久午夜欧美精品| 纵有疾风起免费观看全集完整版 | 久久精品国产自在天天线| av在线观看视频网站免费| 天天躁夜夜躁狠狠久久av| 成人毛片60女人毛片免费| 你懂的网址亚洲精品在线观看| 熟女电影av网| 精品熟女少妇av免费看| 日本免费在线观看一区| 欧美日韩综合久久久久久| 精品国产一区二区三区久久久樱花 | 最近视频中文字幕2019在线8| 一级a做视频免费观看| 最近视频中文字幕2019在线8| 综合色丁香网| 国产高清有码在线观看视频| 亚洲欧美日韩卡通动漫| 一个人观看的视频www高清免费观看| 深爱激情五月婷婷| 欧美性猛交╳xxx乱大交人| 精品一区在线观看国产| 深爱激情五月婷婷| 卡戴珊不雅视频在线播放| 插阴视频在线观看视频| 亚洲国产精品成人久久小说| 精品人妻熟女av久视频| 成人性生交大片免费视频hd| 三级毛片av免费| 国产成人a∨麻豆精品| 欧美zozozo另类| 女人十人毛片免费观看3o分钟| 乱人视频在线观看| 午夜亚洲福利在线播放| av在线天堂中文字幕| 一级毛片电影观看| 97超视频在线观看视频| 亚洲怡红院男人天堂| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费黄频网站在线观看国产| 老师上课跳d突然被开到最大视频| videos熟女内射| 午夜免费激情av| 国产免费视频播放在线视频 | 亚洲精品一区蜜桃| 国产综合懂色| 天堂av国产一区二区熟女人妻| 国产又色又爽无遮挡免| 亚洲精华国产精华液的使用体验| 精品久久久久久久人妻蜜臀av| 亚洲精品一二三| 亚洲经典国产精华液单| 久久久久久久久久人人人人人人| 大香蕉久久网| 最近中文字幕2019免费版| 身体一侧抽搐| 日产精品乱码卡一卡2卡三| 亚洲成人精品中文字幕电影| 精华霜和精华液先用哪个| 高清日韩中文字幕在线| 色哟哟·www| 国产黄色小视频在线观看| 91久久精品国产一区二区成人| 一个人观看的视频www高清免费观看| 欧美成人一区二区免费高清观看| 啦啦啦中文免费视频观看日本| 少妇猛男粗大的猛烈进出视频 | 免费观看性生交大片5| 毛片一级片免费看久久久久| 午夜免费激情av| 国产片特级美女逼逼视频| 亚洲成人一二三区av| 精品人妻一区二区三区麻豆| 老师上课跳d突然被开到最大视频| 中文字幕人妻熟人妻熟丝袜美| 国产色婷婷99| 国产午夜精品一二区理论片| 不卡视频在线观看欧美| 精品酒店卫生间| 熟女电影av网| 中文欧美无线码| 高清日韩中文字幕在线| 97在线视频观看| 成人午夜高清在线视频| av国产久精品久网站免费入址| 有码 亚洲区| 亚洲精品色激情综合| 久久久精品欧美日韩精品| 亚洲精品影视一区二区三区av| 国产成人a∨麻豆精品| 成人无遮挡网站| 成人性生交大片免费视频hd| 蜜桃久久精品国产亚洲av| 欧美潮喷喷水| 大香蕉久久网| 99视频精品全部免费 在线| 日产精品乱码卡一卡2卡三| 精品一区二区免费观看| 国产国拍精品亚洲av在线观看| 欧美性感艳星| 午夜福利在线观看吧| 亚洲最大成人手机在线| 国产精品美女特级片免费视频播放器| 99久久人妻综合| 赤兔流量卡办理| 一个人看视频在线观看www免费| 精品国产一区二区三区久久久樱花 | 国产成人精品福利久久| 肉色欧美久久久久久久蜜桃 | 人妻一区二区av| 九草在线视频观看| 夫妻性生交免费视频一级片| 男女边摸边吃奶| 在线观看一区二区三区| 国产成人福利小说| 国产亚洲最大av| 国产亚洲av嫩草精品影院| 精品欧美国产一区二区三| 女人被狂操c到高潮| 又黄又爽又刺激的免费视频.| 亚洲国产日韩欧美精品在线观看| 白带黄色成豆腐渣| 亚洲精品日韩在线中文字幕| 国产一区二区在线观看日韩| 一级毛片电影观看| 成人午夜高清在线视频| 97精品久久久久久久久久精品| 久久精品久久久久久久性| 国产精品麻豆人妻色哟哟久久 | 国产精品日韩av在线免费观看| 久久久久久久午夜电影| 精品一区二区三区人妻视频| 免费电影在线观看免费观看| 亚洲四区av| 真实男女啪啪啪动态图| 岛国毛片在线播放| 亚洲aⅴ乱码一区二区在线播放| 成人无遮挡网站| 欧美日韩亚洲高清精品| 欧美一级a爱片免费观看看| 欧美变态另类bdsm刘玥| 亚洲av二区三区四区| 日日啪夜夜撸| 五月玫瑰六月丁香| 我要看日韩黄色一级片| 国产在视频线精品| 久久久久久久大尺度免费视频| 中文字幕久久专区| 精品酒店卫生间| 麻豆久久精品国产亚洲av| 97人妻精品一区二区三区麻豆| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品自拍成人| 免费av毛片视频| 国产av不卡久久| 免费观看无遮挡的男女| 免费在线观看成人毛片| 亚洲人成网站高清观看| kizo精华| 国产成人精品久久久久久| 久久久成人免费电影| 亚洲av电影在线观看一区二区三区 | 大陆偷拍与自拍| 婷婷色麻豆天堂久久| 午夜激情久久久久久久| 午夜福利在线观看吧| 麻豆av噜噜一区二区三区| 又黄又爽又刺激的免费视频.| 国产成人精品福利久久| 久久久午夜欧美精品| 亚洲av成人av| 精品久久久久久久末码| 极品教师在线视频| 少妇的逼水好多| 精品国产一区二区三区久久久樱花 | 边亲边吃奶的免费视频| 97人妻精品一区二区三区麻豆| 亚洲内射少妇av| 嫩草影院入口| 女的被弄到高潮叫床怎么办| 秋霞伦理黄片| 日本黄大片高清| 九九久久精品国产亚洲av麻豆| 少妇猛男粗大的猛烈进出视频 | 亚洲av免费高清在线观看| 免费黄网站久久成人精品| 中文字幕av在线有码专区| 三级男女做爰猛烈吃奶摸视频| 亚洲最大成人手机在线| 少妇熟女欧美另类| 国产精品人妻久久久久久| 2021天堂中文幕一二区在线观| 一级毛片电影观看| 国产在视频线精品| 尤物成人国产欧美一区二区三区| 搞女人的毛片| 国产三级在线视频| 国产精品日韩av在线免费观看| 亚洲最大成人手机在线| 99热这里只有精品一区| 欧美高清成人免费视频www| 身体一侧抽搐| 国产一区亚洲一区在线观看| 大片免费播放器 马上看| 欧美极品一区二区三区四区| 欧美人与善性xxx| 亚洲精品亚洲一区二区| 亚洲精品国产成人久久av| 麻豆成人午夜福利视频| 久久精品熟女亚洲av麻豆精品 | 亚洲av.av天堂| 最近中文字幕高清免费大全6| 国产视频内射| 波多野结衣巨乳人妻| 日韩一本色道免费dvd| 日韩欧美三级三区| 一区二区三区乱码不卡18| 99久久人妻综合| 黄色日韩在线| 成人国产麻豆网| 日日摸夜夜添夜夜爱| 午夜精品国产一区二区电影 | 中文字幕免费在线视频6| 国内精品一区二区在线观看| 亚洲精品视频女| 久久久久久久午夜电影| 国产美女午夜福利| 国产色婷婷99| 国产高潮美女av| 一级a做视频免费观看| 午夜爱爱视频在线播放| 成人一区二区视频在线观看| 国产一级毛片七仙女欲春2| 一级片'在线观看视频| 好男人在线观看高清免费视频| 亚洲人成网站高清观看| 永久网站在线| 国产黄a三级三级三级人| 国产成人aa在线观看| 久久久久久久久中文| 亚洲精品乱码久久久久久按摩| 有码 亚洲区| 欧美xxxx性猛交bbbb| 国产探花在线观看一区二区| 天堂中文最新版在线下载 | 亚洲精品aⅴ在线观看| 在线免费观看的www视频| 国内精品宾馆在线| 日韩视频在线欧美| 人妻夜夜爽99麻豆av| 2018国产大陆天天弄谢| 久99久视频精品免费| 国产色婷婷99| 亚洲精品自拍成人| 日韩强制内射视频| 国产麻豆成人av免费视频| 久久久欧美国产精品| 男女边摸边吃奶| 我要看日韩黄色一级片| 三级国产精品片| 欧美激情国产日韩精品一区| 国产黄频视频在线观看| 在线观看美女被高潮喷水网站| 亚洲精品中文字幕在线视频 | 蜜桃久久精品国产亚洲av| av天堂中文字幕网| 久久久久久久久大av| 一级毛片我不卡| 亚洲丝袜综合中文字幕| 天天躁夜夜躁狠狠久久av| 国产高清国产精品国产三级 | 深夜a级毛片| 青青草视频在线视频观看| 久热久热在线精品观看| 久久精品国产亚洲av涩爱| 3wmmmm亚洲av在线观看| 亚洲婷婷狠狠爱综合网| 国产高清三级在线| av网站免费在线观看视频 | 日韩亚洲欧美综合| 国产高清三级在线| 日本黄大片高清| 夫妻午夜视频| av女优亚洲男人天堂| 国产在线男女| 国产 一区精品| 色播亚洲综合网| 中文字幕人妻熟人妻熟丝袜美| 国产免费福利视频在线观看| 午夜激情久久久久久久| 能在线免费观看的黄片| 中文资源天堂在线| 少妇丰满av| 精品久久久精品久久久| 精品久久久噜噜| 亚洲激情五月婷婷啪啪| 国产精品爽爽va在线观看网站| 国产精品一二三区在线看| 亚洲欧美日韩东京热| 亚洲国产av新网站| 大香蕉97超碰在线| 欧美97在线视频| 街头女战士在线观看网站| 欧美成人a在线观看| 免费少妇av软件| 久久精品人妻少妇| 亚洲欧美日韩卡通动漫| 蜜桃久久精品国产亚洲av| 波野结衣二区三区在线| 亚洲熟妇中文字幕五十中出| 免费在线观看成人毛片| 天天一区二区日本电影三级| 一区二区三区四区激情视频| 最近的中文字幕免费完整| 色5月婷婷丁香| 久久精品国产自在天天线| 日本欧美国产在线视频| 免费看不卡的av| 日韩欧美精品v在线| 啦啦啦中文免费视频观看日本| 亚洲图色成人| 久久久久久九九精品二区国产| 超碰av人人做人人爽久久| 中文字幕亚洲精品专区| 国产精品一区二区性色av| 国产精品日韩av在线免费观看| 欧美日韩亚洲高清精品| 黄色一级大片看看| 爱豆传媒免费全集在线观看| 亚洲精品成人av观看孕妇| 欧美不卡视频在线免费观看| 亚洲一级一片aⅴ在线观看| 少妇人妻精品综合一区二区| 九草在线视频观看| 色吧在线观看| 日韩一区二区三区影片| 中国美白少妇内射xxxbb| 在线观看一区二区三区| 午夜福利视频1000在线观看| 日韩成人伦理影院| www.色视频.com| 成人性生交大片免费视频hd| 日韩,欧美,国产一区二区三区| 日韩三级伦理在线观看| 婷婷色av中文字幕| 肉色欧美久久久久久久蜜桃 | 床上黄色一级片| 91精品国产九色| 午夜福利网站1000一区二区三区| 日日干狠狠操夜夜爽| 午夜精品国产一区二区电影 | 少妇熟女欧美另类| 99久久九九国产精品国产免费| 欧美精品国产亚洲| 如何舔出高潮| 国产爱豆传媒在线观看| 天天躁日日操中文字幕| 国产成人a区在线观看| 人人妻人人澡欧美一区二区| 亚洲高清免费不卡视频| 啦啦啦韩国在线观看视频| 久久精品久久久久久噜噜老黄| 大香蕉97超碰在线| 日韩,欧美,国产一区二区三区| 高清av免费在线| 日韩 亚洲 欧美在线| 日本熟妇午夜| 精品久久久久久久久av| 欧美极品一区二区三区四区| 美女脱内裤让男人舔精品视频| 色哟哟·www| 亚洲精品一区蜜桃| 中文字幕av成人在线电影| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久人妻蜜臀av| 99热网站在线观看| 三级国产精品片| 国产午夜福利久久久久久| 久久精品久久精品一区二区三区| 成年女人在线观看亚洲视频 | 3wmmmm亚洲av在线观看| 乱系列少妇在线播放| h日本视频在线播放| 美女xxoo啪啪120秒动态图| 国产精品麻豆人妻色哟哟久久 | 久久99热6这里只有精品| 天堂中文最新版在线下载 | 亚洲av成人精品一二三区| 国产麻豆成人av免费视频| 大陆偷拍与自拍| 噜噜噜噜噜久久久久久91| 免费黄频网站在线观看国产| 国产精品无大码| 国产在视频线精品| 国产成人freesex在线| 男女边吃奶边做爰视频| 别揉我奶头 嗯啊视频| 黄片无遮挡物在线观看| 一本一本综合久久| 成年版毛片免费区| 青春草亚洲视频在线观看| 成人美女网站在线观看视频| av国产免费在线观看| 禁无遮挡网站| 日韩在线高清观看一区二区三区| 国产亚洲5aaaaa淫片| 日本午夜av视频| 久久精品国产亚洲av天美| 美女国产视频在线观看| 熟女人妻精品中文字幕| 免费av不卡在线播放| or卡值多少钱| 啦啦啦韩国在线观看视频| 久久久久精品久久久久真实原创| 99热这里只有是精品在线观看| 大话2 男鬼变身卡| 精品久久久精品久久久| 亚洲色图av天堂| 久久久精品欧美日韩精品| 天堂网av新在线| 少妇丰满av| 色视频www国产| 中文字幕av成人在线电影| av卡一久久| 欧美激情国产日韩精品一区| 男女国产视频网站| 大又大粗又爽又黄少妇毛片口| 亚洲av.av天堂| 丝瓜视频免费看黄片| 日韩伦理黄色片| 人妻系列 视频| 一区二区三区高清视频在线| 最近手机中文字幕大全| 十八禁网站网址无遮挡 | 久久这里有精品视频免费| 美女国产视频在线观看| 日韩一区二区三区影片| 男的添女的下面高潮视频| 色播亚洲综合网| 色5月婷婷丁香| 亚洲熟妇中文字幕五十中出| 一级av片app| 我的老师免费观看完整版| 大片免费播放器 马上看| 国产成人一区二区在线| 国产一区二区亚洲精品在线观看| 尤物成人国产欧美一区二区三区| 国产一区二区三区av在线| 狂野欧美白嫩少妇大欣赏| 你懂的网址亚洲精品在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产伦在线观看视频一区| 国产亚洲最大av| 亚洲在线观看片| 人人妻人人澡欧美一区二区| 熟女人妻精品中文字幕| 美女脱内裤让男人舔精品视频| 亚洲aⅴ乱码一区二区在线播放| 中国美白少妇内射xxxbb| 夫妻午夜视频| 成人美女网站在线观看视频| 99热网站在线观看| 丝瓜视频免费看黄片| 美女主播在线视频| 国产精品一二三区在线看| 91午夜精品亚洲一区二区三区| 国产人妻一区二区三区在| 身体一侧抽搐| 大香蕉97超碰在线| 九九在线视频观看精品| 嫩草影院入口| 日韩国内少妇激情av| av一本久久久久| 欧美一级a爱片免费观看看| 亚洲欧美成人综合另类久久久| 国产v大片淫在线免费观看| 久久99精品国语久久久| 麻豆成人午夜福利视频| 亚洲欧美精品自产自拍| 性色avwww在线观看| 国产男女超爽视频在线观看| 大片免费播放器 马上看| 女人久久www免费人成看片| 最近中文字幕高清免费大全6| 伦精品一区二区三区| 免费看美女性在线毛片视频| 80岁老熟妇乱子伦牲交| 亚洲国产欧美在线一区| 国产精品麻豆人妻色哟哟久久 | 免费看日本二区| 哪个播放器可以免费观看大片| 免费看av在线观看网站| 一区二区三区高清视频在线| 亚洲国产色片| 身体一侧抽搐| 国产老妇伦熟女老妇高清| 成人亚洲欧美一区二区av| 亚洲国产精品成人综合色| 亚洲色图av天堂| 六月丁香七月| 久久鲁丝午夜福利片| 日本av手机在线免费观看| 国产伦在线观看视频一区| 噜噜噜噜噜久久久久久91| 秋霞伦理黄片| 亚洲精品国产成人久久av| 精品久久久久久久人妻蜜臀av| 国产精品三级大全| 99久久精品一区二区三区| 国产精品日韩av在线免费观看| 国产激情偷乱视频一区二区| 国产精品一区二区三区四区久久| 久久精品熟女亚洲av麻豆精品 | 日韩 亚洲 欧美在线| 亚洲精品乱码久久久久久按摩| 亚洲va在线va天堂va国产| 国产午夜福利久久久久久| 丰满少妇做爰视频| 精品国产露脸久久av麻豆 | 国产日韩欧美在线精品| 亚洲av男天堂| 老师上课跳d突然被开到最大视频| 亚洲国产av新网站| 乱码一卡2卡4卡精品| 国产成人91sexporn| 又爽又黄a免费视频| 国产成人91sexporn| 老女人水多毛片| 丰满人妻一区二区三区视频av| 乱码一卡2卡4卡精品| 亚洲精品色激情综合| 久久精品熟女亚洲av麻豆精品 | 熟女人妻精品中文字幕| 国产精品综合久久久久久久免费| 麻豆成人午夜福利视频| 精品人妻偷拍中文字幕| 非洲黑人性xxxx精品又粗又长| 午夜日本视频在线| 99热6这里只有精品| 国产av在哪里看| 久久草成人影院| 精华霜和精华液先用哪个| 国产91av在线免费观看| 国产精品久久久久久精品电影| 国产色爽女视频免费观看| 床上黄色一级片| 国产伦精品一区二区三区四那| 日韩强制内射视频| 麻豆成人av视频| 亚洲欧美日韩卡通动漫| 国产男女超爽视频在线观看| 午夜福利视频1000在线观看| 国产免费一级a男人的天堂| 午夜激情欧美在线| 中文欧美无线码| 色尼玛亚洲综合影院| 亚洲国产欧美在线一区| 久久久精品免费免费高清| av在线天堂中文字幕| 白带黄色成豆腐渣| 最近手机中文字幕大全| 国内少妇人妻偷人精品xxx网站| 青春草国产在线视频| 国产黄频视频在线观看|