• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Micro-vibration response analysis and its application of electronic workshop raw land based on whale optimization algorithm

    2022-11-28 02:23:52YUCaizhiLUYutaiWANGPengSUNChangku

    YU Caizhi, LU Yutai, WANG Peng, SUN Changku

    (State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China)

    Abstract: Environmental micro-vibration is one of the key factors impacting the running of electronic workshop. Low frequency micro-vibration has a significant influence on the normal operation of high precision machining and testing equipment, and even causes irreversible damage to the equipment. Micro-vibration testing and response analysis are important to guide the vibration isolation design and ensure the stable operation of various precision equipment in the workshop. Parameters of Davidenkov model are fitted based on whale swarm optimization algorithm, and its applicability is verified. At the same time, taking the testing project of an electronic workshop raw land as an example, the micro-vibration response is analyzed. The results show that the nonlinear constitutive model constructed by whale optimization algorithm can simulate the dynamic nonlinear behavior of soil under the action of micro-vibration better. Compared with the traditional equivalent linearization method, the nonlinear constitutive model based on the whale optimization algorithm has a smaller acceleration response value. It can effectively suppress the “virtual resonance effect” produced by the equivalent linearization method.

    Key words: micro-vibration response; nonlinear dynamic constitutive model; whale optimization algorithm; electronic workshop raw land

    0 Introduction

    With the rapid growth in the field of microelectronics production and testing, industrial manufacturing is increasingly developing in the direction of high precision and ultra-high precision. And the demand for high-precision electronic industrial plants (microelectronics, optical instruments, lasers, nanomaterials, etc.) is on the rise[1]. With a large number of semiconductor production test apparatuses introduced into actual production, such as czochralski growth furnace, polishing machine, photoetching machine and scanning electron microscope etc., the more expansive production scale, the more complex structure of processing components, and the higher requirements for processing accuracy follow[2]. The high-precision electronic industrial workshops have more stringent requirements for environmental micro-vibration[3], and thus the design of anti-mircovibration is essential to ensure the normal use of precision instruments in electronic factories.

    The equivalent linear or nonlinear constitutive model is used to simulate the dynamic response of environmental micro-vibration. However, due to the difficulty in defining model parameters and the large amount of calculation of nonlinear constitutive model, equivalent linear iterative method is usually employed to approach the real nonlinear constitutive model in the actual construction of soil dynamic response constitutive model[4]. However, due to the significant error in calculating the high frequency part of the equivalent linearization method, the movements of soil cannot be truly reflected, resulting in obvious resonance, which leads to the overestimation of micro-vibration response and limits the further development of equivalent linearization methods[5]. Compared with other nonlinear constitutive models, Davidenkov model has a relatively simple expression and a good fitting effect on the nonlinear behavior of soil. Davidenkov model is widely used in actual production.

    In order to explore the application of Davidenkov model in analyzing environmental micro-vibration response, the parameters of Davidenkov’s model are fitted based on whale optimization algorithm, and Matlab are used to compile the fitting curve algorithm. Finally, the fitting effect of the algorithm is verified by the corresponding experimental data. UMAT, the secondary development platform provided by ABAQUS, is used to write the viscoelastic model subroutine of soil. In this paper, a soil structure simulation model is established based on the raw land test project of an electronic workshop. In order to provide reference for anti-vibration design of high precision electronic workshop, the environmental micro-vibration response is analyzed.

    1 Theoretical method

    1.1 Equivalent linear model

    The equivalent linear model is based on the viscoelastic theory. It adopts Kelvin-voigt model to reflect the hysteretic characteristics of soil under cyclic loading[6]. Kelvin-voigt model consists of a linear elastic spring and a sticky pot in parallel, and its stress-strain relationship is defined as

    τ=Gγ+ηGγ′,

    (1)

    whereGis shear modulus;ηGis shear viscosity coefficient, andτis shear stress. Shear viscosity coefficient is defined as

    ηG=2Gλ/ω,

    (2)

    whereλis the damping ratio, andωis the circular frequency.

    Considering the stress-strain relationship in three-dimensional state, Eq.(1) can be generalized as

    (3)

    (4)

    whereKis the volume modulus of the material, andηKis the coefficient of viscosity of volume. The coefficient of viscosity of volume is defined as

    ηK=2Kλ/ω.

    (5)

    According to the analysis, the subroutine of the equivalent linear viscoelastic model is written by UMAT.

    1.2 Theoretical formulas

    The dynamic shear modulus ratio is defined as[7]

    G/Gmax=1-H(γ),

    (6)

    whereH(γ) is defined as

    (7)

    whereGmaxis the maximum shear modulus;γis shear strain amplitude, andγ0is reference shear strain. Based on Davidenkov model, Eq.(7) can be rewrote as[8]

    (8)

    whereA,Bandγfitare fitting parameters related to soil properties.

    The damping ratio is defined as[7]

    λ=λmax(1-G/Gmax)n,

    (9)

    whereλis damping ratio;λmaxis the maximum damping ratio, andnis fitting parameters.

    Through a large number of dynamic shear experiments on soil, the damping ratio is defined as[9]

    λ=λmin+λ0(1-G/Gmax)n,

    (10)

    whereλ0,nare fitting parameters, andλminis the minimum damping ratio of soil corresponding to the initial dynamic shear modulus.

    1.3 Fitting of soil parameters

    The characteristics of shear modulus and damping ratio of soil with shear strain are related to the fitting parametersA,Bandγfitin Eq.(8). There are optimization methods such as Newton’s method, gradient descent and the conjugate gradient method to solve the problem of parameter fitting. However, these methods have some defects, such as a large amount of calculation, want of gradient information and unsatisfactory fitting effects concerning high-dimensional complex functions. In this paper, whale optimization algorithm is introduced to fit parameters. It has higher accuracy and optimization speed when fitting parameters of nonlinear complex functions.

    Whale optimization algorithm[10]is proposed according to the predation behavior of humpback whales. It is divided into three stages which are encirclement stage, development stage and exploration stage.

    1.3.1 Encirclement stage

    To simulate the behavior of humpback whales surrounding their prey, Mirjalili came up with the formulas as

    (11)

    whereX*is the position vector of the current optimal solution;tis the number of current iterations;Xis the position vector, andAandCare the coefficient vectors.

    1.3.2 Development stage

    Humpback whales hunt their prey in spiraling motion which corresponds to the development stage in the algorithm. Mirjalili came up with the formula as

    X(t+1)=D′e(bl)cos(2πl(wèi))+X*(t),

    (12)

    whereD′=|X*(t)-X(t)| is the best solution currently obtained;bis a constant that defines the shape of a logarithmic spiral, andlis a random constant in [-1,1]. In addition, whales also shrink their enclosure as they spiral to simulate this behavior. Assuming that there is a probability constantpibetween the spiral model and the contract-enveloping mechanism, so that the position vector of the best solution during optimization is constantly update. It is defined as

    (13)

    wherepis a random constant in [0,1].

    1.3.3 Exploration stage

    Mirjalili simulated the random hunting behavior of whales to improve the global searching ability of the algorithm. Mirjalili came up with the formulas as

    (14)

    whereXrandis the position of the randomly selected solution vector. When |A|<1, the optimal solution vector in the current iteration is updated to the position of other solution vectors. When |A|≥1, a random solution vector is used to update the position information of other solution vectors.

    The normalized cross correlation[11]is introduced to verify the similarity between measured data and fitted data. It is defined as

    (15)

    Fig.1 Flow chart of whale optimization algorithm

    To verify the accuracy and feasibility of the fitting algorithm, the parameters of the formula of dynamic shear modulus ratio and damping ratio in Davidenkov model of various soils are fitted. Table 1 shows the dynamic structure test data of various soils selected[12-14].

    The fitting curves of various soils are shown in Fig.2.

    Table 2 presents parameter fitting results andRvalues of Davidenkov model. The results show that the whale optimization algorithm has good fitting effect.

    Table 2 Fitting results of different soil types

    2 Creation of models

    A site vibration survey is carried out on the electronic workshop raw land, and its baseline vibration levels is quantified. The survey included a series of tri-axial ambient vibration measurements at selected locations on the proposed site. The accelerometers are placed atop a spike deeply hammered into the soil, so that they can effectively detect vibrations propagated along the soil surface in form of Rayleigh waves. The typical site vibration data acquired on site is shown in Fig.3.

    Fig.3 Typical site vibration data acquired on site

    According to geotechnicalengineering reports, the laboratory site for the test project is fairly flat. Therefore, the terrain details are not specified in the model. The building scale is relatively small (138 m×58 m). The soil layers of the whole site are basically the same.

    The soil stratification of site is presented as Table 3.

    Table 3 Soil stratification in site

    The overall size of the soil model is 200 m×200 m×30 m, large enough to cover the building and its proximity. The element dimension is chosen as 4 m×4 m×2 m, optimized to characterize the Rayleigh wave motions between 4 Hz and 10 Hz. The mat slab, made of C30 concrete, is placed at the depth of 2 m in the middle. Its elastic modulus is 3×104MPa, density is 2 500 kg/m3, and Poisson’s ratio is 0.3. The data of dynamic shear modulus, dynamic shear strain and damping ratio of each layer of soil are from the experimental data[12-14]provided in literatures. According to the proposed fitting method, the dynamic structure characteristic curves of each layer of soil can be obtained. The fitting curves are shown in Fig.4.

    (a) Soil infill

    In order to facilitate the calculation of equivalent linear viscoelastic constitutive model and avoid the hourglass phenomenon caused by reducing integral units, C3D8 element (three-dimensional solid integral element) is adopted for soil and mat slab structure. Damping can directly affect the calculation accuracy of the model. The damping of the soil model is Rayleigh damping[15]. Rayleigh damping can be calculated by taking the natural frequencies of the two modes through modal analysis. Generally, the first mode and the fourth mode are selected as shown in Table 4.

    In order to simulate the propagation characteristics of micro-vibration in infinite domain foundation, the viscoelastic boundary should be set around the soil model[16]. Viscoelastic artificial boundary is a system composed of springs and dampers. The mechanical parameters of springs and dampers are related to the properties of rock and soil materials. It is defined as

    (16)

    whereKBTandKBNare the normal and tangential stiffness of spring respectively;Ris the distance between wave source and artificial boundary point;Gis the shear modulus of the medium;ρis mass density of the medium;αTandαNare tangential and normal viscoelastic artificial boundary parameters, respectively;CSandCPare transverse wave and longitudinal wave velocities, respectively. Tangential and normal viscoelastic artificial boundary parametersαTandαNare 0.67 and 1.33, respectively. Table 4 shows additional soil parameters for each layer of soil from geotechnical engineering reports.

    The soil finite element model finally established is shown in Fig.5, where the measuring point is the experimental observation position.

    Fig.5 Finite element model of soil

    The measured data of the site environment (Fig.6) is applied to the bottom of the model as the input excitation load.

    (a) Vertical direction

    Assuming an initial damping ratio and shear modulus, the maximum shear strain experienced by each element during the calculation process is recorded. The shear modulus and damping ratio are calculated according to the new material parameters. The whole process is repeated several times until the material properties no longer change. The inelastic and nonlinear properties of the real soil are continuously approximated by this method of multiple iterative fitting.

    3 Results and discussion

    The stress change of the backing plate under the action of environmental micro-vibration is obtained by using ABAQUS to carry out numerical calculation. The time-history curves of acceleration at monitoring points obtained by the two methods are shown in Fig.7. The comparison results of the two methods are presented as Table 5. The peak value of acceleration response in three directions calculated by equivalent linearization method are all larger than those of the algorithm in this paper. This is mainly due to the “virtual resonance effect” produced by the equivalent linearization method, which overestimates the micro-vibration responses.

    (a) Whale swarm optimization algorithm

    Under the action of micro-vibration signals, the peak accelerations in each direction of the observation point are slightly different. Compared with the equivalent linear method, the peak value of acceleration response in three directions obtained by the proposed fitting method is smaller.It is due to the “virtual resonance effect” generated by the equivalent linearization method, which overestimates the micro-vibration responses in each direction. The attenuation factor of the mat slab at various thicknesses can be calculated. The baseline site vibrations meet VC-D as shown in Fig.8.

    Fig.8 Tridirectional spectrum diagram

    Thus, when subjected to traffic/mechanical vibrations from nearby roads and buildings, a slab thickness of 1 200 mm will be sufficient to ensure a VC-D (or even better) environment on the pads.

    4 Conclusions

    1) Parameters of Davidenkov model are fitted based on whale algorithm, and the fitting effect is verified by dynamic structure test data of various soils. The whale swarm optimization algorithm has a good fitting effect on the parameters of Davidenkov model, and the normalized cross correlation (NCC) coefficient of various soils is close to 1.

    2) Taking araw land test project of an electronic workshop as an example, the calculation results of nonlinear constitutive model of soil is analyzed based on whale swarm optimization algorithm and equivalent linearization method. It is concluded that the nonlinear constitutive model based on the whale optimization algorithm has a smaller acceleration response than the equivalent linearization method. The “virtual resonance effect” produced by the equivalent linearization method is effectively suppressed to prevent overestimation of micro-vibration responses.

    3) From the simulation analysis of micro-vibration response of an electronicworkshop, a conclusion is drawn that the nonlinear constitutive model constructed by whale optimization algorithm can describe the dynamic nonlinear behavior of soil under the action of micro-vibration. The acceleration response obtained by the simulation analysis conforms to the general law and meets the design requirements, which is suitable for the analysis and study of the micro-vibration response of electronic workshop.

    亚洲av免费高清在线观看| videos熟女内射| 一个人看视频在线观看www免费| 国内精品美女久久久久久| 亚洲精品成人久久久久久| 亚洲欧洲日产国产| 在线 av 中文字幕| 高清毛片免费看| 97超碰精品成人国产| 夜夜看夜夜爽夜夜摸| 国产不卡一卡二| 欧美另类一区| 成人性生交大片免费视频hd| 成人美女网站在线观看视频| 你懂的网址亚洲精品在线观看| 免费播放大片免费观看视频在线观看| 日韩成人av中文字幕在线观看| 亚洲精品第二区| 精品人妻视频免费看| 欧美区成人在线视频| 1000部很黄的大片| 亚洲在久久综合| 亚洲国产日韩欧美精品在线观看| 一个人看视频在线观看www免费| 欧美潮喷喷水| 乱码一卡2卡4卡精品| 国产成人精品一,二区| 亚洲不卡免费看| 中文在线观看免费www的网站| 欧美极品一区二区三区四区| 别揉我奶头 嗯啊视频| 亚洲国产精品国产精品| videos熟女内射| 成人一区二区视频在线观看| 少妇高潮的动态图| 亚洲欧美成人综合另类久久久| av在线播放精品| 女人被狂操c到高潮| 久久亚洲国产成人精品v| 日韩精品青青久久久久久| 天堂√8在线中文| 99久久精品国产国产毛片| 高清在线视频一区二区三区| 精品国产露脸久久av麻豆 | 国产视频首页在线观看| 欧美3d第一页| 女人久久www免费人成看片| 哪个播放器可以免费观看大片| 青春草亚洲视频在线观看| 欧美xxxx性猛交bbbb| 日韩欧美一区视频在线观看 | 色视频www国产| 国产亚洲精品av在线| 日韩一本色道免费dvd| 色哟哟·www| 在线免费十八禁| 亚洲在线观看片| 亚洲第一区二区三区不卡| 高清日韩中文字幕在线| 国产片特级美女逼逼视频| 免费少妇av软件| 欧美三级亚洲精品| 免费不卡的大黄色大毛片视频在线观看 | 极品少妇高潮喷水抽搐| 麻豆久久精品国产亚洲av| 国产精品人妻久久久影院| 亚洲最大成人手机在线| 免费人成在线观看视频色| 欧美精品一区二区大全| 99九九线精品视频在线观看视频| 国产精品一二三区在线看| 日韩成人伦理影院| 亚洲熟女精品中文字幕| av国产久精品久网站免费入址| 亚洲精品乱码久久久v下载方式| 成年版毛片免费区| 美女国产视频在线观看| 能在线免费看毛片的网站| 日韩欧美国产在线观看| 国内少妇人妻偷人精品xxx网站| 男女边吃奶边做爰视频| 免费看日本二区| 少妇熟女aⅴ在线视频| 3wmmmm亚洲av在线观看| 男插女下体视频免费在线播放| 久久久a久久爽久久v久久| 欧美三级亚洲精品| 激情五月婷婷亚洲| 亚洲久久久久久中文字幕| 国产精品一区二区在线观看99 | 嘟嘟电影网在线观看| 十八禁网站网址无遮挡 | 免费黄频网站在线观看国产| 22中文网久久字幕| 日本av手机在线免费观看| 中文字幕制服av| 白带黄色成豆腐渣| 亚洲精品色激情综合| 亚洲精品日本国产第一区| 免费人成在线观看视频色| 亚洲精品乱码久久久久久按摩| 91久久精品国产一区二区三区| 国产视频内射| 亚洲欧美日韩东京热| 最新中文字幕久久久久| 老司机影院成人| 秋霞伦理黄片| eeuss影院久久| 大片免费播放器 马上看| videos熟女内射| 国产精品一区二区性色av| 久久精品综合一区二区三区| 国产精品蜜桃在线观看| 国产精品久久久久久久电影| 日韩av免费高清视频| 非洲黑人性xxxx精品又粗又长| 久久久久免费精品人妻一区二区| 国产不卡一卡二| 国语对白做爰xxxⅹ性视频网站| 免费少妇av软件| 男女啪啪激烈高潮av片| 久久97久久精品| 色尼玛亚洲综合影院| 国产一级毛片七仙女欲春2| 久久久久久久午夜电影| 成人鲁丝片一二三区免费| 国产毛片a区久久久久| 亚洲美女视频黄频| 国产精品美女特级片免费视频播放器| 免费大片黄手机在线观看| 色综合亚洲欧美另类图片| 亚洲四区av| 亚洲av中文字字幕乱码综合| 精品久久久久久久久亚洲| 亚洲精品影视一区二区三区av| 老女人水多毛片| 国内精品美女久久久久久| 亚洲最大成人av| 极品教师在线视频| 全区人妻精品视频| 一级二级三级毛片免费看| 亚洲av不卡在线观看| 人人妻人人澡人人爽人人夜夜 | 国产久久久一区二区三区| 亚洲欧美一区二区三区国产| 精品亚洲乱码少妇综合久久| 免费看光身美女| 人人妻人人澡欧美一区二区| 舔av片在线| 特大巨黑吊av在线直播| 大话2 男鬼变身卡| 少妇裸体淫交视频免费看高清| 亚洲图色成人| 亚洲精品视频女| 久久97久久精品| av在线老鸭窝| 国产一区二区三区av在线| 午夜福利在线观看吧| 成年女人在线观看亚洲视频 | 在线观看美女被高潮喷水网站| 国产久久久一区二区三区| 寂寞人妻少妇视频99o| 激情 狠狠 欧美| 亚洲久久久久久中文字幕| 日本黄大片高清| 青春草亚洲视频在线观看| 国产91av在线免费观看| 午夜日本视频在线| 好男人视频免费观看在线| av专区在线播放| 国产真实伦视频高清在线观看| 精品久久久久久久末码| 亚洲欧美成人精品一区二区| 亚洲av免费在线观看| a级毛色黄片| 人人妻人人澡人人爽人人夜夜 | 国产大屁股一区二区在线视频| 亚洲精品aⅴ在线观看| 日韩成人av中文字幕在线观看| 中文在线观看免费www的网站| 久久精品人妻少妇| av国产久精品久网站免费入址| 国产欧美日韩精品一区二区| 亚洲怡红院男人天堂| 国产精品久久久久久精品电影小说 | 99热6这里只有精品| 黄色一级大片看看| 97超视频在线观看视频| 欧美 日韩 精品 国产| 亚洲欧美一区二区三区黑人 | 免费观看在线日韩| 69av精品久久久久久| 成人综合一区亚洲| 亚洲美女视频黄频| 亚洲一区高清亚洲精品| 午夜福利高清视频| 一级毛片我不卡| 欧美高清成人免费视频www| 成人国产麻豆网| 能在线免费观看的黄片| 人体艺术视频欧美日本| 国产精品女同一区二区软件| 免费观看精品视频网站| 精品一区二区免费观看| 青春草国产在线视频| 国产男女超爽视频在线观看| 欧美性感艳星| 成人综合一区亚洲| 精品国产三级普通话版| 女人被狂操c到高潮| 成年女人看的毛片在线观看| 青春草亚洲视频在线观看| 中文在线观看免费www的网站| 蜜臀久久99精品久久宅男| 最后的刺客免费高清国语| 日韩成人伦理影院| 国产精品人妻久久久影院| 一级av片app| 国产精品一区二区性色av| 成人午夜高清在线视频| 成人欧美大片| 美女黄网站色视频| 婷婷色av中文字幕| 亚洲精品乱码久久久久久按摩| 国模一区二区三区四区视频| 亚洲国产日韩欧美精品在线观看| 亚洲av男天堂| 国产单亲对白刺激| 久久精品人妻少妇| 在线 av 中文字幕| 在线天堂最新版资源| 日韩强制内射视频| 国产高清三级在线| www.色视频.com| 国产精品美女特级片免费视频播放器| 日本-黄色视频高清免费观看| 18禁在线播放成人免费| 成人午夜精彩视频在线观看| 国产成年人精品一区二区| 亚洲一区高清亚洲精品| 国产成人午夜福利电影在线观看| 日韩欧美精品v在线| 一级毛片 在线播放| 国产真实伦视频高清在线观看| 男女下面进入的视频免费午夜| 大香蕉97超碰在线| 亚洲国产成人一精品久久久| 成人高潮视频无遮挡免费网站| 亚洲美女视频黄频| 最后的刺客免费高清国语| 亚洲精品久久午夜乱码| 亚洲国产最新在线播放| 精品一区二区三卡| 国产女主播在线喷水免费视频网站 | 舔av片在线| 免费黄色在线免费观看| 国产伦一二天堂av在线观看| 日韩制服骚丝袜av| av国产久精品久网站免费入址| 精品久久久久久久久久久久久| av福利片在线观看| 日韩伦理黄色片| 国产精品久久久久久av不卡| 乱码一卡2卡4卡精品| 日韩欧美 国产精品| 国产精品日韩av在线免费观看| 国产黄色视频一区二区在线观看| 免费看不卡的av| 免费观看a级毛片全部| 91久久精品国产一区二区成人| 色尼玛亚洲综合影院| 国产午夜福利久久久久久| 精品久久国产蜜桃| 又爽又黄无遮挡网站| 亚洲色图av天堂| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 麻豆国产97在线/欧美| 亚洲精品456在线播放app| 国产精品综合久久久久久久免费| 午夜福利视频1000在线观看| 成人亚洲欧美一区二区av| av在线天堂中文字幕| 欧美97在线视频| 亚洲综合色惰| 亚洲图色成人| 久久久久精品久久久久真实原创| 18禁动态无遮挡网站| 久久久久久伊人网av| 狂野欧美白嫩少妇大欣赏| 天堂中文最新版在线下载 | 麻豆成人午夜福利视频| 国产男女超爽视频在线观看| 美女内射精品一级片tv| 人人妻人人澡人人爽人人夜夜 | 18+在线观看网站| av又黄又爽大尺度在线免费看| 亚洲不卡免费看| 91av网一区二区| 国产乱来视频区| 午夜福利网站1000一区二区三区| 亚洲av免费高清在线观看| 国产男女超爽视频在线观看| 一区二区三区四区激情视频| 免费看光身美女| 青春草亚洲视频在线观看| 成年女人在线观看亚洲视频 | 老司机影院成人| 精品不卡国产一区二区三区| 久久6这里有精品| 尾随美女入室| 久久综合国产亚洲精品| av在线亚洲专区| 丰满乱子伦码专区| 国产在线男女| 国国产精品蜜臀av免费| 美女被艹到高潮喷水动态| 亚州av有码| 亚洲av在线观看美女高潮| 看非洲黑人一级黄片| 欧美丝袜亚洲另类| 永久免费av网站大全| 一级毛片我不卡| 亚洲成色77777| 两个人视频免费观看高清| 欧美人与善性xxx| 激情 狠狠 欧美| 精品久久久久久久人妻蜜臀av| 亚洲自偷自拍三级| 欧美97在线视频| 国产欧美另类精品又又久久亚洲欧美| 又黄又爽又刺激的免费视频.| 搡女人真爽免费视频火全软件| 如何舔出高潮| 男女下面进入的视频免费午夜| 久久草成人影院| 国产精品无大码| 一级黄片播放器| 成人毛片a级毛片在线播放| 高清欧美精品videossex| av天堂中文字幕网| 能在线免费看毛片的网站| 黄色日韩在线| 色播亚洲综合网| 国产探花极品一区二区| 欧美激情在线99| 亚洲欧美日韩东京热| 观看美女的网站| 中文资源天堂在线| 国产综合精华液| 伦精品一区二区三区| 我要看日韩黄色一级片| 欧美人与善性xxx| 国产精品女同一区二区软件| 不卡视频在线观看欧美| 免费观看无遮挡的男女| 波野结衣二区三区在线| 最后的刺客免费高清国语| 大陆偷拍与自拍| 91精品伊人久久大香线蕉| 免费大片黄手机在线观看| 日日干狠狠操夜夜爽| 亚洲最大成人中文| 亚洲国产精品成人综合色| 国产成人freesex在线| 免费看美女性在线毛片视频| 少妇熟女aⅴ在线视频| 一夜夜www| 日本熟妇午夜| 一区二区三区四区激情视频| h日本视频在线播放| 日韩av在线大香蕉| 成人亚洲欧美一区二区av| 国模一区二区三区四区视频| 免费观看在线日韩| 简卡轻食公司| 国产精品国产三级专区第一集| 99热6这里只有精品| 午夜福利在线在线| 国产69精品久久久久777片| 自拍偷自拍亚洲精品老妇| 久久99热6这里只有精品| 亚洲欧美精品专区久久| 久久草成人影院| eeuss影院久久| 狠狠精品人妻久久久久久综合| 欧美bdsm另类| 国产乱人偷精品视频| 亚洲综合色惰| 国产色婷婷99| 国产视频首页在线观看| 内射极品少妇av片p| 嫩草影院新地址| 人妻制服诱惑在线中文字幕| 天天躁日日操中文字幕| 熟女电影av网| 午夜爱爱视频在线播放| 人人妻人人澡欧美一区二区| 久久久久久久大尺度免费视频| 久久久久精品久久久久真实原创| 乱码一卡2卡4卡精品| 亚洲精品色激情综合| 精品一区二区三卡| 噜噜噜噜噜久久久久久91| 亚洲精华国产精华液的使用体验| av在线天堂中文字幕| 精品少妇黑人巨大在线播放| 性插视频无遮挡在线免费观看| 波野结衣二区三区在线| 毛片女人毛片| 亚洲精品乱码久久久久久按摩| 国产乱来视频区| 亚洲国产精品sss在线观看| 中文字幕制服av| 久久久成人免费电影| videos熟女内射| 亚洲av成人av| 97超碰精品成人国产| 国产综合精华液| 国内精品一区二区在线观看| 日韩欧美精品免费久久| 九九在线视频观看精品| 国产精品熟女久久久久浪| 欧美最新免费一区二区三区| 久久97久久精品| 特级一级黄色大片| 人人妻人人看人人澡| 日韩制服骚丝袜av| 久久久久性生活片| 亚洲国产高清在线一区二区三| 久久97久久精品| 18+在线观看网站| 午夜激情久久久久久久| 直男gayav资源| 亚洲精品日韩av片在线观看| 97精品久久久久久久久久精品| 国产午夜福利久久久久久| 在线观看免费高清a一片| 内射极品少妇av片p| 中国国产av一级| 午夜免费观看性视频| 97人妻精品一区二区三区麻豆| 边亲边吃奶的免费视频| 在线观看免费高清a一片| 国产伦在线观看视频一区| 成人特级av手机在线观看| 亚洲图色成人| 中文欧美无线码| 国产69精品久久久久777片| av在线观看视频网站免费| 亚洲精品日本国产第一区| 日本-黄色视频高清免费观看| 国产黄色小视频在线观看| 99re6热这里在线精品视频| 亚洲最大成人av| 国产色婷婷99| 身体一侧抽搐| 亚洲怡红院男人天堂| 久久精品久久久久久久性| 久久久久久九九精品二区国产| 插阴视频在线观看视频| 波多野结衣巨乳人妻| 免费黄网站久久成人精品| 亚洲精品视频女| 中文乱码字字幕精品一区二区三区 | 国产女主播在线喷水免费视频网站 | 久久久久久久久久久丰满| 国产不卡一卡二| 国产v大片淫在线免费观看| 免费看a级黄色片| 亚洲精品成人av观看孕妇| 久久热精品热| 精品人妻熟女av久视频| 日韩欧美 国产精品| 禁无遮挡网站| 夜夜看夜夜爽夜夜摸| 久久久久九九精品影院| 黄色日韩在线| 亚洲欧美日韩卡通动漫| 91狼人影院| 国产黄色小视频在线观看| 色网站视频免费| 能在线免费观看的黄片| 日韩中字成人| 亚洲av成人精品一区久久| 嫩草影院精品99| 成人亚洲精品一区在线观看 | 国产黄a三级三级三级人| 欧美+日韩+精品| 日韩欧美精品免费久久| 婷婷色麻豆天堂久久| 熟妇人妻不卡中文字幕| 国产国拍精品亚洲av在线观看| 高清视频免费观看一区二区 | 亚洲精品自拍成人| 成年av动漫网址| 精品午夜福利在线看| 久久亚洲国产成人精品v| 性插视频无遮挡在线免费观看| 国产免费一级a男人的天堂| 免费看av在线观看网站| 97超视频在线观看视频| 国产成人一区二区在线| 一级毛片我不卡| 国产黄色免费在线视频| 欧美日韩亚洲高清精品| 国产成年人精品一区二区| 日韩成人伦理影院| 精品久久久精品久久久| 免费高清在线观看视频在线观看| 久久精品国产鲁丝片午夜精品| 精品久久国产蜜桃| 99久久九九国产精品国产免费| 国产老妇伦熟女老妇高清| 国产精品福利在线免费观看| 国产大屁股一区二区在线视频| 搡老乐熟女国产| 国产男女超爽视频在线观看| 99热6这里只有精品| 久久这里只有精品中国| 午夜视频国产福利| 亚洲国产精品成人综合色| 亚洲精品aⅴ在线观看| 欧美成人精品欧美一级黄| 777米奇影视久久| 日韩国内少妇激情av| 国产精品熟女久久久久浪| 深夜a级毛片| 国产高清三级在线| 国产黄色小视频在线观看| 国产一级毛片七仙女欲春2| 亚洲一区高清亚洲精品| 日韩三级伦理在线观看| 一个人看视频在线观看www免费| 国产亚洲精品久久久com| 国产午夜精品久久久久久一区二区三区| 乱码一卡2卡4卡精品| 一级二级三级毛片免费看| 国产高清不卡午夜福利| 国产精品国产三级国产专区5o| 菩萨蛮人人尽说江南好唐韦庄| a级一级毛片免费在线观看| 一个人观看的视频www高清免费观看| 国产精品综合久久久久久久免费| 免费黄网站久久成人精品| 国国产精品蜜臀av免费| 免费无遮挡裸体视频| 精品一区二区三区视频在线| 少妇丰满av| 午夜免费观看性视频| 亚洲精品影视一区二区三区av| 午夜日本视频在线| 日韩欧美国产在线观看| 超碰av人人做人人爽久久| 国产一级毛片七仙女欲春2| 极品教师在线视频| 精品久久国产蜜桃| 夫妻性生交免费视频一级片| 日韩一区二区三区影片| 日韩三级伦理在线观看| 成人高潮视频无遮挡免费网站| 能在线免费观看的黄片| 久久久成人免费电影| 中文资源天堂在线| 国内精品宾馆在线| 免费观看a级毛片全部| 美女被艹到高潮喷水动态| 性插视频无遮挡在线免费观看| 亚洲av国产av综合av卡| 免费黄频网站在线观看国产| 一夜夜www| 国产精品综合久久久久久久免费| 色尼玛亚洲综合影院| 99九九线精品视频在线观看视频| 国产午夜福利久久久久久| 久久久久久久大尺度免费视频| 97在线视频观看| 精品国产一区二区三区久久久樱花 | 国产伦精品一区二区三区视频9| a级一级毛片免费在线观看| av国产久精品久网站免费入址| 日本与韩国留学比较| 国产免费又黄又爽又色| 少妇猛男粗大的猛烈进出视频 | 一级毛片久久久久久久久女| 1000部很黄的大片| av线在线观看网站| 超碰av人人做人人爽久久| 亚洲精品aⅴ在线观看| 99久久人妻综合| 国产精品女同一区二区软件| 两个人的视频大全免费| 直男gayav资源| 青青草视频在线视频观看| 一区二区三区高清视频在线| 国产乱人偷精品视频| 综合色丁香网| 国内少妇人妻偷人精品xxx网站| 精品人妻一区二区三区麻豆| 少妇裸体淫交视频免费看高清| 成人毛片a级毛片在线播放| 国产乱人偷精品视频| 校园人妻丝袜中文字幕| 中文字幕av成人在线电影| 观看免费一级毛片| 嫩草影院新地址| 亚洲精品亚洲一区二区| 亚洲av成人精品一区久久| 一个人观看的视频www高清免费观看| 亚洲真实伦在线观看| 成人综合一区亚洲| 好男人视频免费观看在线| 深夜a级毛片| 国产午夜精品一二区理论片| 国内精品宾馆在线| 亚洲怡红院男人天堂|