• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An FPGA-based LDPC decoder with optimized scale factor of NMS decoding algorithm

    2022-11-28 02:23:56LIJinmingZHAGNPingpingWANGLanzhuWANGGuodong

    LI Jinming, ZHAGN Pingping, WANG Lanzhu, WANG Guodong

    (School of Instruments and Electronics, North University of China, Taiyuan 030051, China)

    Abstract: Considering that the hardware implementation of the normalized minimum sum ( NMS ) decoding algorithm for low-density parity-check ( LDPC ) code is difficult due to the uncertainty of scale factor, an NMS decoding algorithm with variable scale factor is proposed for the near-earth space LDPC codes (8 177,7 154) in the consultative committee for space data systems ( CCSDS ) standard. The shift characteristics of field programmable gate array (FPGA) is used to optimize the quantization data of check nodes, and finally the function of LDPC decoder is realized. The simulation and experimental results show that the designed FPGA-based LDPC decoder adopts the scaling factor in the NMS decoding algorithm to improve the decoding performance, simplify the hardware structure, accelerate the convergence speed and improve the error correction ability.

    Key words: LDPC code; NMS decoding algorithm; variable scale factor; quantization

    0 Introduction

    Low-density parity-check[1](LDPC) code is a kind of linear block code in essence. Because its error correction performance is close to the Shannon limit[2], it can effectively, precisely and reliably detect whether the data transmitted among devices are correct or missing. Since the 1990s, LDPC codes has been widely used in the field of satellite communication due to its excellent performance[3-5]. The LDPC code is recommended as the channel coding standard for deep-space communication and near-ground communication by International Consultative Committee for Space Data System in 2010[6]. In 2011, the Change-2 probe also tries to use LDPC code instead of Turbo code as the data link coding scheme. In 2016, the proposal is passed by Qualcomm that LDPC should be used as a channel code long code at the 5G standard voting conference held by 3GPP, which is a big win for LDPC code in 5G times. The excellent performance of LDPC code in space and 5G field lays the foundation for subsequent research on channel coding[7-8]. It has been used in communication standards such as DVB-S2[9], IEEE802.16e[10]and IEEE802.11[11], etc. Although LDPC code has good anti-jamming performance, its decoding complexity has always been the biggest obstacle to its application in communication systems.

    Most traditional LDPC decoding algorithms use high-precision floating-point numbers for operation. However, it is difficult for these high-precision floating-point numbers to implement based on hardware. Therefore, low complexity and hardware-friendly LDPC decoder has been the research hotspot. A minimum sum-product (MSP) decoding algorithm is proposed based on normalization correction, which makes the signal-to-noise ratio (SNR) of the input signal of LDPC decoder reduce by 10 dB at the same output bit error rate whereas decoding performance is declined[12]. An extended minimum sum (EMS) decoding algorithm is shown based on the minimum sum (MS) decoding algorithm[13]. In the process of information iteration, the EMS algorithm reduces the amount of computation by shortening the information vector to be stored, which improves the decoding complexity and reduces the hardware storage resources needed whereas the hardware system throughput is low. The quantization complexity of the sum-product (SP) decoding algorithm and the MS decoding algorithm under three different measures are presented as well as the quantization accuracy of the algorithms[14]. The results show that the MS decoding algorithm is suitable for integer quantization, which makes all messages of the quantized MS algorithm be integers and takes fewer hardware resources. An MS decoding algorithm is presented based on integer operation[15], in which the variables are expressed as integers first, and then quantified to binary data for decoding operation. This method provides a new idea to reduce quantization complexity while reducing quantization accuracy. A normalized minimum sum (NMS) algorithm is proposed with better decoding performance when the scale factor is 0.8, the bit width of check node message is 8 bit and variable node message is 10 bit. Since the normalization factor of the algorithm is fixed, the error correction performance of the codeword needs to be improved[16].

    By analysis of the advantages and disadvantages of these algorithms, such as the scale factor is fixed and error correction performance of the decoding algorithms is lower, an improved NMS algorithm is proposed based on the optimization of decoding algorithms[17-18]and the hardware implementation of the decoder[19]. Furthermore, taking (8 176,7 154) LDPC code in CCSDS standard[20]as a research object, a decoder is achieved based on field-programmable gate array (FPGA) corresponding to the proposed algorithm. In this design, the scale factor changes with the number of iterations during check node information processing, which has better decoding performance without increasing the hardware complexity. When the maximum number of iterations is 20 and theSNRis no less than 1.1, the decoder works very well.

    1 Theoretical analysis of LDPC decoding

    1.1 LDPC code structure

    This study focuses on (8 176,7 154) LDPC code. Check matrixHis another form of LDPC code, which plays a decisive role in the encoding and decoding process. The size of matrixHin this study is 1 022×8 176, and the matrix elements are composed of “0” and “1”, with the first row of non-zero elements being known and the rest of the elements being obtained by shifting the first row of data circularly right. For convenience of research, matrixHis divided into 32 circulant submatricesAi, j(i=1,2;j=1, …,16) with the size of 511×511, and the division structure is expressed as

    (1)

    For any circulant submatrix of matrixH, there are two non-zero elements in each row and two non-zero elements in each column. Both the row weight and column weight of each circulant submatrix are 2. Thus, the row weight of the whole check matrix is 32 and the column weight is 4, which means that matrixHis an irregular LDPC code.

    1.2 Decoding algorithm for LDPC code

    There mainly are two kinds of LDPC decoding algorithms. One is called hard-decision decoding algorithm, including bit-flipping (BF) decoding algorithm, weighted bit-flipping (WBF) decoding algorithm, etc. The other is called soft-decision algorithm, including belief propagation (BP) algorithm[21-22], log-likelihood ratio-belief propagation LLR-BP algorithm, MS algorithm[23], etc. The hard-decision decoding algorithm is easy to implement in hardware and has low complexity, but its decoding performance is not ideal. The soft-decision decoding algorithm is hard to implement in hardware, but it can get the decoding performance close to the Shannon limit. Therefore, the future application of soft-decision decoding algorithms has broad prospects.

    a) Initialization to calculates the channel message value received by the variable nodes.

    (2)

    whereL(Pi) is the initial probability likelihood ratio message of channel information transmitted to variable nodes;σis the noise variance of channel transmission;L(0)(qij) is the information passed by variable nodeito check nodejat iteration 0.

    b) Update check node information row by row using variable nodes.

    (3)

    whereL(l)(rij) is the set of information passed by check nodeito variable nodejat iterationl;Rjis the set of variable nodes connected with check nodej;Rjiis the set of variable nodes connected to check nodejexcept nodei;i′∈Rjirepresents variable nodei′ in the set; andL(l-1)(qi′j) is the information passed by variable nodei′ to check nodejat iterationl-1.

    c) Update variable node information column by column using check nodes.

    (4)

    whereL(l)(qij) is the set of information passed by variable nodeito check nodejat iterationl;Ciis the set of check nodes connected with variable nodei; andCijis the set of check nodes connected with variable nodeiexcept nodej;j′∈Cijrepresents check nodej′ in the set; andL(l)(rj′i) is the information passed by check nodej′ to variable nodeiat iterationl.

    d) Codeword judgment.

    (5)

    whereL(l)(qi) is the hard decision information of the variable nodesiat iterationl.

    e) Decoding verification.

    1.3 Determination of scale factor

    Since the LLR-BP algorithm contains tanhxand arctanhxfunctions, its information initialization requires channel estimation. Therefore, MS algorithm without channel estimation is proposed to further reduce the algorithm complexity. In the process of check node information processing, the hyperbolic tangent complex operation is transformed into comparison and addition operation[24], which greatly reduces the amount of operation and facilitate hardware implementation. The differences between the MS algorithm and the LLR-BP algorithm are shown as a)-b).

    a) Initialization is different.

    Since this algorithm does not require channel estimation, the initial message from the variable nodeito the check nodejbecomes

    L(0)(qij)=L(Pi)=y.

    (6)

    b) Check node information processing is different.

    (7)

    The MS algorithm is an approximate calculation by using LLR-BP algorithm when processing check node information. Eq.(3) is processed according to the properties of tanhxand arctanhxfunctions. Thus it can be gotten that

    (8)

    Then

    (9)

    It can be found that the value of the check node information calculated by the MS algorithm is larger than that of the LLR-BP algorithm. To compensate for this error, an NMS algorithm based on the MS algorithm is proposed[25-26]. The essence of the algorithm is to multiply a scale factor of (0,1) by the check node formula in the MS algorithm, which optimizes the decoding performance without increasing the complexity of the algorithm. The scale factor is represented byα, and the improvement is expressed as

    Blacky was a good, nice little pig, neither dirty nor greedy. He had nice dainty ways (for a pig), and his skin was always as smooth and shining as black satin. He was much cleverer than Browny and Whitey, and his mother s heart used to swell6 with pride when she heard the farmer s friends say to each other that some day the little black fellow would be a prize pig.

    (10)

    (11)

    1.4 Algorithm simulation

    To verify the decoding performance of the improved NMS algorithm with the variable scale factor proposed, Matlab2018b is used to carry out simulation experiments. Under differentSNRs of 1.1, 1.3, 1.5 and 1.8, the coded data is quantized into 8-bit binary data, and then the corresponding program is designed. The decoding performance of the NMS decoding algorithm with a variable scale factor is verified by comparing it with the NMS decoding algorithm with a fixed scale factor of 0.5 and 0.75, respectively. The simulation results of three algorithms under differentSNRs are shown as Fig.1. The abscissa represents the number of iterations, and the ordinate represents the number of bit errors.

    (a) SNR=1.1

    It can be seen that when theSNRis less than 1.5, the number of iterations can be reduced by the proposed NMS decoding algorithm with variable scale factor, and the decoding speed is faster. The advantage of this algorithm is that the convergence speed is faster when theSNRis greater than 1.5.

    2 Hardware implementation of LDPC decoder

    2.1 Data quantification

    For an FPGA-based LDPC decoder, its storage and operation information is binary. By observing the noise signal processed by the additive white Gaussian noise (AWGN) channel, it can be found that the distribution of signal value is in the range of (-4,4). Each signal value is quantified as 8-bit binary data to facilitate FPGA-based hardware implementation, including one symbol bit, three integer bit and four decimal bit, as shown in Fig.2.

    2.2 Design of check node processing circuit

    To achieve the data processing of check nodes based on FPGA, the check node information processing circuit is designed according to Eq.(10) as shown in Fig.3. Check node information processing is based on the check matrixHto compute the messages transmitted to the check nodes by the variable nodes. It is horizontal processing of the confidence message matrix, involving 32 non-zero data per row in the confidence message matrix, each of which is in 8-bit binary form. Since the storage structure of the check matrixHand that of the confidence message matrix are the same, it is easy to design a check node information processing module with a parallelism of 2 according to the block characteristics of the matrixH, and each parallel processing module completes the update of 32 confidence message data register with the same storage address.

    Fig.3 Circuit block diagram of check node information processing

    2.3 FPGA-based LDPC decoder

    The design of the (8 176,7 154) LDPC decoder based on FPGA is implemented with ZYNQ7020 development board. Fig.4 shows the block diagram of the decoder, including data storage module, initialization module, check node information processing module, variable node information processing and decoding decision module, address update module, verification module and control module. Among them, the data storage module consists of receiving information memory, non-zero element position information memory of check matrix and confidence message memory. In addition, for the convenience of testing, the serial port receiving/sending module and receiving control module are designed.

    Fig.4 Overall block diagram of FPGA-based decoder

    First, the FPGA receives 8 176 bit of signals processed by the upper computer through the serial port. The upper computer processing is divided into two steps. One is to add noise to the codeword sequence after encoding, and the other is to quantify the noisy sequence. Each signal is composed of 8 bit of binary data. Then, the confidence message is initialized according to the non-zero element position of the check matrix. After that, the check node information is processed row by row to obtain the updated confidence message. Finally, the variable node information is processed, including updating the confidence message and the decoding judgment. If the verification is successful, the decoding is successful, and then the decoded information sequence is sent out via the serial port. If the verification fails, the iteration operation between the check node and the variable node continues until reaching the maximum number of iterations. That is to say, the decoding fails, and the final result of decoding is output via the serial port.

    3 Test and discussion

    3.1 Simulation test

    The simulation test is to verify the function of the decoder designed. The clock frequency is 200 MHz, theSNRis 1.5, and the maximum number of iterations is 15. The simulation diagram of the decoder designed is shown as Fig.5. It can be seen that different modes correspond to different scale factors, and the mode changes with the number of iterations. After five iterations, the mode remains unchanged, and after nine iterations, the decoding is successful. In Fig.5, code is a sequence of codewords after successful decoding, and JUD_ Done indicates that the verification is correct and the decoding is successful. The codeword sequence after successful decoding is compared with the codeword sequence before coding, and it can be seen that the decoding is correct. Therefore, the decoder function is realized successfully.

    Fig.5 Simulation results of LDPC decoder designed

    3.2 Board-level test

    The board-level test process is that the 7 154 bit of original information codes are encoded to generate 1 022 bit of check codes, totaling 8 176 bit of data, and then the data are transmitted over the AWGN channel by binary phase-shift keying (BPSK) modulation. Receiver completes BPSK demodulation and quantifies each datum into 8-bit binary data, then feeds it into the decoder via the serial port for iterative decoding. After decoding, the result is sent to the upper computer for display.

    To achieve the board-level test of the decoder, VB6.0 is used for the design and implementation of the upper computer. An FPGA development board is ZYNQ7020, and the development environment is VIVADO2018.3. The main function of the upper computer is to superimpose a set of noises on the encoded codeword sequence, and these additive noises are normally distributed random noises with zero mean and unit variance. Then the noise sequence is quantified and sent to the FPGA for decoding. Finally, the decoding result can be compared with the codeword sequence before encoding to verify whether the decoding is successful or not. If successful, the serial port of the upper computer displays “Data comparison complete without error” (see Fig.6). If the decoding fails, the upper computer counters the error position and the number and displays them (as shown in Fig.7). The test results show that the (8 176,7 154) LDPC decoder can run smoothly when the maximum number of iterations is 15 and theSNRis no less than 1.1.

    Fig.6 Display of successful decoding serial port

    Fig.7 Display of failed decoding serial port

    To test the algorithm performance on FPGA board, the encoded data is taken with noise after quantization when theSNRis fixed at 1.1 and 1.5, respectively, and then carried out an FPGA board-level test under different iterations. Table 1 shows the code error numbers of different scale factors under different iterations whenSNRis 1.1.

    Table 2 shows the code error numbers of different scale factors under different iterations whenSNRis 1.5. The value marked in black italics in Table 1 indicates the code error numbers after 6 iterations when the scale factor is 0.75, andαvariable is the variable scale factor of NMS decoding algorithm proposed in this paper.

    Table 1 Code error numbers of different scale factors under different iterations (SNR=1.1)

    Table 2 Code error numbers of different scale factors under different iterations (SNR=1.5)

    By comparing the data in Table 1, it can be found that the NMS algorithm with variable scale factor has better decoding performance owing to its fewer number of code error and its fewer number of iterations required for successful decoding.

    4 Conclusions

    An improved NMS decoding algorithm with variable scale factor is proposed for near-ground space communication (8 176,7 154) LDPC codes under the CCSDS standard. The scale factor can vary with the number of iterations. To facilitate FPGA-based hardware implementation, an improved quantization method is proposed, which replaces the multiplication of floating-point numbers with the addition via the quantized binary data shift to the right. Based on this, an LDPC decoder with the variable scale factor is designed and implemented based on FPGA. The core of this decoder is the iterative processing of check node information and variable node information. It proves that the decoder designed has a simplified FPGA structure, and improves the error correction ability, lower error rate, better decoding performance, and can reduce the number of iterations to a certain extent by simulation and board-level tests.

    最近2019中文字幕mv第一页| 日韩中文字幕欧美一区二区 | 亚洲国产欧美日韩在线播放| 国产又色又爽无遮挡免| 国产伦人伦偷精品视频| 亚洲国产欧美一区二区综合| 欧美日韩成人在线一区二区| e午夜精品久久久久久久| 18禁裸乳无遮挡动漫免费视频| av网站在线播放免费| 国产免费视频播放在线视频| 亚洲国产欧美网| 女人被躁到高潮嗷嗷叫费观| 国产精品国产av在线观看| 男女免费视频国产| 欧美日韩视频精品一区| 免费av中文字幕在线| 亚洲国产最新在线播放| 午夜福利视频在线观看免费| 亚洲欧美精品自产自拍| 一本—道久久a久久精品蜜桃钙片| 少妇猛男粗大的猛烈进出视频| 老汉色∧v一级毛片| 热99久久久久精品小说推荐| 亚洲av国产av综合av卡| 成人影院久久| 亚洲三区欧美一区| 人人妻人人爽人人添夜夜欢视频| 街头女战士在线观看网站| av网站在线播放免费| 2021少妇久久久久久久久久久| 亚洲图色成人| 肉色欧美久久久久久久蜜桃| 中国三级夫妇交换| 中文乱码字字幕精品一区二区三区| 精品亚洲成国产av| 精品免费久久久久久久清纯 | av电影中文网址| www.自偷自拍.com| 丝袜美腿诱惑在线| 狂野欧美激情性xxxx| 亚洲欧美一区二区三区久久| 丝袜喷水一区| 中文天堂在线官网| 激情五月婷婷亚洲| 久久久精品区二区三区| 亚洲男人天堂网一区| 国产黄色免费在线视频| 天美传媒精品一区二区| 亚洲美女搞黄在线观看| 中文字幕人妻丝袜制服| 国产精品免费大片| 日韩中文字幕欧美一区二区 | 一区二区三区精品91| 中文字幕最新亚洲高清| 一边摸一边做爽爽视频免费| 男人舔女人的私密视频| 国产毛片在线视频| 交换朋友夫妻互换小说| 国产精品成人在线| 久久精品久久久久久噜噜老黄| 国产激情久久老熟女| 一级毛片电影观看| 色视频在线一区二区三区| 2021少妇久久久久久久久久久| 亚洲精品日本国产第一区| 麻豆乱淫一区二区| 九九爱精品视频在线观看| 日本欧美视频一区| 国产不卡av网站在线观看| 精品国产露脸久久av麻豆| 久久99精品国语久久久| 日韩中文字幕视频在线看片| 大片电影免费在线观看免费| 免费观看av网站的网址| 午夜av观看不卡| 日韩av免费高清视频| 精品一区二区三区av网在线观看 | 国产熟女午夜一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成国产人片在线观看| www.熟女人妻精品国产| 久久人人爽av亚洲精品天堂| 亚洲欧美一区二区三区久久| 天堂俺去俺来也www色官网| av在线老鸭窝| 成人午夜精彩视频在线观看| 高清视频免费观看一区二区| 亚洲欧美精品自产自拍| 美女主播在线视频| 国产精品免费大片| 中文字幕高清在线视频| 在线免费观看不下载黄p国产| 国产成人欧美| 国产色婷婷99| 99国产综合亚洲精品| 一区二区三区精品91| 一边亲一边摸免费视频| 久久精品国产综合久久久| 999精品在线视频| 国产在线免费精品| 亚洲综合色网址| 看免费av毛片| 丝瓜视频免费看黄片| 99国产综合亚洲精品| 亚洲国产欧美在线一区| 丰满饥渴人妻一区二区三| 91精品三级在线观看| 免费在线观看黄色视频的| 精品少妇内射三级| 男女无遮挡免费网站观看| av网站免费在线观看视频| 久久ye,这里只有精品| 啦啦啦啦在线视频资源| 大陆偷拍与自拍| 中文精品一卡2卡3卡4更新| 午夜福利影视在线免费观看| 国产av一区二区精品久久| 十八禁人妻一区二区| 黄片播放在线免费| 国产野战对白在线观看| 在线看a的网站| svipshipincom国产片| 精品国产超薄肉色丝袜足j| 日本黄色日本黄色录像| 777米奇影视久久| 97精品久久久久久久久久精品| 国产伦理片在线播放av一区| 亚洲欧美成人综合另类久久久| 天天躁日日躁夜夜躁夜夜| 天天影视国产精品| 丝袜人妻中文字幕| 天天躁日日躁夜夜躁夜夜| 男人添女人高潮全过程视频| 国产精品一国产av| 午夜免费鲁丝| 搡老岳熟女国产| 亚洲av中文av极速乱| 伦理电影免费视频| 久久久久久人人人人人| 黄色一级大片看看| 国产激情久久老熟女| 亚洲精品在线美女| 一级毛片黄色毛片免费观看视频| 少妇人妻久久综合中文| 中文字幕av电影在线播放| 九色亚洲精品在线播放| 欧美在线黄色| 亚洲av日韩精品久久久久久密 | 少妇被粗大的猛进出69影院| 久久久国产精品麻豆| 伊人亚洲综合成人网| 18禁裸乳无遮挡动漫免费视频| 久久青草综合色| 老司机在亚洲福利影院| 亚洲欧美色中文字幕在线| 精品酒店卫生间| 久久精品亚洲av国产电影网| 大码成人一级视频| 毛片一级片免费看久久久久| 日韩中文字幕欧美一区二区 | 久久精品国产亚洲av涩爱| 这个男人来自地球电影免费观看 | 在线观看一区二区三区激情| 叶爱在线成人免费视频播放| 大码成人一级视频| 国产成人欧美| 国产精品久久久久久人妻精品电影 | 日日摸夜夜添夜夜爱| 久久精品国产a三级三级三级| 成人毛片60女人毛片免费| 国产日韩一区二区三区精品不卡| 国产精品麻豆人妻色哟哟久久| 久久天躁狠狠躁夜夜2o2o | 午夜精品国产一区二区电影| 51午夜福利影视在线观看| 制服人妻中文乱码| 亚洲精品一区蜜桃| 叶爱在线成人免费视频播放| 日本vs欧美在线观看视频| 咕卡用的链子| 青春草国产在线视频| 美女中出高潮动态图| av视频免费观看在线观看| 老司机在亚洲福利影院| 日日啪夜夜爽| av线在线观看网站| 亚洲国产日韩一区二区| 欧美日韩成人在线一区二区| 国产亚洲午夜精品一区二区久久| av电影中文网址| 一个人免费看片子| 欧美97在线视频| 制服丝袜香蕉在线| 色吧在线观看| netflix在线观看网站| 国产欧美日韩一区二区三区在线| 久久精品国产亚洲av涩爱| 男的添女的下面高潮视频| 亚洲国产欧美在线一区| av国产精品久久久久影院| 韩国高清视频一区二区三区| h视频一区二区三区| 满18在线观看网站| 天美传媒精品一区二区| 国产精品久久久人人做人人爽| 日韩精品有码人妻一区| 韩国高清视频一区二区三区| 亚洲精品aⅴ在线观看| 一区二区三区四区激情视频| 久久国产精品男人的天堂亚洲| 国产 一区精品| 最近手机中文字幕大全| 成人免费观看视频高清| 久久久久久久久免费视频了| 久久久国产欧美日韩av| 国产精品国产三级专区第一集| 日韩欧美精品免费久久| 捣出白浆h1v1| 高清av免费在线| 亚洲专区中文字幕在线 | 一本大道久久a久久精品| 亚洲,欧美精品.| 成人国语在线视频| 熟妇人妻不卡中文字幕| 两性夫妻黄色片| 色婷婷久久久亚洲欧美| 精品国产一区二区三区久久久樱花| 制服人妻中文乱码| 午夜福利乱码中文字幕| 国产一区二区在线观看av| 国产精品国产三级国产专区5o| 国产有黄有色有爽视频| 国产av国产精品国产| 亚洲精品久久成人aⅴ小说| 国产欧美日韩综合在线一区二区| 亚洲三区欧美一区| 成年美女黄网站色视频大全免费| 嫩草影院入口| 在线天堂中文资源库| 国产激情久久老熟女| 99久久人妻综合| av在线观看视频网站免费| 2021少妇久久久久久久久久久| 成年人免费黄色播放视频| www.精华液| 亚洲国产精品国产精品| 国产精品一国产av| 丝袜脚勾引网站| 午夜福利在线免费观看网站| 亚洲色图综合在线观看| a级片在线免费高清观看视频| 中国三级夫妇交换| 伊人久久国产一区二区| 亚洲熟女精品中文字幕| 欧美成人午夜精品| 伊人亚洲综合成人网| 午夜91福利影院| 高清视频免费观看一区二区| 久久午夜综合久久蜜桃| 两个人免费观看高清视频| 日韩制服骚丝袜av| 飞空精品影院首页| 1024视频免费在线观看| 欧美人与性动交α欧美软件| 国产高清不卡午夜福利| 美女福利国产在线| 99re6热这里在线精品视频| 熟女少妇亚洲综合色aaa.| www.自偷自拍.com| 国产极品粉嫩免费观看在线| 婷婷色av中文字幕| 国产精品国产三级专区第一集| 国产精品嫩草影院av在线观看| 国产在线免费精品| 国精品久久久久久国模美| 国产午夜精品一二区理论片| 国产精品三级大全| avwww免费| 亚洲成人免费av在线播放| 最新的欧美精品一区二区| 女性被躁到高潮视频| 波野结衣二区三区在线| 卡戴珊不雅视频在线播放| 亚洲国产看品久久| 日韩大片免费观看网站| 亚洲av在线观看美女高潮| 波多野结衣一区麻豆| 久久久久国产精品人妻一区二区| 亚洲av欧美aⅴ国产| 一区二区三区乱码不卡18| 国产在线视频一区二区| 久久久久久久精品精品| 男女床上黄色一级片免费看| 亚洲av电影在线观看一区二区三区| 午夜影院在线不卡| 国产一区亚洲一区在线观看| 亚洲图色成人| 精品久久久久久电影网| 久久久久久人人人人人| 欧美日韩一级在线毛片| 晚上一个人看的免费电影| 国产极品天堂在线| 国产黄色视频一区二区在线观看| 大话2 男鬼变身卡| 日韩免费高清中文字幕av| 性高湖久久久久久久久免费观看| 黄色毛片三级朝国网站| 精品酒店卫生间| 校园人妻丝袜中文字幕| 国产在线视频一区二区| 国产99久久九九免费精品| 1024香蕉在线观看| 久久午夜综合久久蜜桃| 黄片小视频在线播放| √禁漫天堂资源中文www| av在线老鸭窝| xxx大片免费视频| videos熟女内射| 视频区图区小说| 国产成人欧美| 精品国产乱码久久久久久小说| 免费看av在线观看网站| 超色免费av| 少妇 在线观看| 亚洲av欧美aⅴ国产| www日本在线高清视频| 你懂的网址亚洲精品在线观看| 大片免费播放器 马上看| 九草在线视频观看| 国产1区2区3区精品| 欧美老熟妇乱子伦牲交| 亚洲情色 制服丝袜| 国产一卡二卡三卡精品 | tube8黄色片| 色婷婷av一区二区三区视频| 新久久久久国产一级毛片| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av综合色区一区| 国产福利在线免费观看视频| 丰满迷人的少妇在线观看| 在线免费观看不下载黄p国产| 国产在线免费精品| 国产成人欧美在线观看 | 青青草视频在线视频观看| 国产在线一区二区三区精| 亚洲av日韩在线播放| 制服人妻中文乱码| 极品少妇高潮喷水抽搐| 亚洲av中文av极速乱| 午夜91福利影院| 久久av网站| 欧美人与性动交α欧美精品济南到| 男女边摸边吃奶| 久久久久人妻精品一区果冻| 自线自在国产av| 亚洲精品久久久久久婷婷小说| 亚洲欧美一区二区三区久久| 国产精品久久久人人做人人爽| 亚洲美女视频黄频| 免费观看av网站的网址| 操出白浆在线播放| 欧美日韩视频高清一区二区三区二| 一级a爱视频在线免费观看| 美女中出高潮动态图| 香蕉国产在线看| 我要看黄色一级片免费的| 蜜桃在线观看..| 国产97色在线日韩免费| 亚洲精品成人av观看孕妇| 欧美最新免费一区二区三区| 久久免费观看电影| 国产视频首页在线观看| 久久久久久久国产电影| 日韩人妻精品一区2区三区| 黄色毛片三级朝国网站| h视频一区二区三区| 日韩精品有码人妻一区| 最近2019中文字幕mv第一页| 午夜福利免费观看在线| 亚洲精品国产一区二区精华液| 久久久久久久国产电影| 久久免费观看电影| 丝袜美足系列| 亚洲视频免费观看视频| 少妇人妻久久综合中文| 亚洲熟女毛片儿| 亚洲av中文av极速乱| 国产乱来视频区| 国产精品偷伦视频观看了| 久久久精品区二区三区| 日本色播在线视频| 亚洲图色成人| 亚洲国产欧美在线一区| 国产精品国产av在线观看| 制服人妻中文乱码| 在线天堂中文资源库| 少妇猛男粗大的猛烈进出视频| 午夜福利在线免费观看网站| 亚洲四区av| 国产成人精品无人区| a 毛片基地| 亚洲精品视频女| 麻豆精品久久久久久蜜桃| 香蕉国产在线看| 国产欧美日韩一区二区三区在线| 精品久久久久久电影网| 日韩视频在线欧美| 国产亚洲最大av| 18禁国产床啪视频网站| 亚洲 欧美一区二区三区| 大香蕉久久网| 夜夜骑夜夜射夜夜干| 久久精品国产亚洲av高清一级| a 毛片基地| 亚洲av日韩在线播放| 99九九在线精品视频| 精品少妇黑人巨大在线播放| 中国三级夫妇交换| 我要看黄色一级片免费的| 成年人免费黄色播放视频| 18禁裸乳无遮挡动漫免费视频| 老司机靠b影院| 国产女主播在线喷水免费视频网站| 精品第一国产精品| 亚洲国产毛片av蜜桃av| 香蕉国产在线看| 黄色视频在线播放观看不卡| 国产男女超爽视频在线观看| av又黄又爽大尺度在线免费看| 免费黄网站久久成人精品| 18在线观看网站| 欧美国产精品va在线观看不卡| 不卡视频在线观看欧美| svipshipincom国产片| 国产一区有黄有色的免费视频| 在线观看免费午夜福利视频| 99热全是精品| 国产伦人伦偷精品视频| 9色porny在线观看| 日韩一区二区视频免费看| 少妇被粗大猛烈的视频| 亚洲成人一二三区av| 色精品久久人妻99蜜桃| 日本欧美国产在线视频| 欧美精品一区二区大全| 精品少妇黑人巨大在线播放| 免费久久久久久久精品成人欧美视频| 国产成人一区二区在线| netflix在线观看网站| 最近最新中文字幕大全免费视频 | 纯流量卡能插随身wifi吗| 操美女的视频在线观看| 日韩精品免费视频一区二区三区| 天堂8中文在线网| 午夜福利免费观看在线| av女优亚洲男人天堂| 免费人妻精品一区二区三区视频| 伊人久久大香线蕉亚洲五| 狂野欧美激情性xxxx| 少妇被粗大的猛进出69影院| 日日爽夜夜爽网站| 亚洲七黄色美女视频| 欧美成人午夜精品| 久久久精品国产亚洲av高清涩受| 青春草视频在线免费观看| 丰满迷人的少妇在线观看| 成人免费观看视频高清| 久久久久网色| 欧美日韩视频精品一区| 午夜福利视频在线观看免费| 搡老乐熟女国产| 国产精品.久久久| 99九九在线精品视频| 伊人亚洲综合成人网| 婷婷成人精品国产| 少妇人妻久久综合中文| av视频免费观看在线观看| av国产精品久久久久影院| 你懂的网址亚洲精品在线观看| 最近的中文字幕免费完整| 69精品国产乱码久久久| 天天躁狠狠躁夜夜躁狠狠躁| 欧美国产精品一级二级三级| 亚洲中文av在线| 国产精品熟女久久久久浪| 日韩大码丰满熟妇| 乱人伦中国视频| 男女边吃奶边做爰视频| 精品酒店卫生间| www日本在线高清视频| 国产精品成人在线| 国产亚洲精品第一综合不卡| 搡老乐熟女国产| 国产免费现黄频在线看| 亚洲国产精品成人久久小说| 成人黄色视频免费在线看| 久久久国产欧美日韩av| 青春草亚洲视频在线观看| 一本一本久久a久久精品综合妖精| 国产高清国产精品国产三级| 亚洲国产精品999| 亚洲 欧美一区二区三区| 色94色欧美一区二区| 男男h啪啪无遮挡| 精品酒店卫生间| 嫩草影院入口| 国产免费现黄频在线看| 午夜91福利影院| 亚洲第一区二区三区不卡| 亚洲国产精品成人久久小说| 天天躁夜夜躁狠狠久久av| 麻豆乱淫一区二区| 香蕉国产在线看| 成年av动漫网址| 七月丁香在线播放| 男人添女人高潮全过程视频| 欧美另类一区| 亚洲精品美女久久久久99蜜臀 | 久久久久精品性色| 亚洲精品aⅴ在线观看| a 毛片基地| 天天躁夜夜躁狠狠久久av| 97精品久久久久久久久久精品| 麻豆av在线久日| 99热全是精品| 国产精品无大码| 晚上一个人看的免费电影| 日本一区二区免费在线视频| 黑人巨大精品欧美一区二区蜜桃| 极品人妻少妇av视频| 午夜影院在线不卡| 欧美国产精品一级二级三级| kizo精华| 亚洲精品久久午夜乱码| 美女高潮到喷水免费观看| 好男人视频免费观看在线| 久久精品国产亚洲av高清一级| 欧美 亚洲 国产 日韩一| 伊人亚洲综合成人网| 青春草国产在线视频| 99精品久久久久人妻精品| av线在线观看网站| 狂野欧美激情性xxxx| h视频一区二区三区| 国产视频首页在线观看| a级片在线免费高清观看视频| 久久99热这里只频精品6学生| www.av在线官网国产| 午夜日韩欧美国产| 在线天堂最新版资源| 国产老妇伦熟女老妇高清| 日韩人妻精品一区2区三区| 韩国av在线不卡| av福利片在线| videos熟女内射| 一边亲一边摸免费视频| 国产成人午夜福利电影在线观看| 亚洲精品国产一区二区精华液| 国产成人a∨麻豆精品| 波多野结衣av一区二区av| 2018国产大陆天天弄谢| 久久狼人影院| 又粗又硬又长又爽又黄的视频| 亚洲国产看品久久| av天堂久久9| 国产在线视频一区二区| 卡戴珊不雅视频在线播放| 老司机影院毛片| 亚洲精品日本国产第一区| 一级,二级,三级黄色视频| 久久久久久免费高清国产稀缺| 日韩不卡一区二区三区视频在线| xxxhd国产人妻xxx| 色94色欧美一区二区| 美国免费a级毛片| 国产女主播在线喷水免费视频网站| 日韩 亚洲 欧美在线| 亚洲人成电影观看| 丰满少妇做爰视频| 久久鲁丝午夜福利片| 日韩一卡2卡3卡4卡2021年| 纯流量卡能插随身wifi吗| 国产精品无大码| 亚洲精品第二区| 狠狠婷婷综合久久久久久88av| 久久久久精品性色| 国产精品成人在线| 精品亚洲乱码少妇综合久久| 国产精品人妻久久久影院| 国产精品国产av在线观看| 啦啦啦中文免费视频观看日本| 国产熟女欧美一区二区| 欧美精品亚洲一区二区| 一区在线观看完整版| 国产亚洲精品第一综合不卡| 午夜久久久在线观看| 日韩,欧美,国产一区二区三区| 日韩免费高清中文字幕av| 亚洲av中文av极速乱| 国产成人啪精品午夜网站| 美女高潮到喷水免费观看| 9热在线视频观看99| 国产熟女午夜一区二区三区| 美女国产高潮福利片在线看| 久久99精品国语久久久| 亚洲少妇的诱惑av| 搡老乐熟女国产| 看十八女毛片水多多多| 在现免费观看毛片| 久久性视频一级片| 嫩草影视91久久| 日韩av免费高清视频| 亚洲久久久国产精品| 婷婷色综合www|