• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor

    2022-10-26 09:54:00LiPingZhang張麗萍YangLiu劉洋ZhouChaoWei魏周超HaiBoJiang姜海波WeiPengLyu呂偉鵬andQinShengBi畢勤勝
    Chinese Physics B 2022年10期
    關鍵詞:張麗萍劉洋海波

    Li-Ping Zhang(張麗萍) Yang Liu(劉洋) Zhou-Chao Wei(魏周超) Hai-Bo Jiang(姜海波)Wei-Peng Lyu(呂偉鵬) and Qin-Sheng Bi(畢勤勝)

    1Faculty of Civil Engineering and Mechanics,Jiangsu University,Zhenjiang 212013,China

    2School of Mathematics and Statistics,Yancheng Teachers University,Yancheng 224002,China

    3Engineering Department,Mathematics and Physical Sciences,University of Exeter,Exeter EX4 4QF,UK

    4School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China

    Keywords: two-dimensional maps,memristive maps,hidden attractors,bifurcation analysis,extremely hidden multi-stability

    1. Introduction

    Since memristor was regarded as a fourth circuit component by Chua in 1971[1]and physically implemented by HP laboratory in 2008,[2]it has been intensively studied in the literature and extensively applied in many fields.[3]Very recently, discrete memristor has begun to receive many researchers’ attention.[4–20]For instance, Penget al.presented a model of discrete memristor via the difference theory and derived a memristive H′enon map in Ref.[4]. Then they gave a higher-dimensional map containing the discrete memristor and studied the dynamical behaviors of the map in Ref.[5]. Meanwhile, Baoet al.constructed a two-dimensional (2D) memristive map based on the method of sampling and showed the chaotic and hyper-chaotic behaviors of the map in Ref. [6].Liet al.provided several examples of 2D memristive maps and investigated complex dynamics by considering their coupling strengths and initial values in Ref.[7].In Ref.[8],Baoet al.gave four representations of the discrete memristor model and studied the complex behaviors of their corresponding 2D memristive maps. Baoet al.proposed a memristive Logistic map and investigated the dynamical behaviors of the proposed map in Ref. [9]. In Ref. [10], Baoet al.presented a class of three-dimensional (3D) memristive maps and studied the application of these maps. Liet al.investigated the effect of magnetic induction on the constructed memristive Rulkov neuron map in Ref. [11]. In Ref. [12], Deng and Li established a class of 2D non-autonomous memristive maps that can display hyper-chaotic, periodic, and bursting oscillations. Deng and Li yielded a memristive sine map and studied non-parametric bifurcation and hyper-chaotic behaviors of the map in Ref. [13]. In Ref. [14], Konget al.put forward a 2D memristive map by introducing a discrete sinusoidal memristor. Liu gave and investigated a memristive map by couping the discrete memristor with nonlinear maps of sine and cosine functions in Ref. [15]. In Ref. [16], Liet al.presented a memristor-type chaotic mapping whose parameters could be considered as partial and total amplitude controllers. Fuet al.constructed a class of discrete quadratic memristors and implemented the memristor by using Simulink in Ref. [17]. In Ref. [18], Maet al.put forward a memristive hyper-chaotic map by introducing the proposed discrete memristor into a class of 2D generalized square maps. Ramakrishnan proposed a new memristive neuron map and investigated the complex dynamics of the networked maps by hybrid electrical and chemical synapses in Ref.[19]. In Ref.[20],Lai and Lai presented a 2D memristive hyper-chaotic map with a line of fixed points by coupling a discrete memristor into an enhanced Logistic map. Laiet al.proposed a memristive neuron map by introducing a discrete memristor into an existing neuron map in Ref.[21]. In Ref.[22],Ronget al.constructed a 3D memristive map by coupling a discrete tangent memristor to the H′enon map. Penget al.gave three 2D memristive sine maps by introducing three discrete memristor models into the sine map in Ref.[23]. In Ref.[24],Baoet al.presented a 2D memristive map by implementing sine transformation for the memristor. The memristive maps proposed in Refs.[4–24]usually have several fixed points or a line of fixed points.

    If the map has no fixed points,the map belongs to the category of maps with hidden attractors according to the classification of self-excited and hidden attractors given by Leonov and Kuznetsov.[25–27]The basin of attraction of the attractor does not contain any small neighborhoods of fixed points of the map, so it is called a hidden attractor. Otherwise, if the basin of attraction of the attractor intersects with small neighborhoods of any fixed points of the map, it is called a selfexcited attractor.[28]Hidden attractors are difficult to be located and may lead to unexpected responses, so the hidden attractors of continuous and discrete-time systems have been extensively investigated in the literature.[29–33]In Ref. [34],Ramadosset al.obtained several memristive maps without any fixed points by introducing a tiny perturbation and showed hidden attractors in these maps. If a dynamical system generates more than one attractor for a set of fixed parameters using different initial conditions, the system has multi-stability. If the number of the coexisting attractors of the dynamical system for a set of fixed parameters and different initial conditions is infinite, this phenomenon is called extreme multi-stability.Multi-stability and extreme multi-stability of dynamical systems have been found in many disciplines,including physics,chemistry, biology, and economics.[35,36]Very recently, extreme multi-stability of nonlinear maps has received much attention.[37–40]In Ref.[37],Zhanget al.presented a class of 2D chaotic maps with extreme multi-stability by introducing a sine term. Baoet al.proposed a 2D hyper-chaotic map with extreme multi-stability in Ref.[38]. In Ref.[39], Konget al.proposed a 2D hyper-chaotic map with conditional symmetry and attractor growth by introducing two sine terms. Liet al.constructed a 2D map with a sine function to show the selfreproducing dynamics of the map,i.e., reproducing infinitely many coexisting attractors of the same structure but in a different position in Ref.[40].

    If a nonlinear map exhibits coexisting hidden attractors(or infinitely many coexisting hidden attractors), we say the map has hidden multi-stability (or extremely hidden multistability). When the map generates infinitely many coexisting hidden attractors having the same shape but different amplitudes, frequencies, or positions, the map has homogenous extreme hidden multi-stability. While the map has infinitely many coexisting hidden attractors of different types, the map has heterogeneous extreme multi-stability. In Ref. [41], Zhanget al.formulated a class of 2D rational maps showing hidden attractors and hidden multi-stability.Then Zhanget al.studied hidden attractors and hidden multistability of a class of 2D rational memristive maps without fixed points in Ref. [42]. However, to the best of our knowledge, the work on memristive maps with extremely hidden multi-stability is limited, which motivates the present study.The main novelties and contributions of this paper are as follows: (i)A new class of 2D maps with a cosine memristor is presented to show extremely hidden multi-stability. (ii) The nonlinear dynamics of the memristive map is numerically analyzed by using several numerical tools including phase portraits, basins of attraction, bifurcation diagram, and the Lyapunov exponent spectrums(Les). (iii)The two-parameter bifurcation analysis of the memristive map in the regions concerned has been carried out to reveal the bifurcation mechanism of the nonlinear dynamics. (iv)The memristive map can display different types of infinitely many coexisting attractors.

    The rest of this paper is organized as follows. In Section 2, we formulate the mathematical model of this class of 2D maps with a cosine memristor and study the existence of their fixed points. In Section 3,we investigate the rich dynamics of the memristive map by using numerical analysis tools.Finally,we draw conclusions in Section 4.

    2. System model

    The equation of the cosine memristor[7]is given by

    wherevk,ik, andqk(k=0,1,2,...) denote the output, input,and internal state of the cosine memristor at stepk, respectively.M(qk)=c(cos(dqk))represents the memristance of the cosine memristor.

    In this paper,the discrete cosine memristor is coupled to a one-dimensional constant map,and a class of 2D memristive maps is formulated as

    wherexkandyk(k=0,1,2,...)are the states at stepk,the coefficientsa,b,c,d,andeare the parameters. In this paper,we assume that the parameters are all not equal to zero,i.e., the map contains the constant term and the cosine memristor.

    Remark 1 In Ref.[7],if the parametersc,d,andeof the cosine memristor are chosen as(c,d,e)=(1,1,1),“8”-shaped tight hysteresis loop and the characteristic of the fingerprint and memory can be shown in the cosine memristor.

    Remark 2 In Ref. [34], the constantawas considered as a tiny perturbation,i.e.,a=0.001 and only the dynamics of the memristive map with fixed parameters was shown. In this paper,the parameterawill be taken as a varying parameter,and the extremely hidden multi-stability of the memristive map with a cosine memristor will be demonstrated.

    One can get the fixed points (x*,y*) of the memristive map(2)by solving the following equations:

    Sincea/=0, there is no solution in Eq.(4), so the memristive map (2) has no fixed points. Then the mathematical model of the memristive map with no fixed points is formulated,which is scarcely seen in the memristive map. Since the memristive map(2)has no fixed points,the basin of the attractors in the memristive maps does not contain any fixed points.According to Definition 1 given in Ref.[28],the attractors of the memristive map(2)are all hidden.

    By the translational symmetry,i.e.,S(x,y+2mπ) =S(x,y), whereS(x,y) = (a+b(c(cos(dy)))x-x,ex),m=1,2,..., the memristive map(2)may produce infinitely many coexisting hidden attractors having the same shape but in different positions.So the map may display homogenous extreme hidden multi-stability, which is rarely studied in the memristive maps before.

    3. Complex dynamics of the 2D map with a cosine memristor

    In this section, the complex dynamics of the memristive map (2) will be explored by utilizing numerical analysis tools. The Lyapunov exponent spectrums of the attractors of the memristive map (2) will be calculated by using the Wolf methods.[44,45]The iteration length of the memristive map(2)is chosen as 105.

    3.1. Dynamical region

    Figure 1 presents a two-parameter dynamical region of the memristive map(2), which can show the effect of the parametersaandbon the dynamics of the map.The period of the periodic solutions and Lyapunov exponent spectrums(Les)of other solutions were used to determine the dynamical regions.Denote the largest Lyapunov exponent and the smallest Lyapunov exponent by Le1 and Le2,respectively.The memristive map(2)is in hyper-chaotic state if Le1>Le2>0. The map is in chaotic state if Le1>0 and Le2<0. The map is in quasiperiodic state if Le1=0 and Le2<0. The map is in periodic state if Le1<0. We run the compute program in parallel for the parametera. In each parallel,we fix the parametera,and vary the parameterbin the interval [-3,3]. The initial states were selected randomly in the region{(x,y)|x,y ∈[-15,15]}if there is no steady attractor.We use the last state of the steady attractor for the initial state for the next step of the parameterb.In Fig. 1, the regions of different dynamical behaviors are marked with different colors, where the regions of period-2 to period-16 solutions are shown in different colors labeled by the numbers ‘2’ to ‘16’, and the region of periodic solutions whose period is more than 16 is indicated in the gray color labeled by ‘M’. And the regions of quasi-periodic (T),chaotic(C),hyper-chaotic(H),and divergent(D)solutions are denoted by the light blue,black,dark black,and white colors,respectively. From Fig.1,we can observe complex dynamics,including hidden periodic,quasi-periodic,chaotic,and hyperchaotic solutions. Moreover,the cascades of period-doubling bifurcations of the memristive map(2)are seen clearly. Note that the dynamical regions are symmetric about the horizontal linea=0 and the vertical lineb=0.

    Fig.1. The two-parameter dynamical regions of the memristive map(2)calculated for a ∈[-3,3], b ∈[-3,3], and(c,d,e)=(1,1,1). Different colors labeled by the numbers‘2’to‘16’represent period-2 to period-16 solutions.The gray color labeled by‘M’indicates the periodic solutions whose period is more than 16. The light blue, black, dark black, and white colors denote the quasi-periodic(T),chaotic(C),hyper-chaotic(H),and divergent(D)solutions,respectively.

    Fig.2. The two-parameter bifurcation curves of the memristive map(2)calculated for a ∈[-0.7,0.7], b ∈[-0.95,1.75], and (c,d,e)=(1,1,1). The two-parameter bifurcation curves are denoted by different color lines,where PDi represents the period-doubling bifurcation of period-i solution, LPi indicates the saddle-node bifurcation of period-i solution, i=2,4,8. LPPD denotes the codimension-2 bifurcation point, which is the intersection of saddle-node bifurcation and period-doubling bifurcation.

    To show the bifurcation mechanism of dynamical transition of the memristive map(2),the two-parameter bifurcation analysis are carried out fora ∈[-0.7,0.7],b ∈[-0.95,1.75]and(c,d,e)=(1,1,1). Figure 2 presents several two-parameter bifurcation curves of main low-periodic solutions. Different color lines are used to denote the two-parameter bifurcation curves,where the period-doubling bifurcation of period-isolution is represented by PDi,the saddle-node bifurcation of period-isolution is indicated by LPi,i=2,4,8. The intersection of saddle-node bifurcation and period-doubling bifurcation is labeled by LPPD,which is a codimension-2 bifurcation point.

    3.2. The bifurcation analysis of parameter a

    The one-parameter bifurcation diagram can be classified into three categories,i.e., bifurcation diagram using random initial values, bifurcation diagram using a fixed initial value,and bifurcation diagram using the last state of the steady solutions. The bifurcation diagram using random initial values can be called a random bifurcation diagram. Many initial values are selected randomly in an interval for each bifurcation parameter value in the random bifurcation diagram. So the interval where the initial values are randomly taken from has a certain influence on the bifurcation diagram. The random bifurcation diagram may exhibit all possible attractors if the interval is chosen appropriately. To show the phenomena of extreme homogenous hidden multi-stability, we adopted the random bifurcation diagrams of the memristive map(2)by selecting its initial values randomly in an interval.

    3.2.1. The case: b=1.6

    Fig.3. Random bifurcation diagrams of(a)x, (b)y(y ∈[-12,12]), and(c)Lyapunov exponents spectrum (Les) of the memristive map (2) calculated for a ∈[-0.7,0.7]and(b,c,d,e)=(1.6,1,1,1). The black dots represent the states of the attractors. The red and blue dots indicate the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2),respectively. The horizontal dashed line denotes the zero value of the Lyapunov exponents.

    Figure 3 depicts random bifurcation diagrams and Lyapunov exponent spectrum (Les) diagram of the memristive map(2)with the parameter(b,c,d,e)=(1.6,1,1,1),whereawas used as a bifurcation parameter,and the initial states were randomly chosen in[-15,15].In Figs.3(a)and 3(b),the states of the attractors are denoted by black dots. In Fig. 3(c), the largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent (Le2) are indicated by red and blue dots, respectively. Since there are infinitely many coexisting attractors,the range ofyis set asy ∈[-12,12]in Fig.3(b). From Fig.3,we can show the influence of the parameteraon the hidden dynamics of the memristive map (2) and a good agreement between the Lyapunov exponent diagram and the bifurcation diagram.Figure 4 presents the phase portraits of the coexisting solutions for the memristive map(2). Since there are infinitely many coexisting attractors, we only gave the phase portraits in the region{(x,y)|x ∈[-2.5,2.5],y ∈[-12,12]}. Whena=0, two different cases of hidden period-2 solutions coexist. Since the memristive map (2) is invariant for the transformation (x,y,a,b,c,d,e)→(-x,y,-a,b,c,d,e), the bifurcation diagram shows symmetrical about the diagonal line. So we only consider the case thata >0. From Fig. 3, when 0<a <0.015, the memristive map (2) shows two different cases of hidden period-2 solution (Fig. 4(a)). Asaincreases to 0.015, one case of hidden period-2 solutions disappears. Ata=0.192, the memristive map (2) encounters a period-doubling bifurcation,and the hidden period-4 solutions(Fig. 4(b)) bifurcate to hidden period-8 solutions (Fig. 4(c)).Whena=0.265,another period-doubling bifurcation occurs,converting these hidden period-8 solutions into hidden period-16 solutions. Then these hidden period-16 solutions become multiple-piece chaos(Figs.4(d)and 4(e))via a perioddoubling bifurcation cascade. Hereafter, we can observe a small window of hidden periodic solutions(Fig.4(f)),and the memristive map(2)goes into chaotic states(Fig.4(g))again.After that,we can observe another small window of hidden periodic solutions(Fig.4(h)). Then the memristive map(2)enters into chaotic states(Fig.4(i)). Whena=0.667,the memristive map(2)displays a two-piece chaotic attractor.Based on our numerical computation,the Lyapunov exponent spectrum(Les)of the chaotic attractor are 0.2040,-0.1387. Since the sum of the Lyapunov exponent spectrum of the chaotic attractor is larger than zero, its Lyapunov (Kaplan–Yorke) dimension (Dky)[46]is 2, which demonstrates the chaotic property of the memristive map (2). The correlation dimension of the chaotic attractor of the memristive map(2)is 1.6566 by using the method proposed in Ref. [46]. Finally, whena=0.669,the hidden two-piece chaotic attractors terminate to emerge.

    Fig.4. Phase portraits of coexisting solutions of the memristive map(2)with{(x,y)|x ∈[-2.5,2.5],y ∈[-12,12]},(b,c,d,e)=(1.6,1,1,1)and(a)a=0.001(two different cases of hidden period-4 solutions),(b)a=0.015(hidden period-4 solutions),(c)a=0.25(hidden period-8 solutions),(d)a=0.29(hidden multiple-piece chaotic solutions),(e)a=0.304(hidden four-piece chaotic solutions),(f)a=0.331(hidden period-12 solutions),(g)a=0.369(hidden two-piece chaotic solutions),(h)a=0.427(hidden period-10 solutions),(i)a=0.667(hidden two-piece chaotic solutions),respectively.

    3.2.2. The case: b=1.7

    Figure 5 exhibits random bifurcation and Lyapunov exponent spectrum(Les)diagrams of the memristive map(2)with the parameter(b,c,d,e)=(1.7,1,1,1),whereawas taken as a branch parameter, and the initial states were randomly selected in[-15,15]. In Figs.5(a)and 5(b),the states of the attractors are represented by black dots. In Fig.5(c),the largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent(Le2)are shown by red and blue dots,respectively. Since there are infinitely many coexisting attractors,the range ofyis limited asy ∈[-12,12] in Fig. 5(b). From Fig. 5, we can observe the effect of the parameteraon the hidden multistability of the memristive map (2) and the good accordance between the Lyapunov exponent (Les) diagram and the bifurcation diagram. Figure 6 shows the phase portraits of the coexisting solutions of the memristive map (2) in the range{(x,y)|x ∈[-3,2.5],y ∈[-12,12]}.

    From Fig.5,when 0<a <0.034,different cases of hidden solutions coexist. Whena=0.034, the hidden chaotic solutions vanish, and there are only hidden period-16 solutions. Asaincreases to 0.079, there is a period-halving bifurcation, leading the hidden period-16 solutions to hidden period-8 solutions (Fig. 6(a)). Ata= 0.115, the appearance of a period-doubling bifurcation turns the hidden period-8 solutions into hidden period-16 solutions. Then hidden multiple-piece chaotic solutions (Fig. 6(b)) take place after a period-doubling bifurcation cascade. Hereafter, the memristive map (2) exhibits several small windows of hidden periodic solutions (Fig. 6(c)). Then the memristive map (2)goes into chaotic states (Fig. 6(d)) again. After that, we can observe another small window of hidden periodic solutions(Fig. 6(e)), and the memristive map (2) evolves into chaotic states (Fig. 6(f)) again via a period-doubling bifurcation cascade. Finally, whena=0.519, the hidden two-piece chaotic solutions cease to exist.

    Fig.5. Random bifurcation diagrams of(a)x,(b)y(y ∈[-12,12]),and(c)Lyapunov exponent spectrum(Les)diagram of the memristive map(2)calculated for a ∈[-0.55,0.55]and(b,c,d,e)=(1.7,1,1,1). The black dots denote the states of the attractors. The red and blue dots represent the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2),respectively. The horizontal dashed line refers to the zero value of the Lyapunov exponents.

    Fig.6. Phase portraits of coexisting solutions of the memristive map(2)with{(x,y)|x ∈[-3,2.5],y ∈[-12,12]},(b,c,d,e)=(1.7,1,1,1)and(a)a=0.079(hidden period-8 solutions),(b)a=0.156(hidden four-piece chaotic solutions),(c)a=0.191(hidden period-12 solutions),(d)a=0.21(hidden two-piece chaotic solutions),(e)a=0.241(hidden period-6 solutions),(f)a=0.518(hidden two-piece chaotic solutions),respectively.

    3.3. Bifurcation analysis of parameter b

    3.3.1. The case: a=0.1

    Figure 7 gives random bifurcation and Lyapunov exponent spectrum diagrams of the memristive map (2) with the parameter(a,c,d,e)=(0.1,1,1,1), wherebwas chosen as a control parameter and the initial states were randomly selected in[-15,15]. In Figs.7(a)and 7(b),the states of the attractors are indicated by black dots. In Fig.7(c),the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2)are represented by red and blue dots, respectively. Since there are infinitely many coexisting attractors,the range ofyis chosen asy ∈[-15,15] in Fig. 7(b). From Fig. 7, we can manifest the impact of the parameterbon the hidden dynamics of the memristive map (2) and a perfect accord between the largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent(Le2). Figure 8 illustrates the phase portraits of the coexisting solutions of the memristive map (2) in the range{(x,y)|x ∈[-3,3],y ∈[-12,12]}.

    From Fig. 7, whenb= 1.133, the memristive map (2)shows hidden period-2 solutions (Fig. 8(a)). Asaincreases to 1.491, a period-doubling bifurcation occurs, yielding hidden period-4 solutions (Fig. 8(b)). Whenb= 1.681, another period-doubling bifurcation appears, resulting in hidden period-8 solutions (Fig. 8(c)). Atb=1.702, these hidden period-8 solutions turn into hidden period-16 solutions and then evolve into multiple-piece chaos(Figs.8(d)and 8(e))after a period-doubling bifurcation cascade. After that, one can observe a small window of hidden period-6 solutions(Fig. 8(f)) and hidden period-12 solutions. Then the memristive map(2)settles into hidden chaotic solutions(Fig.8(g)).Finally,whenb=1.82,the hidden two-piece chaotic solutions(Fig. 8(h)) are jointed together into hidden one-piece chaotic solutions(Fig.8(i)),which disappear atb=1.942.

    Fig.7. Random bifurcation diagrams of(a)x,(b)y(y ∈[-15,15]),and(c)Lyapunov exponent spectrum(Les)diagram of the memristive map(2)calculated for b ∈[-2,2]and(a,c,d,e)=(0.1,1,1,1). The black dots indicate the states of the attractors. The red and blue dots denote the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2),respectively. The horizontal dashed line stands for the zero value of the Lyapunov exponents.

    Fig.8. Phase portraits of coexisting solutions of the memristive map(2)with{(x,y)|x ∈[-3,3],y ∈[-12,12]}, (a,c,d,e)=(0.1,1,1,1)and(a)b=1.14(hidden period-2 solutions),(b)b=1.5(hidden period-4 solutions),(c)b=1.7(hidden period-8 solutions),(d)b=1.709(hidden five-piece chaotic solutions),(e)b=1.722(hidden two-piece chaotic solutions),(f)b=1.756(hidden period-6 solutions),(g)b=1.766(hidden six-piece chaotic solutions),(h)b=1.8(hidden two-piece chaotic solutions),(i)b=1.835(hidden one-piece chaotic solutions),respectively.

    To show the hidden homogenous multi-stability of the memristive map (2), we calculated the basin of attraction of the map whena=0.1,b=1.14,c=1,d=1, ande=1,as demonstrated in Fig.9,respectively. Four hidden period-2 solutions were represented by red, blue, magenta, and black dots,respectively. The basins of these period-2 solutions were colored in orange,yellow,cyan,and green,respectively. From Fig. 9, the basins of attraction of the period-2 attractors are similar.

    Fig. 9. Basin of attraction of the memristive map (2) with (a,b,c,d,e)=(0.1,1.14,1,1,1). The unbounded basin of attraction which is the set of initial points going into the region({(x,y)||x|+|y|>100})is shown in white.The hidden period-2 solutions are denoted by red,blue,magenta,and black dots, respectively. The basins of these period-2 solutions are shown in orange,yellow,cyan,and green,respectively.

    3.3.2. The case: a=0.01

    Figure 10 displays random bifurcation diagrams and Lyapunov exponent spectrum diagram of the memristive map(2)with the parameter (a,c,d,e) = (0.01,1,1,1), wherebwas treated as a varying parameter and the initial states were randomly taken in[-15,15]. In Figs.10(a)and 10(b), the states of the attractors are denoted by black dots. In Fig. 10(c), the largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent (Le2) are indicated by red and blue dots, respectively. Since there are infinitely many coexisting attractors,the range ofyis selected asy ∈[-15,15]in Fig.10(b). From Fig. 10, we can depict the impact of the parameterbon the hidden multi-stability of the memristive map (2) and a good coherence between the Lyapunov exponent diagram and the bifurcation diagram.

    Whenb=1.024, there exists hidden period-4 solutions,which become hidden period-8 solutions through the perioddoubling bifurcation. Whenb=1.028, hidden period-2 solutions arise. So a tiny range of hidden multi-stability is observed. The hidden period-2 solutions continue to exist.However,the hidden period-8 solutions turn to hidden period-16 solutions and finally to chaos via the cascades of perioddoubling bifurcations. The chaotic solutions run away atb=1.01. The hidden period-2 solutions (Fig. 11(a)) bifurcate to hidden period-4 solutions(Fig.11(b))after the perioddoubling bifurcation atb=1.529. Whenb=1.583, another hidden period-4 solutions appear. Then a new range of hidden multi-stability is shown. The two branches of hidden period-4 solutions convert into hidden period-8 solutions, period-16 solutions, and finally into hidden chaotic solutions. So the coexistence of hidden period-8 solution, period-16 solution,and chaotic solutions is observed. In the coexisting region,different types of solutions coexist. Whenb=1.728, there are only hidden two-piece chaotic solutions (Fig. 11(c)). After that, a window of hidden period-6 solutions (Fig. 11(d))and hidden six-piece chaotic solutions (Fig. 11(e)) is found.Whenb=1.812,there are only hidden two-piece chaotic solutions. Whenb=1.847,the two-piece chaotic solutions merge into one-piece chaotic solutions (Fig. 11(f)) which disappear atb=1.928.

    Fig. 10. Random bifurcation diagrams of (a) x, (b) y (y ∈[-15,15]), and(b)Lyapunov exponents(Les)diagram of the memristive map(2)calculated for b ∈[-2,-2]and(a,c,d,e)=(0.01,1,1,1). The black dots indicate the states of the attractors. The red and blue dots represent the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2),respectively. The horizontal dashed line corresponds to the zero value of the Lyapunov exponents.

    Fig.11. Phase portraits of coexisting solutions of the memristive map(2)with{(x,y)|x ∈[-3,3],y ∈[-12,12]},(a,c,d,e)=(0.01,1,1,1)and(a)b=1.11(hidden period-2 solutions), (b) b=1.58 (hidden period-4 solutions), (c) b=1.728 (hidden two-piece chaotic solutions), (d) b=1.784 (hidden period-6 solutions),(e)b=1.81(hidden six-piece chaotic solutions),(f)b=1.865(hidden one-piece chaotic solutions),respectively.

    4. Conclusions

    A new class of 2D maps with a cosine memristor was presented and investigated in this paper. We discussed the existence of fixed points of these memristive maps first. Then we employed several numerical analysis tools to demonstrate their complex dynamics, including hidden periodic, chaotic,and hyper-chaotic solutions. The two-parameter bifurcation analysis of the proposed memristive map has been carried out to reveal the bifurcation mechanism of the complex dynamics.The proposed memristive maps can generate infinitely coexisting hidden attractors with the same shape but at different positions. So the map can exhibit the phenomena of extreme homogenous hidden multi-stability. They can potentially be applied to some real applications in secure communication,such as data and image encryptions. Future works will concentrate on investigating the high-dimensional memristive maps with extreme hidden heterogeneous multi-stability.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.11972173 and 12172340).

    猜你喜歡
    張麗萍劉洋海波
    搏浪
    科教新報(2023年25期)2023-07-10 05:59:40
    汽車ABS控制仿真分析
    A class of two-dimensional rational maps with self-excited and hidden attractors
    又見劉洋
    海峽姐妹(2020年6期)2020-07-25 01:26:10
    Three dimensional nonlinear shock waves in inhomogeneous plasmas with different size dust grains and external magnetized field
    山清水秀
    科教新報(2020年2期)2020-02-14 05:57:58
    劉洋作品
    藝術家(2019年9期)2019-12-17 08:28:19
    說海波
    劉洋 藏石欣賞
    寶藏(2018年8期)2018-08-31 07:28:00
    張麗萍 勿忘初心 立己達人
    午夜免费男女啪啪视频观看| 欧美一级a爱片免费观看看| 王馨瑶露胸无遮挡在线观看| 午夜福利视频精品| 国产av国产精品国产| 亚洲伊人久久精品综合| 国产精品国产三级专区第一集| 亚洲第一区二区三区不卡| 看十八女毛片水多多多| 看免费成人av毛片| 亚洲色图av天堂| 岛国毛片在线播放| 国产黄片美女视频| 夫妻性生交免费视频一级片| 少妇高潮的动态图| 国产精品一区二区在线观看99| www.av在线官网国产| 成人免费观看视频高清| 一级毛片黄色毛片免费观看视频| 成人免费观看视频高清| 五月开心婷婷网| 欧美日韩综合久久久久久| 精品少妇黑人巨大在线播放| av在线天堂中文字幕| 国产永久视频网站| 亚洲精品自拍成人| 亚洲成人中文字幕在线播放| 在线观看一区二区三区| 免费播放大片免费观看视频在线观看| 久久精品国产自在天天线| 久久99热这里只有精品18| 国产精品久久久久久精品电影| eeuss影院久久| 在线观看一区二区三区| 视频区图区小说| 国产一区二区在线观看日韩| 久久久成人免费电影| 丰满人妻一区二区三区视频av| 日日撸夜夜添| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩视频精品一区| 亚洲精品日韩av片在线观看| av播播在线观看一区| 亚洲av国产av综合av卡| 自拍偷自拍亚洲精品老妇| 哪个播放器可以免费观看大片| 国产免费一级a男人的天堂| 午夜福利高清视频| 亚洲精品视频女| 国产一区二区三区av在线| 街头女战士在线观看网站| 久久99蜜桃精品久久| 精华霜和精华液先用哪个| 草草在线视频免费看| 中国三级夫妇交换| 久久久国产一区二区| 九九久久精品国产亚洲av麻豆| 少妇人妻久久综合中文| 免费av毛片视频| 亚洲av免费在线观看| 少妇的逼好多水| 国产精品精品国产色婷婷| 国产av不卡久久| 久久影院123| 国产成人免费无遮挡视频| 欧美成人a在线观看| 青春草亚洲视频在线观看| 美女xxoo啪啪120秒动态图| a级毛片免费高清观看在线播放| 91久久精品国产一区二区三区| 激情五月婷婷亚洲| 久久人人爽av亚洲精品天堂 | 久久这里有精品视频免费| 国产 一区 欧美 日韩| 午夜精品国产一区二区电影 | 成年女人在线观看亚洲视频 | 激情五月婷婷亚洲| 国产一区二区亚洲精品在线观看| av一本久久久久| 一区二区三区四区激情视频| 18禁裸乳无遮挡免费网站照片| 日韩免费高清中文字幕av| 亚洲成人久久爱视频| 成人鲁丝片一二三区免费| 国产在线一区二区三区精| 联通29元200g的流量卡| 精品久久久久久久人妻蜜臀av| 亚洲精华国产精华液的使用体验| 日本熟妇午夜| 免费av不卡在线播放| 欧美三级亚洲精品| 午夜福利网站1000一区二区三区| 亚洲精品视频女| 26uuu在线亚洲综合色| 色吧在线观看| 九色成人免费人妻av| 丰满乱子伦码专区| 欧美日韩视频高清一区二区三区二| 国产免费视频播放在线视频| 国语对白做爰xxxⅹ性视频网站| 国产美女午夜福利| 欧美丝袜亚洲另类| 国产视频内射| 免费黄网站久久成人精品| 一级爰片在线观看| 亚洲丝袜综合中文字幕| 国产成人一区二区在线| 三级经典国产精品| 成人亚洲欧美一区二区av| 三级国产精品欧美在线观看| 自拍偷自拍亚洲精品老妇| 国内揄拍国产精品人妻在线| 精品午夜福利在线看| 亚洲av电影在线观看一区二区三区 | 精品少妇久久久久久888优播| av国产久精品久网站免费入址| 简卡轻食公司| 亚洲人成网站在线播| 国产成人精品一,二区| 人妻 亚洲 视频| 欧美高清成人免费视频www| 欧美激情国产日韩精品一区| av天堂中文字幕网| 女人被狂操c到高潮| 欧美日韩视频高清一区二区三区二| 国产国拍精品亚洲av在线观看| 午夜激情久久久久久久| 丰满乱子伦码专区| 少妇裸体淫交视频免费看高清| 欧美一区二区亚洲| 一级毛片久久久久久久久女| 久久97久久精品| 亚洲aⅴ乱码一区二区在线播放| 一级毛片我不卡| 乱系列少妇在线播放| 一级黄片播放器| 久久久久久久国产电影| 免费黄频网站在线观看国产| 国产乱人偷精品视频| 国产探花在线观看一区二区| 国产伦精品一区二区三区四那| 亚洲,欧美,日韩| 国产精品一区二区三区四区免费观看| 你懂的网址亚洲精品在线观看| 欧美亚洲 丝袜 人妻 在线| 日韩不卡一区二区三区视频在线| 男女边吃奶边做爰视频| av国产精品久久久久影院| 久久久久网色| 三级国产精品片| av线在线观看网站| 少妇的逼水好多| 网址你懂的国产日韩在线| 午夜日本视频在线| 美女国产视频在线观看| 麻豆国产97在线/欧美| 男男h啪啪无遮挡| a级毛色黄片| 亚洲av成人精品一区久久| 国产一区二区三区综合在线观看 | 国产毛片a区久久久久| 插逼视频在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲av成人精品一二三区| 国产精品三级大全| 卡戴珊不雅视频在线播放| 免费在线观看成人毛片| 美女被艹到高潮喷水动态| 97超碰精品成人国产| 免费av不卡在线播放| 亚洲激情五月婷婷啪啪| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av电影在线观看一区二区三区 | 少妇 在线观看| 国产综合懂色| 亚洲国产精品999| 国产高潮美女av| 七月丁香在线播放| 嫩草影院精品99| 亚洲四区av| 国产91av在线免费观看| 国产色婷婷99| 日韩国内少妇激情av| 成人毛片60女人毛片免费| 少妇被粗大猛烈的视频| 中国三级夫妇交换| 一区二区三区四区激情视频| 最近2019中文字幕mv第一页| 最近最新中文字幕大全电影3| 十八禁网站网址无遮挡 | 久久久久网色| 亚洲精品国产av蜜桃| 日韩在线高清观看一区二区三区| av天堂中文字幕网| 日韩中字成人| 久久综合国产亚洲精品| 狂野欧美激情性bbbbbb| 国产乱人偷精品视频| 日韩国内少妇激情av| 男女边摸边吃奶| 搡女人真爽免费视频火全软件| 七月丁香在线播放| 久久久精品欧美日韩精品| 能在线免费看毛片的网站| 成人鲁丝片一二三区免费| 青春草视频在线免费观看| 国产白丝娇喘喷水9色精品| 国产成人精品久久久久久| 国产精品av视频在线免费观看| 成人特级av手机在线观看| 一区二区三区免费毛片| 美女视频免费永久观看网站| 丝袜喷水一区| 伦理电影大哥的女人| 国产极品天堂在线| 久久久国产一区二区| 王馨瑶露胸无遮挡在线观看| 青春草国产在线视频| 亚洲丝袜综合中文字幕| 欧美日韩综合久久久久久| 亚洲自拍偷在线| 日韩强制内射视频| 亚洲av免费高清在线观看| 观看免费一级毛片| 大香蕉久久网| 免费看a级黄色片| 亚洲国产欧美在线一区| 午夜福利视频精品| 国产精品成人在线| 亚洲最大成人av| 水蜜桃什么品种好| 在线观看人妻少妇| h日本视频在线播放| 国产精品成人在线| 国产精品三级大全| videossex国产| 国产欧美日韩一区二区三区在线 | 亚洲人成网站在线观看播放| 两个人的视频大全免费| 我的女老师完整版在线观看| 18禁在线播放成人免费| 99热全是精品| 久久精品熟女亚洲av麻豆精品| 国产白丝娇喘喷水9色精品| 久久99蜜桃精品久久| 成人特级av手机在线观看| 男人和女人高潮做爰伦理| tube8黄色片| 亚洲电影在线观看av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜福利视频1000在线观看| 中文字幕免费在线视频6| 国产精品一区二区三区四区免费观看| 91久久精品电影网| 国产精品av视频在线免费观看| 欧美少妇被猛烈插入视频| 春色校园在线视频观看| 免费在线观看成人毛片| 成年av动漫网址| 国产毛片在线视频| 午夜福利高清视频| 国产欧美另类精品又又久久亚洲欧美| 91久久精品国产一区二区成人| 最近2019中文字幕mv第一页| 中文字幕免费在线视频6| 最近最新中文字幕大全电影3| 一级爰片在线观看| 亚洲欧美成人精品一区二区| 国产毛片在线视频| 午夜福利网站1000一区二区三区| 亚洲怡红院男人天堂| 天美传媒精品一区二区| 韩国av在线不卡| 国产色婷婷99| 色综合色国产| 神马国产精品三级电影在线观看| 成人国产av品久久久| 国产亚洲5aaaaa淫片| 99热国产这里只有精品6| 精品一区在线观看国产| 性插视频无遮挡在线免费观看| 99久国产av精品国产电影| videos熟女内射| 在线a可以看的网站| 日韩精品有码人妻一区| 精品久久久久久久久av| 一区二区三区乱码不卡18| 国产精品蜜桃在线观看| 免费看不卡的av| 成人毛片a级毛片在线播放| 久久久久久伊人网av| 女人十人毛片免费观看3o分钟| 亚洲精品第二区| 免费人成在线观看视频色| 亚洲电影在线观看av| 亚洲精品,欧美精品| 丰满乱子伦码专区| 一本一本综合久久| 老女人水多毛片| 欧美日韩综合久久久久久| 日韩一本色道免费dvd| 中国三级夫妇交换| 毛片一级片免费看久久久久| 嘟嘟电影网在线观看| 色综合色国产| 看非洲黑人一级黄片| 嫩草影院新地址| 欧美丝袜亚洲另类| 少妇的逼水好多| 午夜福利高清视频| 成人特级av手机在线观看| 久久久久国产精品人妻一区二区| 国产午夜精品一二区理论片| 男女啪啪激烈高潮av片| 狂野欧美激情性xxxx在线观看| 色婷婷久久久亚洲欧美| 美女被艹到高潮喷水动态| 男人舔奶头视频| 欧美另类一区| 韩国av在线不卡| 91狼人影院| 亚洲成人中文字幕在线播放| 久久97久久精品| 久久精品国产亚洲av天美| 成年女人看的毛片在线观看| 亚州av有码| 国产亚洲av嫩草精品影院| 一级爰片在线观看| 22中文网久久字幕| 欧美另类一区| 国产中年淑女户外野战色| 麻豆成人av视频| 在线观看一区二区三区| 久久97久久精品| 国产亚洲av片在线观看秒播厂| 91久久精品电影网| 久久综合国产亚洲精品| 亚洲av在线观看美女高潮| 国产午夜福利久久久久久| 九色成人免费人妻av| 亚洲精品第二区| 91狼人影院| 精华霜和精华液先用哪个| 欧美zozozo另类| 亚洲av二区三区四区| 国产精品国产三级专区第一集| 久久99热这里只频精品6学生| 内地一区二区视频在线| 免费观看av网站的网址| 亚洲内射少妇av| 性色av一级| 网址你懂的国产日韩在线| 国产成年人精品一区二区| 亚洲精品日本国产第一区| 免费av观看视频| 欧美日韩视频精品一区| 国产免费一区二区三区四区乱码| av黄色大香蕉| 寂寞人妻少妇视频99o| 国产成人精品婷婷| 亚洲综合精品二区| 丝袜脚勾引网站| 国产片特级美女逼逼视频| 久久久久九九精品影院| 久久人人爽av亚洲精品天堂 | 成人欧美大片| 国产乱人偷精品视频| 黄色日韩在线| 少妇丰满av| 欧美一区二区亚洲| 精品99又大又爽又粗少妇毛片| 国产熟女欧美一区二区| 精品久久久久久久久av| 啦啦啦啦在线视频资源| 久久鲁丝午夜福利片| 七月丁香在线播放| 一本一本综合久久| 97超碰精品成人国产| 免费高清在线观看视频在线观看| 午夜亚洲福利在线播放| 啦啦啦啦在线视频资源| 国产成人精品福利久久| 99热网站在线观看| 国产精品熟女久久久久浪| 久久久欧美国产精品| 久久国产乱子免费精品| 精品少妇久久久久久888优播| 久久精品国产亚洲av天美| 日本黄大片高清| 国产高清国产精品国产三级 | 日韩 亚洲 欧美在线| 一级毛片aaaaaa免费看小| 欧美亚洲 丝袜 人妻 在线| 国产成人a∨麻豆精品| 日韩视频在线欧美| 午夜福利在线在线| 亚洲av一区综合| 在线亚洲精品国产二区图片欧美 | 欧美激情久久久久久爽电影| 亚洲欧洲国产日韩| 亚洲精品国产成人久久av| 97精品久久久久久久久久精品| 欧美变态另类bdsm刘玥| 日韩中字成人| 能在线免费看毛片的网站| 人妻 亚洲 视频| av国产免费在线观看| 2021少妇久久久久久久久久久| 成人综合一区亚洲| 国产免费一级a男人的天堂| 久久影院123| 亚洲精品乱码久久久v下载方式| 免费观看av网站的网址| 久久精品综合一区二区三区| 国产亚洲一区二区精品| 夫妻性生交免费视频一级片| 精品久久国产蜜桃| 女的被弄到高潮叫床怎么办| 国产成人精品久久久久久| 在线观看国产h片| 国产 一区 欧美 日韩| 亚洲精品,欧美精品| 美女内射精品一级片tv| 中文字幕人妻熟人妻熟丝袜美| 91久久精品电影网| 国产高清有码在线观看视频| 天堂网av新在线| 国产精品偷伦视频观看了| 禁无遮挡网站| 欧美+日韩+精品| 高清日韩中文字幕在线| 色视频www国产| 肉色欧美久久久久久久蜜桃 | 亚洲丝袜综合中文字幕| 国内揄拍国产精品人妻在线| 国产精品熟女久久久久浪| 特级一级黄色大片| 爱豆传媒免费全集在线观看| 国产中年淑女户外野战色| 欧美最新免费一区二区三区| 国产精品人妻久久久影院| 极品教师在线视频| 中文字幕av成人在线电影| 欧美成人一区二区免费高清观看| 国产午夜精品一二区理论片| 日韩不卡一区二区三区视频在线| 好男人在线观看高清免费视频| 伊人久久精品亚洲午夜| 一本色道久久久久久精品综合| 麻豆精品久久久久久蜜桃| av.在线天堂| 青青草视频在线视频观看| 夜夜爽夜夜爽视频| 精品国产乱码久久久久久小说| 亚洲精品国产成人久久av| 国产亚洲精品久久久com| 不卡视频在线观看欧美| 一级片'在线观看视频| 亚洲国产成人一精品久久久| 日韩一本色道免费dvd| 午夜老司机福利剧场| 成人一区二区视频在线观看| 又大又黄又爽视频免费| 韩国高清视频一区二区三区| 制服丝袜香蕉在线| 国精品久久久久久国模美| 赤兔流量卡办理| 国产成人免费观看mmmm| 女人被狂操c到高潮| 人妻夜夜爽99麻豆av| videossex国产| 国产一区二区三区综合在线观看 | 亚洲最大成人中文| 高清av免费在线| 免费黄网站久久成人精品| 中文字幕av成人在线电影| 性色avwww在线观看| 国产伦在线观看视频一区| 国产男女内射视频| 欧美极品一区二区三区四区| 日韩欧美 国产精品| 性色avwww在线观看| 日韩,欧美,国产一区二区三区| 精品一区在线观看国产| 欧美一级a爱片免费观看看| 久久精品国产自在天天线| 天堂俺去俺来也www色官网| 国产免费一级a男人的天堂| 久久午夜福利片| 免费看光身美女| 欧美性猛交╳xxx乱大交人| 最近最新中文字幕大全电影3| 欧美日韩在线观看h| 亚洲国产精品成人久久小说| 熟女电影av网| 91精品伊人久久大香线蕉| 99re6热这里在线精品视频| 男女边吃奶边做爰视频| av在线app专区| 少妇被粗大猛烈的视频| 成年免费大片在线观看| 国产永久视频网站| 最近手机中文字幕大全| 女人久久www免费人成看片| 在线观看国产h片| a级一级毛片免费在线观看| 五月玫瑰六月丁香| 精品人妻一区二区三区麻豆| 26uuu在线亚洲综合色| 免费看av在线观看网站| 日韩人妻高清精品专区| 美女cb高潮喷水在线观看| 国产男女超爽视频在线观看| 嫩草影院新地址| 人妻一区二区av| 亚洲最大成人av| 美女被艹到高潮喷水动态| 国产亚洲91精品色在线| 日日啪夜夜爽| 精品国产乱码久久久久久小说| 国产精品一二三区在线看| 国产乱人视频| 丝袜脚勾引网站| 欧美精品一区二区大全| 热99国产精品久久久久久7| 一级毛片黄色毛片免费观看视频| 国产免费视频播放在线视频| 精品少妇黑人巨大在线播放| 夫妻午夜视频| 国产色婷婷99| 一本色道久久久久久精品综合| 尤物成人国产欧美一区二区三区| 精品国产乱码久久久久久小说| 亚洲精品中文字幕在线视频 | 亚洲色图综合在线观看| 91精品一卡2卡3卡4卡| xxx大片免费视频| 亚洲天堂国产精品一区在线| 国产精品国产三级国产av玫瑰| av黄色大香蕉| 亚洲欧美成人综合另类久久久| 欧美 日韩 精品 国产| 亚洲av中文av极速乱| 51国产日韩欧美| 久久久午夜欧美精品| 最近2019中文字幕mv第一页| 国产永久视频网站| 久久久久网色| 交换朋友夫妻互换小说| 下体分泌物呈黄色| 麻豆久久精品国产亚洲av| 日本一二三区视频观看| 熟女电影av网| 国产在视频线精品| 全区人妻精品视频| 精品久久久精品久久久| 老司机影院毛片| 能在线免费看毛片的网站| 99精国产麻豆久久婷婷| 国产成人a∨麻豆精品| 亚洲色图av天堂| 欧美zozozo另类| 一个人看的www免费观看视频| 最近中文字幕高清免费大全6| 久久鲁丝午夜福利片| 久久精品久久精品一区二区三区| 不卡视频在线观看欧美| 女人十人毛片免费观看3o分钟| 五月开心婷婷网| av国产久精品久网站免费入址| 三级男女做爰猛烈吃奶摸视频| 男男h啪啪无遮挡| 波野结衣二区三区在线| 久久午夜福利片| 一级毛片黄色毛片免费观看视频| 国产亚洲av嫩草精品影院| 永久免费av网站大全| 国产精品久久久久久精品电影小说 | 简卡轻食公司| 在线观看av片永久免费下载| 久久久久精品性色| 男的添女的下面高潮视频| 欧美xxxx性猛交bbbb| 亚洲精品乱码久久久久久按摩| 国产精品99久久99久久久不卡 | a级一级毛片免费在线观看| 九色成人免费人妻av| 赤兔流量卡办理| 久久影院123| 99re6热这里在线精品视频| 91在线精品国自产拍蜜月| 亚洲色图av天堂| 欧美成人一区二区免费高清观看| 最近中文字幕2019免费版| 国产亚洲精品久久久com| 久久久久久九九精品二区国产| 99热6这里只有精品| 亚洲成人精品中文字幕电影| 蜜桃亚洲精品一区二区三区| 精品国产三级普通话版| 又爽又黄a免费视频| 国产成人精品婷婷| 99久久精品一区二区三区| 狂野欧美激情性xxxx在线观看| 搞女人的毛片| 久久韩国三级中文字幕| 你懂的网址亚洲精品在线观看| av女优亚洲男人天堂| 亚洲av中文av极速乱| 女的被弄到高潮叫床怎么办| 精品久久久久久电影网| 免费少妇av软件| 欧美另类一区| 欧美激情国产日韩精品一区| 丝袜美腿在线中文|