趙丹旗,付昱凱,侯曉坤,李同錄,李 萍,李 燕,張 林
(1.長安大學(xué)地質(zhì)工程與測繪學(xué)院, 陜西 西安 710054;2.黃土高原水循環(huán)與地質(zhì)環(huán)境教育部野外科學(xué)觀測研究站, 甘肅 正寧 745399;3.中國科學(xué)院地質(zhì)與地球物理研究所, 北京 100029)
土體的力學(xué)特性不僅取決于土體本身性質(zhì),而且受到應(yīng)力狀態(tài)、應(yīng)力路徑等因素的影響,因此實際工程中要盡量選擇可真實反映土體應(yīng)力狀態(tài)、加載方式、排水條件的應(yīng)力路徑進(jìn)行試驗[1-2]。
三軸試驗可進(jìn)行多種不同應(yīng)力路徑的試驗,通常采用的是圍壓或平均主應(yīng)力增大、減小或不變的路徑,借此研究各類土體在不同應(yīng)力路徑下變形強(qiáng)度的差異[3-6]。早期學(xué)者對砂土進(jìn)行試驗研究發(fā)現(xiàn)了應(yīng)力路徑對土體應(yīng)力-應(yīng)變特性的影響,探討了應(yīng)力路徑與本構(gòu)模型的相關(guān)性[7-8]。江美英等[9]研究應(yīng)力路徑對飽和黃土孔隙水壓力的影響,結(jié)果顯示常規(guī)壓縮、減圍壓壓縮和等平均主應(yīng)力路徑下孔壓差別較大,且軸向應(yīng)變較小時孔壓基本不受初始固結(jié)壓力影響。許成順等[10]試驗發(fā)現(xiàn)了砂土在壓縮條件下的剪脹性比拉伸條件下大,在減壓壓縮、常規(guī)壓縮、增壓壓縮條件下的剪脹性依次減小,在壓縮路徑下的內(nèi)摩擦角比拉伸條件下小。
以上應(yīng)力路徑可以模擬實際工程中的加載、卸載過程,而在邊坡中常常遇到地下水位上升引起土體中應(yīng)力路徑變化的情況[11-12]。Brand[13]曾建議在室內(nèi)試驗中,通過增加孔隙水壓力來模擬降雨引起的邊坡破壞過程,即土體所受偏應(yīng)力不變、平均有效應(yīng)力減小的排水剪切路徑。戴福初等[14]利用該路徑分析了雨水入滲條件下剪縮型、剪脹型和臨界狀態(tài)型土的應(yīng)力-應(yīng)變特點與滑坡發(fā)生機(jī)理的關(guān)系。Chu 等[15]根據(jù)固結(jié)排水、固結(jié)不排水和常剪應(yīng)力排水剪試驗結(jié)果,提出了一種用修正狀態(tài)參數(shù)和臨界狀態(tài)線描述砂土失穩(wěn)條件的方法。趙春宏等[16]通過固結(jié)不排水和常剪應(yīng)力排水剪試驗,分析了填土滑坡的發(fā)生機(jī)理,結(jié)果顯示該邊坡是由于地下水位上升導(dǎo)致土體發(fā)生靜態(tài)液化,從而形成了流滑。董全楊等[17]通過常剪應(yīng)力排水剪試驗驗證了松散砂土在排水條件下會發(fā)生快速塑性變形。上述常剪應(yīng)力排水剪試驗在砂土中開展比較廣泛,而黃土在該路徑下的變形和強(qiáng)度特點仍需進(jìn)一步研究。
我國黃土集中分布于陜西、甘肅、山西及寧夏地區(qū)[18]。這些地區(qū)的黃土不僅是一種自然沉積物,而且大量地作為土工材料,如地基、路基和建設(shè)場地等的填料。在這些填筑工程中,其含水率一般控制在最優(yōu)含水率,底部設(shè)有排水設(shè)施。然而,隨著時間推移,自然降水、綠化人工灌溉引起地表水下滲、周圍高地向地下匯水或排水設(shè)施老化造成堵塞,會使地下水位不斷上升,孔隙水壓力增大,導(dǎo)致填土斜坡滑移,甚至擋墻破壞,將對正在運營的工程造成威脅。目前對這類由地下水位上升引起的滑坡機(jī)理研究多采用固結(jié)不排水試驗,然而常剪應(yīng)力路徑能更好地描述該類滑坡。因此,本文制取飽和重塑黃土試樣,使用GDS 三軸試驗系統(tǒng)進(jìn)行固結(jié)不排水(CU)和常剪應(yīng)力排水剪(CSD)三軸試驗,分析2 種路徑下飽和重塑黃土的變形和強(qiáng)度特點,以便為實際工程選取合理的變形和強(qiáng)度指標(biāo)提供參考。
試驗土樣取自陜西延安新城北區(qū)某一填土邊坡,測得其比重為2.71,天然含水率為10.0%,液限為28.5%,塑限為18.7%,塑性指數(shù)為9.8,根據(jù)《土的工程分類標(biāo)準(zhǔn)》(GB/T 50145—2007),定名為低液限黏土[19]。用Bettersize 2000 激光粒度分布儀測得土樣粒徑分布曲線如圖1 所示,可見黏粒(≤0.005 mm)質(zhì)量占比為9.3%,粉粒(0.005~0.075 mm)為77.0%,砂粒(0.075~2 mm)為13.7%。黃土風(fēng)干碾碎后過2 mm 篩,將篩下散土平鋪于土工盤中,按照制樣含水率10%計算加水量并將水均勻噴灑在土樣上,用保鮮膜密封靜置24 h 后充分拌勻,再置于保濕器中使土中水分布均勻。采用分層壓制法制取干密度為1.40 g/cm3、直徑50 mm×高100 mm 的圓柱試樣,制樣孔隙比為0.936。
圖1 黃土試樣粒徑分布曲線Fig.1 Particle size distribution curve of the loess sample
試驗在GDS 三軸試驗系統(tǒng)上完成。試驗前采用常水頭滲透和反壓飽和相結(jié)合的方法對試樣進(jìn)行飽和,具體為:對試樣施加20 kPa 圍壓和10 kPa 反壓,打開試樣與外界相通的排水閥門,在常水頭下形成穩(wěn)定滲流,并帶出土體內(nèi)氣體;待水連續(xù)均勻流出排氣完成后,關(guān)閉排水閥門;保持圍壓比反壓大10 kPa,并以1 kPa/min 的速率同步增加圍壓和反壓,最終圍壓增加至300 kPa 左右??讐合禂?shù)B(B=Δu/Δσc)通過增加圍壓測定孔壓的方式獲得,當(dāng)B≥0.98 說明試樣飽和。
飽和完成后,進(jìn)行CU 或CSD 試驗。CU 試驗包括等壓固結(jié)和剪切,具體為:飽和完成后,維持反壓不變,并以恒定速率增加圍壓,使有效固結(jié)應(yīng)力分別達(dá)到60,110,210 kPa,但實際值略有偏差。等壓固結(jié)完成后,關(guān)閉試樣與反壓控制器的連接閥門,將加載方式由應(yīng)力控制轉(zhuǎn)換為應(yīng)變控制,并按0.1 %/min 軸向應(yīng)變速率進(jìn)行剪切試驗,試驗結(jié)束的標(biāo)準(zhǔn)是軸向應(yīng)變達(dá)到25%以上。
CSD 試驗包括等壓固結(jié)、偏壓固結(jié)和常剪應(yīng)力剪切。等壓固結(jié)方法及有效固結(jié)應(yīng)力設(shè)置同CU 試驗。等壓固結(jié)完成后,保持試樣與反壓控制器的連接閥門開啟,對試樣進(jìn)行偏壓固結(jié),加載速率按0.01 %/min軸向應(yīng)變控制。當(dāng)偏應(yīng)力q達(dá)到設(shè)定值時進(jìn)入常剪應(yīng)力剪切階段,該階段偏應(yīng)力保持不變,以0.20 kPa/min的速率增加反壓,直至試樣破壞。具體試驗方案如表1 所示。
表1 試驗方案Table 1 Test schemes
下面分析中,圍壓、軸向應(yīng)變分別用σc、?a表示。平均應(yīng)力p、平均有效應(yīng)力p′、偏應(yīng)力q的表達(dá)式如下:
式中:σ1、σ3—最大、最小主應(yīng)力/kPa;
u—孔隙水壓力/kPa。
圖2 為CU 應(yīng)力路徑的試驗結(jié)果。首先為等壓排水固結(jié)階段,偏應(yīng)力為0,應(yīng)力路徑自原點沿p軸右移。然后進(jìn)入應(yīng)變控制不排水剪切階段,總應(yīng)力路徑沿45°線上升到峰值偏應(yīng)力,再原路返回到殘余偏應(yīng)力;有效應(yīng)力路徑隨孔隙水壓力不斷增大而偏離總應(yīng)力路徑,在偏應(yīng)力上升的同時,平均有效應(yīng)力小幅增大后減小,偏應(yīng)力達(dá)到峰值后開始下降,最后沿著破壞線繼續(xù)下降。
圖2 CU 試驗應(yīng)力路徑Fig.2 Stress path of the consolidated undrained tests
圖3 中實線為不同圍壓下的應(yīng)力-軸應(yīng)變曲線。在3 種圍壓下,曲線均呈弱軟化型,即偏應(yīng)力達(dá)到峰值后有小幅度下降。以偏應(yīng)力峰值為界,將曲線劃分為2 個階段。第1 階段,偏應(yīng)力隨軸向應(yīng)變的增大而陡升,圍壓越大增速越快,當(dāng)軸向應(yīng)變達(dá)到1%左右,偏應(yīng)力達(dá)到峰值。第2 階段,偏應(yīng)力隨軸向應(yīng)變的增大而緩慢下降,當(dāng)軸向應(yīng)變達(dá)到15%時,偏應(yīng)力趨于穩(wěn)定,土體達(dá)到殘余狀態(tài)。偏應(yīng)力峰值對應(yīng)的應(yīng)力狀態(tài)點為峰值破壞點,軸向應(yīng)變25%時對應(yīng)的應(yīng)力狀態(tài)點為殘余破壞點,用直線擬合即可得到峰值破壞線和殘余破壞線[20-21]。
圖3 應(yīng)力q、孔壓u 與軸應(yīng)變?a 關(guān)系曲線Fig.3 Curves of q-?a and u-?a
圖3 中虛線為孔隙水壓力隨軸應(yīng)變的變化曲線??梢钥闯?,圍壓越大,初始孔壓隨軸向應(yīng)變的增速越快,最終穩(wěn)定值也越高。在偏應(yīng)力達(dá)到峰值前孔壓呈非線性快速增長,孔壓增速減緩時,偏應(yīng)力開始減小。當(dāng)應(yīng)變?yōu)?%時,孔壓趨于穩(wěn)定。CU-1、CU-2、CU-3的孔壓終值分別約為圍壓的98.1%、86.9%、86.5%,也就是低圍壓下,孔壓幾乎接近圍壓。孔壓上升是土樣應(yīng)變軟化的原因,也表明土體在剪切階段發(fā)生了剪縮。試樣最終呈中部鼓脹破壞,如圖4(a)所示。
圖4 2 種應(yīng)力路徑下土樣都呈現(xiàn)鼓脹破壞Fig.4 Swelling failure of the soil samples under both stress paths
圖5 中實線為CSD 試驗的應(yīng)力路徑,虛線為軸應(yīng)變隨平均有效應(yīng)力的變化曲線,圖6 為孔隙水壓力隨軸應(yīng)變的變化曲線。3 種圍壓下的試驗曲線形態(tài)一致,故以CSD-3 為例進(jìn)行分析。
圖5 CSD 試驗應(yīng)力路徑與軸應(yīng)變-平均有效應(yīng)力曲線Fig.5 Stress path of the constant shear drained tests and ?a-p′ curves
圖6 孔壓-軸應(yīng)變曲線Fig.6 Curves of u-?a
O—A3和A3—B3段分別為等壓和偏壓固結(jié)階段,都在排水條件下進(jìn)行,孔壓接近0。應(yīng)力路徑先沿p軸右移,再沿45°線到目標(biāo)應(yīng)力點。這2 個階段產(chǎn)生少量軸向變形,圍壓越大變形越多。
B3—D3段為常剪應(yīng)力剪切階段,維持偏應(yīng)力不變,通過施加反壓使平均有效應(yīng)力減小,應(yīng)力路徑水平左移達(dá)到破壞線。為?a-p′曲線開始出現(xiàn)上升趨勢的臨界點,以此為界將常剪應(yīng)力剪切階段分為2 段。B3—C3段,隨著孔壓增大,試樣仍處于穩(wěn)定狀態(tài),幾乎沒有產(chǎn)生軸向變形。C3—D3段,軸向變形加速發(fā)展,試驗過程中可觀察到試樣中部開始鼓脹。CSD-1、CSD-2、CSD-3 在Di(i=1,2,3)點的應(yīng)變分別為10.3%、15.4%、16.4%。3 種圍壓下Ci、Di點的孔隙水壓力情況列于表2。
表2 Ci、Di 點的孔隙水壓力Table 2 Pore water pressure at Ci and Di
D3—E3段為破壞階段,偏應(yīng)力不能維持常數(shù),而是沿破壞線下降。該階段軸向變形失控,突然增長,試樣快速鼓脹破壞,如圖4(b)所示。
由于常剪應(yīng)力剪切階段偏應(yīng)力為常數(shù),因此這里取?a-p′曲線開始出現(xiàn)上升趨勢的臨界點對應(yīng)的平均有效應(yīng)力點Ci為等效峰值破壞點,其擬合直線即為CSD 路徑的等效峰值破壞線。另外,取偏應(yīng)力失穩(wěn)下降點Di為殘余破壞點,從而確定殘余破壞線的位置。
圖2 和圖5 在p-q坐標(biāo)上分別繪制了2 種應(yīng)力路徑下的峰值和殘余破壞線。將這2 組強(qiáng)度破壞線放在同一個圖上比較,如圖7 所示。再利用p-q坐標(biāo)下破壞線的傾角α和截距a,由式(2)求得相應(yīng)的有效內(nèi)摩擦角和有效黏聚力,計算參數(shù)和計算結(jié)果匯總于表3。
表3 2 種應(yīng)力路徑下飽和重塑黃土的有效抗剪強(qiáng)度指標(biāo)Table 3 Effective shear strength indexes of the saturated remolded loess under two stress paths
圖7 2 種應(yīng)力路徑的破壞線Fig.7 Failure lines of two stress paths
式中:α—破壞線與p′軸的夾角/(°);
a—破壞線在q軸上的截距;
φ′—有效內(nèi)摩擦角/(°);
c′—有效黏聚力/kPa。
由圖7 可見,CSD 與CU 路徑下,峰值破壞線的位置相差較大,而殘余破壞線的位置相差較小,也就是說應(yīng)力路徑對有效峰值強(qiáng)度的影響比較大。換算為有效內(nèi)摩擦角和有效黏聚力,可見在CSD 路徑下的峰值內(nèi)摩擦角比CU 路徑下大4.5°,殘余內(nèi)摩擦角比CU 路徑下大1.5°,峰值黏聚力、殘余黏聚力比CU 路徑下小2.8 kPa、1.9 kPa。2 種路徑下土體有效殘余強(qiáng)度指標(biāo)的差異是緣于在各自獨立的坐標(biāo)下計算出來的。由圖7 可以看出,2 種路徑下的殘余值散點幾乎分布在1 條直線上。將2 種路徑下的殘余破壞點按1 條直線統(tǒng)計,可得其平均傾角和平均截距,再由式(2)換算為φ′和c′,分別為27.1°和4.5 kPa,其值一并列于表3 中。2 種應(yīng)力路徑下的有效殘余強(qiáng)度很接近,說明有效殘余強(qiáng)度是重塑黃土的內(nèi)在屬性,不受外在應(yīng)力邊界條件的影響。
(1)CU 路徑下,孔隙水壓力快速上升后趨于穩(wěn)定,試樣因孔隙水壓力升高而出現(xiàn)應(yīng)變軟化現(xiàn)象。
(2)CSD 路徑下,孔隙水壓力增大初期,試樣幾乎沒有軸向變形,當(dāng)應(yīng)力路徑達(dá)到破壞線時,偏應(yīng)力失控下降,試樣快速鼓脹破壞。
(3)CSD 路徑下偏應(yīng)力不變,將?a-p′曲線開始上升時對應(yīng)的應(yīng)力點作為等效峰值破壞點,由此確定了CSD 路徑下的等效峰值破壞線。
(4)飽和重塑黃土在2 種應(yīng)力路徑下有著明顯不同的變形模式,有效峰值強(qiáng)度也存在明顯差異,但其殘余破壞線幾乎重合,有效殘余強(qiáng)度指標(biāo)差別不大,說明有效殘余強(qiáng)度是重塑黃土的內(nèi)在屬性,與外在應(yīng)力條件無關(guān)。